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Abstract. As part of DARPA’s Mind’s Eye program, a video-analysis software 
platform able to detect operationally significant activity in videos is being 
developed. The goal is to describe such activity semi-automatically in terms of 
verb phrases mapped to a realism-based ontology that can be used to infer and 
even predict further activities that are not directly visible. We describe how 
Region Connection Calculus and its derivative, Motion Class Calculus, can be 
used together to link the spatiotemporal changes that pixel-aggregates undergo 
in video-displays to the corresponding changes of the objects in reality that 
were recorded and to linguistic descriptions thereof. We discuss how 
Ontological Realism can be used as a safeguard to drawing such 
correspondences naively. 
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1   Introduction 

Automatic video-understanding is a relatively new field for which the research agenda 
has been set only fairly recently. Cetin identified in 2005 two grand challenges for 
video-analysis: the first was to develop applications that allow a natural high-level 
interaction with multimedia databases; the second was finding adequate algorithms 
for detecting and interpreting humans and human behavior in videos containing also 
audio and text information [1]. Early successes have focused on particular sub-
problems, such as face detection [2].  

State of the art systems are capable of detecting instances of objects – sometimes 
referred to as ‘the nouns’ of the scene – among few hundreds of object classes [3] and 
contests such as the PASCAL Challenge annually pit the world’s best object detection 
methods on novel datasets [4]. Now, however, a more elusive problem presents itself: 
finding the ‘verbs’ of the scene. As Biederman stated nearly 30 years ago: specifying 
not only the elements in an image but also the manner in which they are interacting 
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and relating to one another is integral to full image understanding [5]. However, 
recognizing human actions, especially with a view to understanding their underlying 
motivation, has proved to be an extremely challenging task. This is because (1) 
behavior is the result of a complex combination of coordinated actions, (2) motion 
and behavior are described linguistically at a wide variety of spatiotemporal scales, 
and most importantly (3) the unambiguous extraction of intent from motion alone can 
never be achieved due to the significant dependence upon contextual knowledge. 

Solving these problems, specifically in the context of surveillance, is the objective 
of DARPA’s Mind’s Eye program which seeks to embed in a smart camera sufficient 
visual intelligence to detect, interpolate and even predict activities in an area of 
observation and, as a specific requirement, to describe these activities in terms of 
‘verbs’ (Table 1) [6].  

As successful proposers to this program, our answer is ISTARE: a platform which 
will suitably represent articulated motion in a three-layer hierarchical dynamical 
graphical model consisting of (1) a lowest level of representation formed by points, 
lines and regions in their spatiotemporal context, (2) a mid-level capturing the spatio-
temporal coherence inherent in the appearance, structure and motions of the atoms in 
the lower level, and (3) generalizations of the reusable mid-level parts into full objects 
and activities at the high-level (Fig.1).  Part of that platform is an ontology which 
grounds the models with proper semantics thereby driving both learning and 
inference. A human-in-the-loop is the bridge between models and symbolic 
representations in case of ambiguities. But rather than requiring laborious annotation 
in such case, the human simply needs to answer yes/no questions generated by our 
methods. 

In this communication, we describe our strategy to make the ISTARE approach in 
general, and the computational structures resulting from automated video analysis and 
annotation within the ISTARE platform specifically, compatible with ongoing 
research in the field. Using Motion Classes (MC) as an example, we demonstrate how 
Ontological Realism is an important building block in this endeavor and how it is able 
to tie the various pieces – reality, spatiotemporal models and linguistic descriptions – 
together. 

 

Table 1. Verbs of interest for activity detection in the Mind’s Eye video-analysis program 

approach catch enter follow have lift put down stop 
arrive chase exchange get hit move raise take 
attach close exit give hold open receive throw 
bounce collide fall go kick pass replace touch 
bury dig flee hand jump pick up run turn 
carry drop fly haul leave push snatch walk 
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Fig. 1: Interaction of spatio-temporal models at three levels of granularity 
within the ISTARE platform. 

2   Motion Classes 

Several formalisms have been introduced to represent and reason with actions. The 
basic elements of situation calculus [7-8] are: (1) actions that can be performed in the 
world, (2) fluents that describe the state of the world, each fluent thus being the 
representation of some property, and (3) situations, a situation being ‘a complete state 
of the universe at an instant of time’ [9], a position which is also maintained in fluent 
calculus [10]. Event calculus does without situations, and uses only actions and 
fluents, whereby the latter are functions – rather than predicates as is the case in 
situation calculus – which can be used in predicates such as HoldsAt to state at what 
time which fluents hold [11]. These approaches, unfortunately, don’t take ontological 
commitment very serious or are based on representational artifacts which do not 
follow the principles of ontological realism [12]. 

The Motion Classes (MC) paradigm [13] which builds further on Region 
Connection Calculus (RCC) [14] to describe motions do not suffer from this. RCC 
describes how two regions are spatially located in relation to each other, thereby 
recognizing eight relations (Fig.2). Five of them are ontologically distinct: 
disconnected (DC), externally connected (EC), partially overlapping (PO), tangential 
proper part (TPP) and non-tangential proper part (NTPP). Three others are there for 
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notational purposes: equality (EQ – if we write ‘EQ(x,y)’, then there is in fact only 
one region denoted by two distinct symbols ‘x’ and ‘y’), and TPPI and NTPPI as the 
inverses of TPP and NTPP.  

The Motion Classes paradigm exploits what is called the ‘conceptual 
neighborhood’ of the RCC-relations which for each relation is defined as the set of 
possible relations that may hold at some point in time when another relation held 
earlier (Fig.2).  A motion class is the set of transitions from one RCC configuration to 
another one that can be achieved by the same basic sort of motion (Fig.3). As an 
example, any transition from PO, TPP NTPP, EQ, TPPI and NTPPI to DC, EC or PO 
can be achieved through a LEAVE motion, i.e. a motion which separates the two 
regions from each other. Although there are 64 (82) distinct types of transitions which 
thus theoretically could be caused by 64 distinct types of motions, closer inspection 
reveals that there are only nine distinct motion types (Fig.3). Five more distinct 
classes can be defined through pair-wise combination of the nine basic motions: HIT-
SPLIT, PERIPHERAL-REACH, PERIPHERAL-LEAVE, REACH-LEAVE, and 
LEAVE-REACH. The 76 (92

In the same way as RCC calculus uses tables to list the possible configurations for 
region pair (x,z) when the RCC-relations for the pairs (x,y) and (y,z) are known, so 
provides MC tables for what motion classes are possible for the pair (x,z) when the 
motion classes for (x,y) and (y,z) are known [13]. MC, in addition to being a 
representational framework for motion, can also be used as the semantic underpinning 
for motion verbs. Almost all verbs from Table 1 can be analyzed in terms of a motion 
class: ‘leave’ and ‘give’ involve LEAVE, ‘hit’ and ‘collide’ involve HIT, ‘bounce’ 
involves HIT-SPLIT, ‘approach’ involves REACH, and so forth. The feasibility of 
this approach has already been determined although some further representational 
frameworks for spatiotemporal reference and direction are required [15]. But, as we 
will discuss in section 4, an adequate ontological analysis as applied in related 
contributions to geographic information science [16], is required to determine 
precisely what sort of involvement is the case. 

-5) other combinations do not lead to a distinct sort of 
motion; HIT followed by REACH, for instance, was already REACH from the very 
beginning.  

 
 

 
 
 
 
 
 
 
 
 
 
Fig.2: Relationships and transitions 
involving spatial regions in Region 
Connection Calculus. 

 Fig.3: 9 basic motion classes representing the 
simplest type of change that two regions 
possibly underwent relative to their start and 
end configuration as expressed in RCC8. 
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3.   Ontological Realism 

Ontological realism is a paradigm which rests on a view of the world as consisting of 
entities of at least two sorts, called ‘particulars’ and ‘universals’ respectively [12, 17]. 
Particulars, according to this doctrine, are concrete individual entities that exist in 
space and time and that exist only once, examples being the persons and helmets 
depicted in Fig.1.  Persons and helmets are continuants: whenever they exist, they 
exist in total. Also the motion in which the white helmet participated (‘participate’ is 
here a technical term which expresses in the least informative or committing way the 
relationship between a continuant and the change it undergoes [18]) while being given 
to the person depicted on the left is a particular.  Particulars such as motions are 
occurrents, i.e. entities that at every point in time that they exist, exist only partially.  

The word ‘depicted’ in the sentence above is not used arbitrarily, because the three 
bottom images in Fig.1 are themselves three distinct particulars and so are the parts of 
these pictures which depict the persons. But whereas the persons themselves are not 
about anything, the corresponding pictures are about these persons. Therefore, the 
persons are so-called L1-entities (first-order entities) while the pictures are L3-
entities, i.e. communicable representations [19]. It is this communicability that 
distinguishes L3-entities from cognitive representations (L2-entities) such as beliefs, 
for example the belief sustained by an intelligence analyst that the person on the left 
in each of these images is the same person, or the belief that this person is John Smith. 
The analyst can of course express his belief in an annotation to the pictures, that 
annotation then being an L3-entity and thus clearly distinct from the belief itself: the 
belief is in the analyst’s head, the annotation is in the report. 

Universals, in contrast to particulars, are repeatable. This means that they that can 
exist in indefinitely many instances – thus the persons depicted in Fig.1 were 
instances of the universal HUMAN BEING at the time the pictures (each of the latter 
being instances of the universal PICTURE) were taken – and they are the sorts of things 
that can be represented by means of general terms used in the formulation of theories, 
for instance that pictures shot by good cameras contain regions of which the colors 
correspond with the colors exhibited by the entities in reality to which those regions 
correspond.  

Ontological realism is embodied in two artifacts which roughly correspond with 
the universal/particular distinction. Basic Formal Ontology (BFO) [20] represents the 
universals which are practically necessary for successful domain and application 
ontology construction and ensures (1) that there is an unbroken path from every type 
in the ontology to the ontology’s root, and (2) that definitions for all terms in the 
ontology can be coherently formulated. Referent Tracking (RT) provides a set of 
templates to express formally portions of reality (PORs), i.e. how particulars relate to 
each other, what universals represented in BFO (or ontologies developed there from 
such as for instance UCORE-SL [21]) they instantiate, and what terms from other 
terminological systems are used to further describe them [22].  
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4.   Video, spatiotemporal semantics and ontological realism 

How do videos of PORs and descriptions about these PORs on the basis of what is 
depicted in a video, relate to reality under the view of ontological realism?  

Digital images taken from PORs contain pixels most of which combine into curves 
and regions which each have their own shape and texture, all of these entities being 
continuants. In the ideal case, regions in the image depict (roughly) the characteristics 
of the surface of the material entities visible to the camera which are all continuants 
too. Digital video files of PORs are continuants which when processed by display 
technology lead to the generation of occurrents of which the curves and regions, as 
well as their shapes and textures, are the only participants. These occurrents are the 
coming into existence, disappearance, or change in location, shape, size and/or texture 
of curves and regions. In the ideal case, with an immobile camera and without 
zooming having been applied, the occurrents visible on the screen correspond to 
occurrents in which the material entities that are depicted participate. But whereas the 
on-screen (L3) entities are instances of a very restricted number of universals, there 
are many more universals of which the corresponding L1-entities are instances. 
Furthermore, although each particular on-screen entity corresponds (roughly) to 
exactly one L1-entity, distinct on-screen entities in distinct images or videos may 
correspond to distinct L1-entities despite being of exactly similar shape, size and 
texture. Video-analysis can under this view thus be seen as an effort to identify (1) the 
on-screen regions and their changes which correspond to L1-particulars, (2) the 
universals instantiated by these L1-particulars, and (3) the identity of these 
particulars, either absolute (e.g. establishing that John Smith is depicted in the video) 
or relative (e.g. the person leaving the building is the same as the one that earlier 
entered the building).  

Video-annotation under the Mind’s Eye program requires the use of certain 
descriptive verbs (Table 1) which brings in additional complexity involving L2-
entities. Not only is there a wide variability in the way motion classes are 
linguistically expressed [15], it has also been shown that the cognitive salience of 
topological relations is not equal for all topologically defined ending relations [23]. 
Various pitfalls need thus to be avoided. as demonstrated by a verb such as ‘to 
approach’. One pitfall is leaving it open whether a descriptive verb is used to describe 
an on-screen entity or a first-order entity: although one on-screen entity might indeed 
be described as approaching another one, it might be such that the corresponding 
entities in reality are moving away from each other, the on-screen approach being the 
result of the reduction from 3D to 2D when reality is viewed at through the lens of a 
camera. Another pitfall is that some motion verbs behave grammatically as action 
verbs when used in the description of a scene, while in reality the process that is 
described as such, although ontologically being an instance of motion, is not at all an 
instance of action: the canoe floating down the river towards the lake is indeed 
approaching the lake, but without any action going on. Yet another pitfall is that two 
entities might be described as being involved in an approach although the shortest 
distance between them increases: think of two cars driving towards each other on a 
curved road around some mountain. It might be tempting to say that in this case there 
are two motions going on, one of approaching and one of moving away, but that is of 
course ontological nonsense. And as a last example, but for sure not the last pitfall, 
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many motion verbs do not denote motions at all, but rather certain configurations of 
entities in which some sort of motion is involved. ‘To approach’ is in this case. 
Imagine a satellite orbiting around Earth for years and that at some point in time a 
second satellite is launched in an orbit which is such that during some part of their 
motions the two satellites can be said to approach each other while during other parts 
they can be said to move away from each other. It seems obvious that the process in 
which the first satellite participated for all these years does suddenly not become a 
different process because of some event that does not have any effect on its motion. 
Yet, the descriptions are valid at the respective times. 

Ongoing efforts 

Automatically extracting from a video regions that correspond to concrete objects and 
parts of objects, and then identifying what these objects exactly are, is a challenging 
problem. Although progress toward object boundary segmentation at the low-level 
continues to be made, all sufficiently successful approaches are either limited to 
specific object classes or have not been applied to videos. To overcome these 
challenges, ISTARE works currently with a hierarchy of pixel aggregates which is 
induced directly from the pixel data and hence, does not impose an artificial structure. 
At the low-level, direct pixel intensities are used to decide whether or not to join into 
an aggregate, and thus do suffer from the above noted limitations. But, as the 
algorithm moves up the hierarchies, more informative features, such as texture and 
shape, are used to describe the aggregates and hence assist in deciding which ones 
should be joined. The aggregation occurs directly on spatiotemporal pixel cubes, 
defined over short segments of the video (e.g., 2 seconds) [24]. The goal is now to 
improve the recognition at this level by using information provided by an ontology 
developed along the lines just sketched.  
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