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Abstract

Event extraction following the GENIA

Event corpus and BioNLP’09 shared task

models has been a considerable focus of

recent work in biomedical information ex-

traction. This work includes efforts ap-

plying event extraction methods to the en-

tire PubMed, far beyond the narrow sub-

domains of biomedicine for which anno-

tated resources are available. We aim

to estimate the coverage of all statements

of gene/protein associations in PubMed

that existing resources for event extrac-

tion can provide. We base our analy-

sis on a recently released corpus auto-

matically annotated for gene/protein en-

tities and syntactic analyses covering the

entire PubMed, and use named entity

co-occurrence, shortest dependency paths

and an unlexicalized classifier to iden-

tify likely statements of gene/protein as-

sociations. A set of high-frequency/high-

likelihood association statements are then

manually analyzed with reference to the

GENIA ontology. We provide a first es-

timate of the overall coverage of existing

resources for event extraction and identify

several classes of biologically significant

associations of genes and proteins that are

not addressed by these resources.

1 Introduction

In recent years, there has been a significant shift in

focus in biomedical information extraction from

simple pairwise relations representing associa-

tions such as protein-protein interactions (PPI) to-

ward representations that capture typed, structured

associations of arbitrary numbers of entities in

specific roles, frequently termed event extraction

(Ananiadou et al., 2010). Much of this work draws

on the GENIA Event corpus (Kim et al., 2008),

a resource of 1500 PubMed abstracts in the do-

main of transcription factors in human blood cells

annotated for genes, proteins and related entities,

events and syntax. This resource served also as

the source for the annotations in the BioNLP’09

shared task on event extraction (BioNLP ST), the

first collaborative evaluation of event extraction

methods (Kim et al., 2009).

Another recent trend in the domain is a move

toward application of extraction methods to the

full scale of the existing literature, with results for

various targets covering the entire PubMed liter-

ature database of nearly 20 million citations be-

ing made available (McIntosh and Curran, 2009;

Björne et al., 2010b; Gerner et al., 2010a; Gerner

et al., 2010b). As event extraction methods ini-

tially developed to target the set of events defined

in the GENIA / BioNLP ST corpora are now be-

ing applied at PubMed scale, it makes sense to ask

how much of the full spectrum of gene/protein as-

sociations found there they can maximally cover, a

question separate from issues relating to their per-

formance in extracting the targeted event types.

In this study, we seek to characterize the full

range of gene/protein associations described in

the literature and estimate what coverage of these

associations state-of-the-art event extraction sys-

tems can maximally achieve. We approach these

questions by assuming that associations are stated

through specific words, analogously to the widely

applied concepts of interaction words in protein-

protein interaction extraction and text binding

words in event extraction. We follow a statisti-

cal approach to identifying such candidate words

using an automatically tagged corpus covering the

entire PubMed literature database.

2 Task Definition

We term our extraction target gene/protein as-

sociations. So as not to limit the applicabil-
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ity of our results, we define our target entities

(“genes/proteins”) broadly. The specific definition

of this entity type is provided by the GENETAG

corpus annotation (Tanabe et al., 2005) on which

the applied automatic tagger is trained. GENE-

TAG annotates a single class of gene/protein enti-

ties that encompasses genes and gene products as

well as related entities such as domains, promot-

ers, and complexes. This inclusiveness permits the

identification of associations between more than

only the gene and gene product entities included

in the GENIA / BioNLP ST annotation (Ohta et

al., 2009).

We also intend “associations” broadly, under-

standing it to encompass direct PPI-type interac-

tions as well as experimental findings suggest-

ing them, as pursued in the BioCreative PPI tasks

(Krallinger et al., 2007), BioNLP-style events

(“things that happen”) such as expression and lo-

calization, as well as static relations in the sense

of (Pyysalo et al., 2009), associations such as part-

of that hold between entities without necessarily

implying change. Indeed, while we take “associa-

tion” to exclude properties and states that involve

only a single entity, we do not set other specific

constraints, following instead a loose biologically

motivated definition that can be characterized in-

formally as “any association between genes, gene

products, or related entities that is of biological in-

terest.”

We note that while our aims and approach share

a number of features with tasks such as protein-

protein interaction extraction, they differ in focus

on statements of association (as opposed to the en-

tities stated to be associated) and in that we do not

aim to find instances of the expressions of inter-

est with high recall, but rather identify association

types. Due to the large scale of the PubMed corpus

it is possible to pursue an approach that only con-

siders a small, high-reliability portion of the avail-

able data (discarding most instances) and still finds

associations of interest. Thus, instead of instance-

level recall, we pay particular attention to not in-

troducing overt bias e.g. toward particular forms

of expression so as to be able to use the result to

estimate relative frequencies of the associations in

the full corpus.

3 Corpus resources

This study is based on the 2009 distribution of

the full PubMed literature database, encompass-

ing approximately 18 million citations of biomed-

ical domain scientific articles. For the analysis

of this data, we make use of the Turku PubMed

Scale (TPS) corpus (Björne et al., 2010b), an au-

tomatically annotated corpus covering the entire

PubMed. Note that while the original focus of

the corpus is on BioNLP-style events, we do not

use these annotations. Instead, we make use of

the automatically identified sentence boundaries,

named entities, and the syntactic analyses, briefly

presented in the following.

All PubMed documents in the TPS corpus were

initially processed with the GENIA sentence split-

ter with simple heuristic post-processing to cor-

rect some errors from the machine learning-based

splitter.1 The sentence splitter is estimated to

achieve an F-score of 99.7% on the GENIA cor-

pus. Gene/protein named entities were tagged in

all sentences using the BANNER named entity

recognition system (Leaman and Gonzalez, 2008)

trained on the GENETAG corpus and thus reflect

its inclusive definition of gene/protein. The release

of BANNER applied to tag the TPS corpus was

reported to achieve 86.4% F-score on the GENE-

TAG corpus, and an evaluation on a random sam-

ple of tagged entities in TPS data found 87% pre-

cision (Björne et al., 2010a), suggesting that the

tagger generalizes well to the whole PubMed.

Finally, the TPS corpus distribution includes

syntactic analyses for all sentences in which at

least one named entity has been tagged.2 Parses

were produced using the McClosky-Charniak

parser, a version of the Charniak-Johnson parser

(Charniak and Johnson, 2005) adapted to the

biomedical domain. The parser has shown state-

of-the-art performance in recent intrinsic (Mc-

Closky and Charniak, 2008) and extrinsic (Miwa

et al., 2010) evaluations. The McClosky-Charniak

parser produces constituency (phrase structure)

analyses in the Penn Treebank scheme, with Penn

part-of-speech tags. In addition to the these analy-

ses, dependency analyses in the Stanford Depen-

dency (SD) scheme (de Marneffe and Manning,

2008), created from the constituency analyses by

automatic conversion using the using the Stanford

parser tools3 are provided in the TPS corpus.

1http://www-tsujii.is.s.u-tokyo.ac.jp/∼y-matsu/geniass/
2Sentences not containing entities are not parsed as pars-

ing was the most computationally intensive part of the au-
tomatic corpus annotation and the system could only extract
events from sentences with entities.

3http://nlp.stanford.edu/software/lex-parser.shtml
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Word Frequency

patients 8728330
cells 5384960
results 4175016
study 4149760
treatment 3436331
cell 3230831
activity 2763031
group 2635275
protein 2553732
effect 2457417

Table 1: Most frequent words in PubMed.

4 Identification of Gene/Protein

Associations

In this section, we present our approach to iden-

tifying statements of gene/protein associations

through an extended analysis of word statistics in

PubMed.

4.1 Overall Statistics

As expected for a corpus of English, the most

frequent words in PubMed are prepositions, de-

terminers, conjunctions and forms of the copula

(“is”) and, if non-word tokens are included, punc-

tuation. In this work, we focus on content words,

filtering closed class words and non-words and ap-

plying a basic stopword list including the PubMed

stopword list. Table 1 shows the most frequent

such words in PubMed.4 The distribution sug-

gests that medical topics dominate biomolecular

ones overall, with e.g. the word “patients” occur-

ring more than three times as often as the word

“protein”. Although general expressions such as

“activity” and “effect” can be used to describe pro-

tein associations, the most frequent words contains

no word specific to protein associations.

4.2 Gene/Protein Mentions

The automatic tagging for mentions of

gene/protein-related named entities in the TPS

corpus covers a total of 36.4 million gene/protein

mentions in 5.4 million documents, approximately

30% of all PubMed citations. These annotations

allow focus on texts likely relevant to gene/protein

associations. Here, as we are interested in partic-

ular in texts describing associations between two

or more gene/protein related entities, we apply a

focused selection, picking only those individual

4For this and other word statistics in this section, basic to-
kenization separating punctuation from words and lowercas-
ing has been applied but stemming or lemmatization is not
performed.

Word Frequency

cells 1455897
protein 1057920
expression 923002
activity 753521
cell 750293
gene 704434
receptor 641766
human 635468
levels 603117
factor 518676

Table 2: Most frequent words in sentences con-

taining two or more gene/protein entity mentions

in PubMed.

sentences in which two or more mentions co-

occur. While this excludes associations in which

the entities occur in different sentences, their rela-

tive frequency is expected to be low: for example,

in the BioNLP ST data, all event participants

occurred within a single sentence in 95% of the

targeted biomolecular event statements. In the

TPS data, there are 9.0 million sentences with at

least two tagged entities. These sentences contain

25.4 million entity mentions; approximately 70%

of the total number.

Table 2 shows the most frequent words in sen-

tences with at least two tagged protein mentions.

The list suggests that this simple selection is suf-

ficient to identify a subset of PubMed where

biomolecular topics are prominent: both “protein”

and “expression” appear ranked near the top.

4.3 Dependency Paths

The TPS corpus contains both constituency and

dependency analyses of sentence syntax. While

both forms of representation arguably capture

largely the same information, dependency repre-

sentations have been argued to make the relevant

syntactic relations more immediately accessible

and have been successfully employed in many re-

cent domain information extraction approaches,

frequently in conjunction with the use of the short-

est dependency path between two entities to dis-

cover stated associations (see e.g. (Bunescu and

Mooney, 2005; Fundel et al., 2007; Miwa et al.,

2009; Björne et al., 2009)).

Here, we follow the assumption that when two

entities are stated to be associated in some way,

the most important words expressing their associ-

ation will typically be found on the shortest de-

pendency path connecting the two entities (cf. the

shortest path hypothesis of (Bunescu and Mooney,

2005)) The specific dependency representation ap-
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Word Frequency

expression 590810
activity 470393
levels 386130
cells 349648
activation 240942
induced 221177
binding 153806
mediated 129620
effect 124948
increased 124564

Table 3: Most frequent words on shortest depen-

dency paths connecting two gene/protein entity

mentions in PubMed.

plied here is the collapsed, coordination-processed

variant of the Stanford representation, which is ex-

pressly oriented toward use in this type of informa-

tion extraction approaches (de Marneffe and Man-

ning, 2008). When extracting the shortest paths,

we further avoid traversing coordinating conjunc-

tion dependencies (conj*) to assure that relevant

words are not excluded in sentences involving co-

ordination and that similar paths are extracted for

all coordinated words (Figure 1).

p1 activates p2 and p3

<nsubj dobj> cc>
conj>

p1 activates p2 and p3

<nsubj dobj> conj>
dobj>

Figure 1: Variants of the SD representation. Basic

SD above, collapsed, coordination-processed SD

below.

The corpus contains 31.8 million pairs of

gene/protein mentions co-occurring in a sentence,

and a connecting shortest path could be extracted

for 97% of these.5 Table 3 shows the words most

frequently occurring on these paths. This list again

suggests an increased focus on words relating to

gene/protein associations: expression is the most

frequent word on the paths, and binding appears

in the top-ranked words.

4.4 Path probabilities

Entities often co-occur in text without any associa-

tion being stated between them, but some shortest

dependency path can be found connecting (nearly)

all co-occurring entities. Distinguishing paths that

5Failures to extract a path were primarily due to clause-
level coordination (e.g. “we study P1 and we find that P1 is
. . . ”) and, rarely, failures from the parser or the dependency
conversion.

Word Ew

expression 68803.3
activity 56372.9
activation 43987.9
binding 28989.3
induced 24132.8
phosphorylation 22971.9
binds 17757.0
production 16893.2
inhibited 15972.9
inhibition 14546.0

Table 4: Words ranked highest by Ew, the ex-

pected number of times they occur on shortest

paths likely to express a gene/protein association.

state associations from those that do not could

thus help identify words that are key to express-

ing those associations.

A wealth of approaches for distinguishing

relevant paths from irrelevant ones have been

proposed in the protein-protein interaction ex-

traction literature, including rule-based, pattern-

based (hand-written and learned) and supervised

classification-based methods (e.g. (Ding et al.,

2003; Yakushiji et al., 2005; Rinaldi et al., 2006;

Fundel et al., 2007; Sætre et al., 2007; Airola et

al., 2008; Miwa et al., 2009)). However, writing

explicit rules conflicts with our aim of discovering

associations (and statements of associations) that

we do not already know about, and application of

standard supervised learning methods would sim-

ilarly limit the scope of what can be extracted by

the (known) training data.

Here, drawing on ideas from Open Informa-

tion Extraction (Etzioni et al., 2008), we adopt

a probabilistic approach using an “unlexicalized”

machine learning method. We defer detailed de-

scription of the method to Section 5, now simply

assuming a way to assign to each path p an (esti-

mated) probability P (p) that the path expresses an

association between the entities it connects. We

make use of P (p) in two obvious ways to refine

the pure frequency-based word rankings presented

above: first, only count words when they occur

on paths that have an estimated probability higher

than a given threshold of being relevant, and sec-

ond, replacing the “raw” word count with the ex-

pected number of times that word appears in a rel-

evant path, informally Ew =
∑

p:w∈p
P (p).

Table 4 shows the top-ranked words by Ew as

calculated using the method described below. The

listing contains only words that are regularly used

to express gene/protein associations, suggesting
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that probabilistic ranking can allow clear focus on

the targeted statements.

5 Machine Learning

We applied supervised machine learning to esti-

mate the probability that a dependency path con-

necting gene/protein mentions expresses an asso-

ciation of these entities, training with “unlexical-

ized” features (Banko and Etzioni, 2008) to force

the learning method to generalize and to learn

based on the patterns of expression only.

5.1 Training Data

For training data, we could potentially draw from

a wealth of corpus resources annotated for some

form of association between genes/proteins, such

as PPI corpora (see e.g. (Pyysalo et al., 2008)).

However, as we are in particular interested in

event extraction approaches, we chose to use the

BioNLP ST data. This dataset also identifies the

expressions stating the annotated events (“trigger

words”), providing test material for the method.

As the BioNLP ST data does not explicitly iden-

tify pairs of entities that are stated to be associated,

it was first necessary to derive a pairwise represen-

tation from the event representation. We applied a

mapping similar to that introduced by (Heimonen

et al., 2008) for deriving pairwise relations from

the event-style annotations of the BioInfer corpus

(Pyysalo et al., 2007): for each co-occurring entity

pair, we identified all paths through event struc-

tures connecting the two entities. If these paths in-

cluded at least one where the direction of causality

was not reversed on the path, the pair was marked

as a positive example of an association; otherwise

it was marked negative. Finally, we interpreted

the Equiv annotations identifying equivalent entity

references in the data: any pair where entities are

equivalent to those of at least one positive pair was

marked positive (see Figure 2).

Finally, to make this pair data consistent with

the TPS event spans, tokenization and other fea-

tures, we aligned the entity annotations of the two

corpora, mapping a BioNLP ST entity to a TPS en-

tity if their spans matched or the source entity was

entirely contained within the span of the candidate

target entity. Unmatched entities were removed

from the data. This processing was applied to the

BioNLP ST training set, creating a corpus of 6889

entity pairs of which 1119 (16%) were marked as

expressing an association (positive).

cytokine   activate   transcription factor    (TF)

Protein Pos.Reg Protein Protein

Cause Theme
Equiv

c)

IL-4   …   induce   …   expression of   CD86

Protein Pos.Reg ProteinGene expression

Cause Theme

a)

Theme

b)

MST1  and   MST2     phosphorylate …

Protein

Cause

Phosphorylation

Cause

Protein

Figure 2: Reinterpreting BioNLP ST event struc-

tures as associated entity pairs. A positive pair

is extracted for the proteins in a) but not in b) as

they are not causally connected. In c), two positive

pairs are extracted due to the equivalence relation.

5.2 Learning Method

We applied the libSVM Support Vector Ma-

chine implementation using probabilistic outputs

(Chang and Lin, 2001). For training the classi-

fier, we applied features derived only from the

words and dependencies along the shortest path

between any two entities. We first replaced each

word marked as a gene/protein mention with a

placeholder string and each other word with its

part of speech tag, using the Penn tags included

in TPS. We then derived a set of frequently used

dependency path features from this representation

(see e.g. (Airola et al., 2008; Van Landeghem et

al., 2008; Miwa et al., 2009)): path length, path

“tokens” (PoS/placeholder), dependency types on

the path, and “token”/dependency 2-grams and

3-grams. Preliminary experiments using cross-

validation on the training data suggested perfor-

mance was not sensitive to the details of the fea-

ture representation. The SVM regularization pa-

rameter was selected similarly, testing parameter

values on the scale . . . , 2−1, 20, 21, . . . and select-

ing c = 2−3 for the final experiment.

The resulting classifier is intentionally weak,

being trained to recognize not the specific prop-

erties of positive statements in its training set but

rather their general characteristics. Development

testing indicated an F-score and AUC of approxi-

mately 50% and 70%, substantially below the state

of the art for the comparable PPI pair extraction

task (Miwa et al., 2009).

5.3 Calculating Ew

Ew, informally characterized as the expected

number of times a word w occurs on a dependency

path which is estimated to be likely to express a
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gene/protein association, is central to the applied

probabilistic ranking. In technical detail, we de-

rived Ew as follows.

We first extracted all instances of shortest de-

pendency paths connecting two genes/proteins.

We then combined all paths sharing the same “un-

lexicalized” representation, giving a total of 6.8

million unique paths. To make storage and pro-

cessing more feasible, we removed paths occur-

ring only once in the entire corpus. This filtered

out 6.0 million paths – 88% of the total number

of unique paths – but due to the Zipfian proper-

ties of the distribution, the remaining 0.8 million

unique paths account for 16.7 million occurrences,

or 74% of the total occurrences. We thus do not

expect this practically motivated filtering to fun-

damentally alter the basic statistical properties of

the data.

Each path was then assigned the estimated prob-

ability P (p) using the probabilistic outputs of the

SVM trained as described above. At this stage,

we could potentially introduce a threshold param-

eter into the method defining a tradeoff between

path quality and inclusiveness. However, as initial

testing suggested the method to be relatively ro-

bust to the choice of cutoff, we simply take the ob-

vious choice of defining as “likely positive” path

any for which P (p) > 0.5. We then removed any

path that did not meet this condition as not (likely)

expressing an association, leaving 46437 unique

unlexicalized paths (5.7% of the total) predicted

to express gene/protein associations. Finally, each

occurrence of a word w on one of these paths is as-

signed the path probability P (p). In cases where

words appear on multiple paths, they are simply

assigned the maximum of the path probabilities.

Ew is then the sum of these probabilities over the

entire corpus.

6 Evaluation

We first evaluated each of the word rankings dis-

cussed in Section 4 by comparing the ranked lists

of words against the set of single words marked

as trigger expressions in the BioNLP ST develop-

ment data. These single-word triggers account for

92% of all trigger expressions marked in the data,

and there are 343 unique triggers. Figure 3 shows

precision/recall curves for each of the four rank-

ings generated by the word frequency/expected

value. The result supports the informal observa-

tions made through the top-ranked words in Ta-
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Figure 3: Precision/recall curves of the four word

rankings.

bles 1-4: the later approaches provide a much

more relevant ranking for identifying words ex-

pressing associations.

We next performed a manual study of candidate

words for stating gene/protein associations using

the Ew ranking. Here, we take as known any

word for which the normalized, lemmatized form6

matches that of any word appearing as a trigger

expression in the BioNLP ST training or develop-

ment test data. We then selected the words ranked

highest by Ew that were not known, grouped by

normalized and lemmatized form, and added for

reference examples of frequent shortest depen-

dency paths on which any of these words appear.

These groups were evaluated by a PhD biologist

with expertise in event annotation and basic un-

derstanding of the Stanford Dependency represen-

tation of syntax (TO), with instructions to mark as

positive words that in contexts like those provided

can be understood to express a gene/protein asso-

ciation, defined broadly as described in Section 2.

In total, 1200 candidate expressions were man-

ually evaluated, of which 660 were judged to ex-

press an association. We then proceeded to manu-

ally cluster them by the type of association they

would typically express. Following preliminary

analysis, we performed a top-level division into

three categories: events (“things that happen”) in-

volving gene/protein entities in their natural envi-

ronment (55% of associations), “static” relations

holding between the entities (28%), and experi-

mental observations and manipulations that do not

occur naturally (17%). We further grouped the

new event statements into event classes using the

6Using the NLM LVG norm normalizer, available
at http://lexsrv3.nlm.nih.gov/LexSysGroup/
Projects/lvg/2010/
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“co-immunoprecipitate, hybridize”

“immunoblotting, electrophoresis”

“apoptosis”

“chemotaxis”

“exocytosis”

“endocytosis, phagocytosis”

“depolymerization, dissociate”

Acylation

Sulfation

Biotinilation

Prenylation

Palmitoylation

Oxidation

“acylation”

“biotinylation”

“palmitoyation”

“peroxidation”

“farnesylation”

“sulfation”

“hydrolysis”

“replication”

“repair”

“homeostasis”

Figure 4: Organization of proposed new event

classes into the GENIA ontology, with examples

of expressions stating each type. New classes

shown in dotted rectangles.

Gene Ontology (The Gene Ontology Consortium,

2000) for reference and identified event classes

that were not previously included in the GENIA

event ontology. This process suggested 18 event

classes that were not previously considered in the

GENIA ontology, shown in Figure 4 with a tenta-

tive proposal on how these classes could be orga-

nized into the GENIA ontology, with examples of

identified words expressing each new event type.

Finally, to estimate the relative prominence of

the known (i.e. BioNLP ST) expressions of asso-

ciations in PubMed compared to those that were

newly identified, we compared the E values of

the unique lemmas, counted as the sum of Ew for

words sharing the lemma. Figure 5 shows a plot of

the values ranked from high to low E. The result

was unexpected: the estimate suggests that even

though the newly identified association words are

drawn from PubMed without subdomain restric-

tions and include more than only event expres-

sions, expressions of event-type associations us-

 0
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 20000

 25000

 0  50  100  150  200

E

rank

Known events
All new associations

New events

Figure 5: Comparison of estimated coverage of

previously known and newly identified words ex-

pressing gene/protein associations. Note truncated

ranges.

ing the previously known words are overall much

more prominent in PubMed. Specifically, the total

E value mass of all the newly identified associa-

tions (the area under the curve in Figure 5) is just

22% of that of the known events, and the mass of

the newly identified events 37% of all the new as-

sociations; only 8% of that of the known events.

7 Discussion

We found that currently existing resources for

event extraction are lacking in coverage of e.g.

relatively rare but biologically important protein

post-translational modifications and experimental

outcomes that suggest (but do not state) causal

connections. However, the statistical analysis sug-

gests that resources already cover the clear major-

ity of gene/protein events in PubMed, indicating

that an annotation-based approach to extending

coverage of event types (e.g. (Ohta et al., 2010))

may offer a realistic path to near-complete cov-

erage of all major gene/protein events in the near

future. With resources for static relation extrac-

tion (Pyysalo et al., 2009) this coverage could be

further extended beyond event-type associations.

However, the approach to identifying

gene/protein associations considered here is

limited in a number of ways: it excludes as-

sociations stated across sentence boundaries,

does not treat multi-word expressions as wholes,

and only directly includes associations stated

between exactly two entities. The approach is also

fundamentally limited to associations expressed

through specific words and thus blind to e.g.

part-of relations implied by statements such as

CD14 Sp1-binding site. Further, our estimate of
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overall association statement frequency ignored

the “long tail” of the distribution, thus excluding

rare expressions which may nevertheless add

up to a not insignificant fraction of the total.

These factors limit the reliability of the presented

coverage estimates. Finally, it should be noted

that while we have taken any expression of asso-

ciation for which even a single annotation exists

as “known”, the performance at which many of

these association can be extracted in practice may

be limited.

8 Conclusions

We have presented an approach to discover-

ing expressions of gene/protein associations from

PubMed based on named entity co-occurrences,

shortest dependency paths and an unlexical-

ized classifier to identify likely statements of

gene/protein associations. Drawing on the auto-

matically created full-PubMed annotations of the

Turku PubMed-Scale (TPS) corpus and using the

BioNLP’09 shared task data to define positive and

negative examples of association statements, we

distilled an initial set of over 30 million protein

mentions into a set of 46,000 unique unlexicalized

paths estimated likely to express gene/protein as-

sociations. These paths were then used to rank

all words in PubMed by the expected number of

times they are predicted to express such associa-

tions, and 1200 candidate association-expressing

words not appearing in the BioNLP’09 shared task

data evaluated manually. The study of these candi-

dates suggested 18 new event classes for the GE-

NIA ontology and indicated that the majority of

statements of gene/protein associations not cov-

ered by currently available resources are not state-

ments of biomolecular events but rather statements

of static relations or experimental manipulation.

The event annotation of the GENIA corpus was

originally designed to cover events discussed in

publications on a limited subdomain of biomolec-

ular science. It could thus be assumed that the

event types and the specific statements annotated

in GENIA would have only modest coverage of

all gene/protein association types and statements

in PubMed. However, our results suggest that

even the BioNLP’09 shared task data, a subset

of GENIA, may represent a clear majority of all

gene/protein associations. However, this estimate

of coverage is a first attempt and involves many

uncertain factors and potential sources of error,

calling for more research.

The data derived from TPS created in this study,

including the shortest paths, their estimated prob-

abilities, and the word lists ranked by probabil-

ity of stating a gene/protein association are avail-

able for research purposes from from the GENIA

project homepage http://www-tsujii.is.

s.u-tokyo.ac.jp/GENIA.
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