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ABSTRACT: In this introductory paper, the author identifies new optimal decision making problems in 
manufacturing. These arise from certain multi-stage allocation processes in production, and entail 
maximizing the probability of reaching nominated production targets under risk. It is established that such 
problems can be modelled by particular dynamic programming difference systems. These systems are 
investigated for various values of the process parameters. Several conclusions are reached, and future 
research directions are indicated. The main outcome is a cost-effective approach to practical problems in 
manufacturing. 
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INTRODUCTION

Background

Optimal decision making systems are mathematical models of business problems in minimization or 
maximization. For over 50 years, techniques for the solution and implementation of such models have been 
regularly introduced in the literature, and then applied commercially. For example:

• Linear programming, in allocation of scarce resources. Chapters 14 and 15 of Albright et al. (1999) 
discuss the landmark 1947 researches of G.B. Dantzig, and describe many current applications of this 
toolin areas as diverse as plate glass production at Libbey-Owens-Ford, bond selection on Wall Street 
and costing at Monsanto; see also the paper on timetabling by Birbas et al. (1997).

• CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique), in project 
management. These related methods were developed, independently and simultaneously, by various 
workers in the late 1950s. Chapter 11 of Taylor (1999) outlines the beginnings of CPM and PERT, and 
provides examples of their recent usein team training at IBM, the Benfield repair project at Sasol and 
facility relocation at Rockwell; see also the findings of Phillips (1996) on network flow.

• Dynamic programming, in sequential decision processes. Dynamic programming is quite different from 
linear programming, above. Denardo (1982) describes R.E. Bellman’s original 1952 paper, and 
Chapters 20 and 21 of Winston (1991) relate how dynamic programming has solved many modern-day 
problemsparticularly in equipment replacement at Phillips Petroleum and dynamic lot-sizing in large-
scale US production centres; see also the text of Esogbue (1989) on optimal resource systems.

Synopsis

In this introductory paper, the author identifies a new class of optimal decision making problems in 
manufacturing. These problems arise from certain multi-stage allocation processes in production, and entail 
maximizing the probability of reaching nominated production targets under risk. It is established that such 
problems can be modelled by a particular class of dynamic programming difference systems. These systems 
are investigated for various values of the process parameters. Several conclusions are reached, and future 
research directions are indicated. 
     The author’s technique augments other approaches to related problems, notably those of Iwamoto (1985) 
and Jakubowski et al. (1985) (in allocation processes) and Ratz and Russell (1987) (in random walks); see 
also the findings of Wallace (1984, 1987a, 1987b, 1999, 2000a, 2000b) (in optimal sequential search). The 
main outcome here is a cost-effective approach to practical problems in manufacturing.
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THE PROBLEMS

Background

In a certain factory, all machines are designed to perform the one routine task, and each machine is one of 
two different types (Type A or Type B). Every day, the factory manager chooses some of these machines to 
become components of two teams (Team A and Team B), that will then, separately, perform the task. Team
A consists solely of Type A machines; Team B comprises only  Type B machines.

• Production issues and other considerations require that (a) the total number of machines in the two 
teams combined (N) be constant, and that (b) both machine types be represented. Therefore, each day, 
the manager has a choice of N − 1 allocation alternatives A(1), A(2), A(3), ⋅⋅⋅ , A(i), ⋅⋅⋅ , A(N − 1); in 
which, with alternative A(i) (0 < i < N), there are i machines in Team A, and N − i in Team B. 

• The nature of the task is such that, for each team, all its components must perform the task satisfactorily 
for there to be an output. The gain then is equal to the number of components in the team. Any other 
outcome is termed a foul, and yields a gain of zero.

• Historically, a known proportion α of Type A machines has performed the task satisfactorily, as has a 
known (larger) proportion β of Type B machines. Moreover, it is assumed that, in regard to task 
performance, components of Team A are identical, as are those from Team B. It is also assumed that the 
performance of any component of either team is independent of that of any other team component, and 
of that of any component of the other team.

Objective

The manager’s objective is to determine the so-called optimal policy; namely, that particular sequence of 
daily allocation alternatives which maximizes the probability of reaching a prescribed number (n) of units of 
gain, before both teams foul simultaneously.

Methodology

In the next section, it will be established that the manager’s problems can be modelled by a particular class
of dynamic programming difference systems. Subsequently, it will be shown how these systems can be 
analyzed to achieve the manager’s objective. 

THE MODEL

Henceforth, for given α, β (0 < α < β < 1) and prescribed integers N, n (N ≥ 3, n ≥ 0), let M denote the 
integer part of (N − 1)/2, let P(α, β; N; n) denote the aforementioned maximum probability, and abbreviate 
P(α, β; N; n) to P(n), without loss of generality. 

Theorem 1

(a) P(0) = 1, whereas P(1), P(2), P(3), ⋅⋅⋅ , P(M) are given by the following initial conditions (1a):

       For fixed n in 0 < n ≤ M,

α i (1 − β N  − i ) P(n − i),             for all i in 0 < i ≤ n;
              P(n) = max {                                                                                                                             (1a)

i       (1 − α i ) β N  − i P(n − N + i),      for all i in N − n ≤ i < N. 

(b) P(M + 1), P(M + 2), P(M + 3), ⋅⋅⋅ , P(N − 1) are determined by the following initial conditions (1b):

       For fixed n in M < n < N,
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α i (1 − β N  − i ) P(n − i),                                                     for all i in 0 < i < N − n;
   P(n) = max { α i (1 − β N  − i ) P(n − i) + (1 − α i ) β N  − i P(n − N + i),     for all i in N − n ≤ i ≤ n;     (1b)

i        (1 − α i )β N  − i P(n − N + i), for all i in n < i < N.

(c) P(N), P(N + 1), P(N + 2), ⋅⋅⋅ satisfy the following dynamic programming difference equation (1c):  

       For fixed n ≥ N,        

P(n) = max { α i (1 − β N  − i ) P(n − i) + (1 − α i ) β N  − i P(n − N + i) + α i β N  − i P(n − N) },             (1c)        
i                                                                    for all i in 0 < i < N.

Proof

It will prove expedient to consider separately the cases N odd and N even.  

Case (i): N odd

It is obvious that P(0) = 1. To prove (1a, b, c), first recall that, with alternative A(i) (0 < i < N), there are i 
machines in Team A, and N − i in Team B. Accordingly, associated with A(i), there are only three (mutually 
exclusive) ways of obtaining a non-zero gain:

• When all components of Team A perform the task satisfactorily, and, simultaneously, at least one 
component of Team B does not. Denote this event by EA (i). With EA (i), therefore, there is a gain of i
units, and the probability of EA (i) occurring is α i (1 − β N  − i ).

• When, conversely, all components of Team B perform the task satisfactorily, and, simultaneously, at 
least one component of Team A does not. Denote this event by EB (i). With EB (i), therefore, there is a 
gain of N − i units, and the probability of EB (i) occurring is (1 − α i )β N  − i. (Note that, here, with N odd, 
it is never the case that i = N − i; hence, EA (i) and EB (i) never coincide.)

• When all components of Team A perform the task satisfactorily, and, simultaneously, all components of 
Team B also do. Denote this event by EAB (i). With EAB (i), therefore, there is a gain of N units, and the 
probability of EAB (i) occurring is α i β N  − i.

       Next, for fixed i in 0 < i < N, let p(i, j) denote the probability of gaining j (0 < j ≤ N) units of gain, by 
choice of alternative A(i). From the conclusions on EA (i), EB  (i) and EAB (i), above, it follows that:

       For all i in 0 < i < N and all j in 0 < j ≤ N, p(i, j) = 0, except that      

• p(i, i) = α i (1 − β N  − i ).                                                                                                                         (2a)                                                                                                                      
• p(i, N − i) = (1 − α i ) β N  − i.                                                                                                                  (2b)
• p(i, N) = α i β N  − i.                                                                                                                                 (2c)

      Next, recall Bellman’s principle of optimality (see Bellman (1957)). This will now be used to prove 
initial conditions (1a), and then initial conditions (1b) and difference equation (1c):

      For fixed n in 0 < n ≤ M,

n

          P(n) = max { ∑ p(i, j) P(n − j) },                            for all i in 0 < i < N;
i       j = 1

α i (1 − β N  − i ) P(n − i),                       for all i in 0 < i ≤ n;
= max {

i (1 − α i )β N  − i   P(n − N + i),                for all i in N − n ≤ i < N; 
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because of (2a, b). This establishes (1a). Moreover, the proofs of (1b, c) parallel that of (1a). Accordingly, 
this completes the first part of the proof of Theorem 1. 

Case (ii): N even

With N even, however, there is, associated with A(i), a fourth mutually exclusive way of obtaining a non-zero
gain:

• When i = N − i. That is, when i = M + 1, and all components of Team A perform the task satisfactorily, 
and, simultaneously, at least one component of Team B does notORwhen, conversely, i = M + 1, 
and all components of Team B perform the task satisfactorily, and, simultaneously, at least one 
component of Team A does not. Denote this event by EA  + B (M + 1). With EA  + B (M + 1), therefore, 
there is a gain of M + 1 units, and the probability of EA  + B (M + 1) occurring is α M  + 1 (1 − β M  + 1 ) + (1 
− α M  + 1 ) β M  + 1.

      With N even, therefore, event EA  + B (M + 1) arises in addition to the three previously mentioned events 
EA (i), EB (i) (both now with i ≠ M + 1) and EAB (i). Accordingly, here:

      For all i in 0 < i < N and all j in 0 < j ≤ N, findings (2a, b, c) again result (with i ≠ M + 1 for both (2a, b)), 
along with the following conclusion:

• p(M + 1, M + 1) = α M  + 1 (1 − β M  + 1 ) + (1 − α M  + 1 ) β M  + 1.

      The proofs of (1a, b, c) for N even parallel those for N odd. Accordingly, this completes the second (and 
final) part of the proof of Theorem 1. �

      An example to illustrate Theorem 1 follows shortly, but first note that, henceforth, A*(n) will denote the 
(unique) alternative that produces P(n).

Example 1

Let N = 3, α = 0.4 and β = 0.5. Accordingly, M = 1 (and P(0) = 1); hence, (1a, b, c) are, respectively:

α (1 − β 2 ) P(0)                       0.3000 
          P(1) = max {                            = ⋅⋅⋅ = max {              = 0.4200;

β (1 − α 2 )P(0) 0.4200

α (1 − β 2 ) P(1) + (1 − α )β 2 P(0)                      0.2760 
          P(2) = max {                                                        = ⋅⋅⋅ = max {             = 0.2760;

β (1 − α 2 )P(1) + (1 − β )α 2 P(0)                      0.2564

and, for fixed n ≥ 3,       

α (1 − β 2 ) P(n − 1) + (1 − α )β 2 P(n − 2) + αβ 2 P(n − 3)
P(n) = max {

β (1 − α 2 ) P(n − 1) + (1 − β )α 2 P(n − 2) + β α 2 P(n − 3)

      The last result yields, in particular, the following findings:

α (1 − β 2 ) P(2) + (1 − α )β 2 P(1) + αβ 2 P(0) 0.2458 
          P(3) = max {                                                                            = ⋅⋅⋅ = max {             = 0.2458;

β (1 − α 2 ) P(2) + (1 − β )α 2 P(1) + β α 2 P(0) 0.2295

α (1 − β 2 ) P(3) + (1 − α )β 2 P(2) + αβ 2 P(1) 0.1571
          P(4) = max {                                                                            = ⋅⋅⋅ = max {              = 0.1589.

β (1 − α 2 ) P(3) + (1 − β )α 2 P(2) + β α 2 P(1)                      0.1589
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      Accordingly, here, A*(1) = A(2), A*(2) = A(1), A*(3) = A(1) and A*(4) = A(2). (In contrast, it can be 
shown that, if N = 3, α = 0.1 and β = 0.3 then A*(1) = A(2), A*(2) = A(1), A*(3) = A(1) and A*(4) = A(1)
(not A(2)). Furthermore, it can be established that, if N = 4, α = 0.4 and β = 0.5 thenin contrast 
againA*(1) = A(2), A*(2) = A(2) (not A(1)), A*(3) = A(1) and A*(4) = A(1) (not A(2)).)

      In this section, it has been established (in Theorem 1) that the manager’s problems can be modelled by a 
class of dynamic programming difference systems (1a, b, c). In the next section, it will be shown how these 
systems can now be analyzed to implement the model, and so achieve the manager’s objective. 

IMPLEMENTATION OF THE MODEL

Optimal Policy 1

To achieve the objective, the manager should, first, choose alternative A*(n). Thereupon, either (a) both
teams foul, simultaneously (and so there are no more decisions to be made), or (b) A*(n) produces either i* = 
i or N − i or N (0 < i < N) units of gain. In the latter situation, the manager should next choose A*(n − i*), and 
then proceed as before. However, whichever be this next choice, the maximum probabilityof thereby 
successfully accruing a total of n units of gainis P(n).

Example 2 

Let N = 3, α = 0.4, β = 0.5 and n = 4. Next, recall Example 1, which illustrates that the manager should, first, 
choose alternative A*(4) (= A(2)). Thereupon, either (a) both teams foul, simultaneously, or (b) A(2) 
produces either i* = 2 or 1 or 3 units of gain. If i* = 2 then the manager should next choose alternative A*(2) 
(= A(1), instead). If i* = 1 then the manager should next choose alternative A*(3) (= A(1), instead). 
However, if i* = 3 then the manager should next choose alternative A*(1) (= A(2), again). However, 
whichever be this next choice, the maximum probabilityof thereby successfully accruing a total of 4 units 
of gainis P(4) (= 0.1589 = 15.89 %).

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

To achieve the objective, the manager should use Theorem 1 to determine the first n optimal alternatives
A*(k), 0 < k ≤ n (recall Example 1), and then proceed as described in Optimal Policy 1 (recall Example 2).
      This requires the manager to, first, generate each of the A*(k), 0 < k ≤ nindividuallyby 
systematically using (1a, b, c) to determine each of the associated probabilities P(k), 0 < k ≤ n. It would be 
advantageous, however, iffor particular α, β and Ndifference equation (1c) could be solved, subject to 
initial conditions (1a, b), thereby providing a closed form expressiona formulafor P(n). 

A formula for P(n) would necessarily mean a companion formula for A*(n). This would, therefore, avoid 
the need to individually generate these A*(k), 0 < k ≤ n; and, as well, would provide valuable insights into 
their underlying structural patterns (and those of the P(k), 0 < k ≤ n).
      Furthermore, the discussed model easily generalizes to situations where there are more than two teams. 
Moreover, it is anticipated that equations (1a, b, c) may well model commercial (and scientific) problems 
other than these manufacturing ones, discussed above. The author will report, elsewhere, on these research 
directions, and on related investigations in the field of dynamic programming difference systems.
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