
Classifying Boolean Nets

for Region-based Synthesis

Jetty Kleijn1, Maciej Koutny2,
Marta Pietkiewicz-Koutny2, and Grzegorz Rozenberg1,3

1 LIACS, Leiden University, The Netherlands
{kleijn,rozenber}@liacs.nl

2 School of Computing Science, Newcastle University, UK
{maciej.koutny,marta.koutny}@ncl.ac.uk

3 Department of Computer Science, University of Colorado at Boulder, U.S.A.

Abstract. A Petri net model is referred to as Boolean if the only pos-
sible markings are sets, i.e., places are marked or not without further
quantification; moreover, also the enabling conditions and firing rule are
based on this principle of set-based token arithmetic. Elementary Net
systems are an example of a class of Boolean nets, and so are the re-
cently introduced set-nets. In our investigation of the synthesis problem
for set-nets, it would be useful to know how this new net model can
be fitted into the general theory of net synthesis based on the generic
concept of τ -nets. Here, we demonstrate how set-nets and the idea of
Boolean operations on tokens provide an opportunity to classify a wide
variety of Boolean nets that are amenable to region-based net synthesis.
Keywords: Petri net, Boolean net, step semantics, concurrency, conflict,
net synthesis, theory of regions, transition system, net-type

1 Introduction

Recently, in [10], a new class of Petri nets, called set-nets, has been introduced
to provide a net based computational model matching very closely the computa-
tions exhibited by reaction systems [5, 7, 8], a framework for the investigation of
processes carried out by biochemical reactions in living cells. The formalisation
leading to reaction systems has been motivated by properties that are common
to many biochemical reactions. This has resulted in a model based on principles
that are different from most existing models of computation. Of particular im-
portance for the net model inspired by reaction systems, are the non-counting
features (motivated by the two main regulation mechanisms of facilitation and
inhibition) implying that entities are either present or not present and enable
reactions by their presence or absence. As a consequence, there is no conflict
between reactions in the sense that the occurrence of one reaction might imply
that another reaction which is also enabled at the current state, cannot occur.

The new class of Petri nets, set-nets, provides a faithful computational model
matching very closely that exhibited by reaction systems. The key difference

5

2 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

between standard Petri nets like Place/Transition nets (PT-nets) and set-nets
is that the former support multiset-based token arithmetic, whereas the latter
support set-based (or Boolean) operations on tokens.

Thus, the computational intuition embedded in bio-processes has led to a new
class of nets with yet to discover properties. On the other hand, an important
motivation behind the wish to establish the link with net theory is to establish
whether Petri net based concepts (such as causal processes) and methods (such
as synthesis of nets from a specification of their behaviour) could be used to
provide analytical tools for reaction systems.

The research presented in this paper originates with the synthesis problem
for set-nets. We show that the new class of nets can be treated within the
general theory of region-based net synthesis. More precisely, we show that set-
nets are an instance of τ -nets [1] which incorporate many Petri net classes, and
for which the synthesis problem has been investigated and solved using regions
of transition systems [6]. Moreover, τ -nets with maximally concurrent semantics
(the semantics of set-nets when used to model reaction systems) fall within the
general framework of τ -nets with policies introduced in [2]. In this paper, we will
actually concern ourselves with the wider task of dealing with a whole variety
of net models similar to set-nets and referred to as Boolean nets. It is our aim
to classify such nets thus working towards automatic net synthesis algorithms.
The key part of our investigation is a detailed study of connection monoids
(conn-monoids) for Boolean nets which allows us to capture not only the step
semantics of nets but also structural conflicts between transitions in Boolean
nets, thanks to a special ‘blocking’ connection which can be used to capture the
essence of conflicts in (Boolean) τ -nets. In this way, conn-monoids emerge as a
single formalism which can be used to deal with conflicts, concurrency and net
synthesis.

The paper is organised as follows. First, we present the basics of set-nets
and other types of nets. Section 3 recalls the general setup of [1, 2] in which
Petri net classes are defined using conn-monoids and τ -nets. Section 4 shows
how to build conn-monoids for en-systems and set-nets. The observations in
this section are generalised in Section 5 to Boolean τ -nets.

2 SET-nets, EN-systems, and PT-nets

In this section we present set-nets and relate them to elementary net systems
(en-systems) [13] and Place/Transition nets (PT-nets) [4].

The main idea underlying set-nets is that there is no concept of token count-
ing. Places are marked or not marked and arcs have no weights. In this way,
set-nets resemble en-systems, a fundamental net model in the study of basic
features of concurrent systems. However, the execution semantics of the two
models differ significantly.

Both set-nets and en-systems have an (unweighted) net as their underlying
structure. A net is a triple (P, T, F) such that P and T are disjoint finite sets

6

Classifying Boolean Nets for Region-based Synthesis 3

of places and transitions, respectively, and F ⊆ (T × P) ∪ (P × T) is the flow
of the net. We use the standard dot-notation: for any place or transition x, we
let •x = {y | (y, x) ∈ F} be its set of input elements and x• = {y | (x, y) ∈ F}
its output elements. This extends in the usual way to sets of places and/or
transitions. For en-systems, we have the additional structural assumption that
the underlying net has no ‘self-loops’ i.e., •t ∩ t• = ∅ for all t ∈ T .

A marking of a set-net or en-system is a subset of places of their underlying
net. A place belonging to a given marking is said to be marked. In diagrams,
places are drawn as circles and transitions as rectangles. If (x, y) ∈ F , then (x, y)
is an arc leading from node x to node y. Markings are indicated by drawing in
each place belonging to a given marking, a small black dot (a ‘token’).

A set-net is a tuple N = (P, T, F, M0) such that (P, T, F) is a net and
M0 ⊆ P is its initial marking. A en-system is a tuple N = (P, T, F, M0) such
that (P, T, F) is a net without self-loops and M0 ⊆ P is its initial marking.

The dynamics of set-nets is defined as follows. Let N = (P, T, F, M0) be a
set-net and let t ∈ T . Then t is enabled at a marking M if •t ⊆ M . In such a
case, t can occur (fire), leading to the marking M ′ = (M \ •t) ∪ t•. A subset U
of T , a step, is enabled at M if •U ⊆ M . If U is enabled, it can occur, leading
to M ′ = (M \ •U) ∪ U•.

Hence in a set-net, a step U is enabled whenever each of its input places
belongs to the current marking, in other words, each of its elements is enabled.
When U occurs, its input places lose their token, while all output places will be
marked. If a place is both input and output for U , it is marked before and after
the occurrence of U . Furthermore, output places of U that were marked before
its occurrence will remain marked. It is also worthwhile to observe that there
may be distinct transitions t, u ∈ U for which •t ∩ •u �= ∅ or t• ∩ u• �= ∅. This
has no effect on their participation in the occurrence of U .

The dynamics of en-systems is defined in a similar way, except that the
enabling conditions are crucially different. Let N = (P, T, F, M0) be an en-
system and let t ∈ T . Then t is enabled at a markingM if •t ⊆ M and t•∩M = ∅.
If t is enabled at M , it can fire which results in the marking M ′ = (M \ •t)∪ t•.
A step U of T is enabled at M if each t ∈ U is enabled at M and (•t∪ t•)∩ (•u∩
u•) = ∅ for any two distinct transitions t, u ∈ U . Then U can occur leading to
M ′ = (M \ •U) ∪ U•.

Hence, in an en-system, if a step U is enabled at marking M then each of its
input places is marked and none of its output places is marked. Actually, a step
can only ever be enabled if the input/output neighbourhood of the transitions
in U do not overlap (i.e., if there is no structural conflict in U).

In set-nets and en-systems markings are sets and tokens are manipulated
using set-based rather than multiset-based arithmetic. We will refer to such Petri
net models as being Boolean. In contrast to both set-nets and en-systems, and

7

4 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

Boolean nets in general, Place/Transition nets (pt-nets) have a multiset-based
arithmetic. 4

A (weighted) pt-net is specified as a tuple N = (P, T, W, M0), where P and
T are, as before, finite, disjoint sets of places and transitions; W : (P ×T)∪(T ×
P) → N specifies the arcs of N by their weights; and M0 : P → N is the initial
marking. In general, for pt-nets, markings are multisets, rather than sets. In
diagrams, whenever W (x, y) ≥ 1 for some (x, y) ∈ (T ×P)∪ (P ×T), then (x, y)
is an arc from x to y; it is annotated with W (x, y) if this is 2 or more. Given a
marking M of N and a place p ∈ P , we say that M(p) is the number of tokens
in p. Note that the dot-notations are now multisets, indicating the multiplicity
of each input/output element.

A transition t of N is enabled at a marking M of N , if •t ≤ M . If t is enabled
at M , it can fire which leads to the new marking M ′ = M − •t + t•. Thus M ′

is obtained from M by deleting W (p, t) tokens from each place p and adding
W (t, p) tokens to each place p. A step of a pt-net N is a multiset of transitions.
Step U is enabled at a marking M of N if

∑
t∈T U(t) · •t ≤ M . Thus, in order

for U to be enabled at M , for each place p, the number of tokens in p under M
should at least be equal to the accumulated number of tokens needed as input to
each of the transitions in U , respecting their multiplicities in U . If U is enabled
at M , it may occur which leads to M ′ = M −

∑
t∈T U(t) · •t +

∑
t∈T U(t) · t•.

Thus the effect of executing U is the accumulated effect of executing each of
its transitions (taking into account their multiplicities in U). Note that there is
no concept of structural conflict in the class of pt-nets: transitions may occur
together in a step whenever a marking supplies enough tokens.

Inhibitor and activator arcs. To each of the above net models we can add
inhibitor arcs and activator arcs connecting places to transitions, by adding
relations Inh and Act to their specification. Given the set of places P and set
of transitions T of a set-net, or en-system, or pt-net, Inh,Act ⊆ P × T define
its set of inhibitor or activator arcs, respectively. For each transition t ∈ T ,
we denote ◦t = {p | (p, t) ∈ Inh} for the set of inhibitor places of t and �t =
{p | (p, t) ∈ Act} for its activator places. (Both notions are extended to sets of
transitions, and to multisets, disregarding multiplicities.)

The intuition behind these context arcs is that in order for a transition to
be enabled at a marking, its activator places should be marked (have at least
one token) and its inhibitor places should not be marked (have no token). Thus
the dynamics of these extended net classes is adapted in the following way: a
step U is enabled at a marking when it is enabled in the underlying set-net,
or en-system, or pt-net, and �U ⊆ M and ◦U ∩M = ∅. When U is enabled
at M and it occurs, then the resulting marking is defined as before (here the
activator and inhibitor arcs have no effect). Note that this semantics is an a
priori semantics (see, e.g., [12])

4 A multiset μ over a set X is a function μ : X → N = {0, 1, 2, . . .}; such multiset
may be represented by listing its elements with repetitions. Sets can be considered
as multisets without repetitions.

8

Classifying Boolean Nets for Region-based Synthesis 5

3 Connections and connection monoids

Now we are ready to recall the general setup of [1, 2] in which Petri net classes
are defined on the basis of individual connections between places and transitions.
Moreover, the effect of the simultaneous execution of a step (a set or multiset of
transitions) on a given place is calculated using a dedicated commutative monoid
which returns the composite connection between that place and the step. For
Boolean nets, we will assume that each step is a set of transitions rather than a
multiset as in [1, 2]. This simplifies the presentation and is harmless as Boolean
Petri nets as we consider them here, would not allow true multiset steps anyway.

Connection monoids describe the relation between a place and a step. A
connection monoid (or conn-monoid) is a set S of connections with a commu-
tative and associative binary composition operation ⊕, and a neutral element
(identity) 0. We will use the same symbol S for a conn-monoid and for its

underlying set of connections. Moreover, for each s ∈ S we let
⊕0 s = 0 and⊕n+1

s = (
⊕n

s)
⊕

s for all n ∈ N.

Let S be a conn-monoid. Then, a net-type over S is a transition system
τ = (Q,S, Δ) where Q is a set of states, and Δ : Q× S→ Q is a partial function
such that Δ(q,0) = q, for all q ∈ Q. For every state q, the set enbldτ (q) = {s |
Δ(q, s) is defined} consists of all connections from S that are enabled at q.

As an example let us consider the conn-monoid SPT = (N×N,⊕,0) with 0 =
(0, 0) and point-wise arithmetic addition ⊕. Using this monoid, the connections
between places and multisets of transitions in pt-nets can be expressed through
the net-type τPT = (N, SPT , ΔPT) over SPT , where ΔPT = {(n, (m, k)) �→
n−m+ k | n ≥ m ≥ 0}. Intuitively, this states that a place containing n tokens
enables steps which take no more than n tokens, and that the resulting number of
tokens is n−m+k where m and k are the numbers of tokens taken and produced,
respectively, by all occurrences of transitions in that step together. A fragment
of τPT , interpreted as a labelled directed graph, is shown in Figure 1(d).

In general, each net-type τ = (Q,S, Δ) defines a class of nets, the so-called
τ-nets. The net-type specifies through Q the values that can be assigned to
places; through the connections in S the effect of combining connections; and
through Δ, the enabling conditions and newly generated values.

A τ-net is a tupleN = (P, T, F, M0), where P and T are, respectively, disjoint
finite sets of places and transitions, F : (P × T) → S is a connection mapping,
and M0 is the initial marking of N (in general, a marking is a mapping from P
to Q). For a place p of N and a step U of transitions, we define the composite

connection between U and p by F (p, U) =
⊕

t∈T (
⊕U(t) (F (p, t)). Thus, if U is

a set, then F (p, U) =
⊕

t∈U F (p, t) and F (p,∅) =
⊕

t∈∅
F (p, t) = 0.

A step U is (resource) enabled at a marking M if F (p, U) ∈ enbldτ (M(p))
for every place p ∈ P . The firing of such a step produces the marking M ′

such that M ′(p) = Δ(M(p), F (p, U)), for every place p ∈ P . The concurrent
reachability graph CRG(N) of N is formed by firing inductively from M0 all
possible (resource) enabled steps of N .

9

6 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

a

b

c

p q2

(a)

p �→ 0
q �→ 2

p �→ 1
q �→ 1

p �→ 2
q �→ 0

p �→ 0
q �→ 0

{c, c}

{a, a}

b

c

a

c

a

{a, c}

(b)

a

b

c

1p 1 q

(1, 0)

(2, 0)

(0, 1)

(0, 1)

(0, 0)

(1, 0)
(c)

2 3 4 6 21

(3, 1)

(1, 0)

(0, 17)

(2, 4)

(0, 0)

(3, 3)
(d)

0
1

2

0

(0, 2)

(2, 0)

(2, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 1)

(e)

2
1

0

0

(2, 0)

(0, 2)

(0, 0)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 1)

(f)

2 3 4 6 21

{(i, j) | i > 4}

(3, 1)

(1, 0)

(0, 17)

(2, 4)

(0, 0)

(3, 3)
(g)

Fig. 1. A pt-net (a); its concurrent reachability graph (b) with the initial state rep-
resented by a small square; and its rendering as a τPT -net system (c). A fragment of
the net-type τPT is shown in (d). In (e) and (f) we re-trace in (b) the behaviour of
places p and q, respectively, in terms of the net-type τPT . An alternative graphical
representation of the net-type τPT is shown in (g).

The net-type τPT defines τPT -nets. In order to view a pt-net as a τPT -
net, all one needs to do is to associate integers, representing the number of
tokens, with each place, and set F (p, t) = (W (p, t), W (t, p)), for all places p and
transitions t. The conn-monoid SPT together with the transition system τPT

10

Classifying Boolean Nets for Region-based Synthesis 7

provides accurate information about the enabling and firing of steps U . Indeed,
all one needs to do is to calculate F (p, U) = (inwgt , outwgt) using the monoid
operation of point-wise addition (for all input and output weights of all multiple
occurrences of transitions in U).

As an illustration, let us consider the pt-net depicted in Figure 1(a). This
pt-net is represented by the τPT -net in Figure 1(c). Notice that, in particular,
F (q, b) = (0, 0) means that q and b in Figure 1(a) are disconnected. Also the
markings are represented (by indicating the number of tokens by an appropri-
ate integer 0, 1, 2, etc.). Figure 1(b) gives the concurrent reachability graph.
We furthermore obtain F (p, {a, c}) = (1, 0)⊕ (0, 1) = (1, 1) and F (q, {a, c}) =
(0, 1)⊕ (1, 0) = (1, 1) which, together with ΔPT (1, (1, 1)) = 1, means that: (i)
the net in Figure 1(a) enables the step {a, c} at the initial marking at which
both p and q have one token; and (ii) its firing results in the same marking.
On the other hand the step {c, c} is not enabled at the initial marking because
F (q, {c, c}) = (1, 0)⊕ (1, 0) = (2, 0) and (2, 0) is not enabled at 1. However, it
is enabled at the marking M with M(q) = 2 and M(p) = 0 and then its firing
results in the marking M ′ with M ′(q) = 0 and M ′(p) = 2. Now focus in the con-
current reachability graph in Figure 1(b) on the local markings of the place p in
combination with the connections that lead to changes of those local markings.
We can do this by labelling each state with the corresponding marking of p, and
each arc with the cumulative arc weight w.r.t. p of the step U labelling that arc
i.e., F (p, U). The result is shown in Figure 1(e). Repeating the same procedure
for the place q, yields Figure 1(f). Note that both graphs in Figure 1(e) and (f)
can also be seen in the graph of the net-type τPT , see Figure 1(d).

4 Connection monoids for en-systems and set-nets

Starting from en-systems, we will now present a number of specific classes of
Boolean nets defined on basis of their place-transition connections. In what fol-
lows we describe the structure of the connection monoids by a Cayley table
displaying the outcome of all possible combinations of connections.

EN-systems

In en-systems, there are three basic connections between places and transitions:

– F (p, t) = � p and t are disconnected (independent) p t

– F (p, t) = in there is an arc from p to t p t

– F (p, t) = out there is an arc from t to p p t

Figure 2(a) depicts τEN , the net-type showing how the connections between
a place and a transition in an en-system determine the enabledness of the transi-
tion w.r.t. that place and the resulting marking if it fires. In the diagram, 0 and 1
mean that the place is respectively empty (i.e., not marked) and full (marked).
Thus, if the place p is marked and there is an arc from p to the transition t
(F (p, t) = in), then t may fire as far as p is concerned and the effect will be

11

8 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

that p is empty after the occurrence of t. If p and t are not connected, t may
always occur from the point of view of p and its occurrence has no effect on the
marking of p. There is also an explicit reference to F (p, t) = in for the case that
p is empty and one to F (p, t) = out when p is full. In these cases the marking
of p prohibits the enabledness of t. In addition to the three standard types of
connections, τEN has a special ‘blocking’ connection ⊥ which does not label any
arc (is never enabled), hence ⊥ /∈ enbldτEN (0)∪enbldτEN (1). The connection ⊥ is
also used to capture structural conflict between transitions. As such it is a con-
venient device to capture precisely those steps which are not allowed, because
of the internal conflicting relations between their transitions w.r.t. the place.

The conn-monoid SEN = ({�, out, in,⊥},⊕EN ,�). is defined through its
Cayley table in Figure 2(b). Here out⊕EN out = out⊕EN in = in ⊕EN out =
in⊕EN in = ⊥ corresponds directly to the requirement that the neighbourhoods
of transitions in a step must be disjoint for it to be enabled to occur.

For example, if we have two transitions, t and u, both removing tokens from

place p, pt u , thus both have p as an input place, then the connection
of the step {t, u} w.r.t. p is calculated as F (p, {t, u}) = F (p, t) ⊕EN F (p, u) =
in⊕EN in = ⊥ implying that {t, u} can never occur together (on account of p).

0 1

in ⊥ out ⊥

� �

out

in

⊕EN � out in ⊥

� �

out out ⊥

in in ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊕EN out in

out ⊥

in ⊥ ⊥

(a) (b) (c)

Fig. 2. net-type τEN , and the Cayley table of SEN .

In all conn-monoids , � will be the identity element and — if present —
⊥ is the absorbing element. The monoid SEN is the most restrictive monoid
over �, in, out, and ⊥, because its operation does not yield any non-⊥ results
except when � is involved. This is clearly seen in Figure 2(c) which depicts the
non-trivial part of the Cayley table from Figure 2(b), while omitting the values
implicitly due to commutativity. In what follows we will present conn-monoids
using a minimal presentation of their Cayley table as in Figure 2(c).

A basis of a conn-monoid is any irreducible subset of its non-⊥ connections
such that any other non-⊥ connection can be derived from it.

Proposition 1. {�, in, out} is the only basis of SEN .

Proof. Follows directly from the table in Figure 2(c). ��

12

Classifying Boolean Nets for Region-based Synthesis 9

SET-nets

Now there are four basic connections between places and transitions:

– F (p, t) = � p and t are disconnected (independent) p t

– F (p, t) = rem there is an arc from p to t p t

– F (p, t) = ins there is an arc from t to p p t

– F (p, t) = loop there is an arc from t to p, and from p to t p t

Figure 3(a) depicts τSN . Comparing Figure 3(a) and Figure 2(a) brings to light
the important difference between the meaning of an arc from a transition to a
place in en-systems (connection out) and the meaning of an arc from a transition
to a place in set-nets (connection ins).

0 1

rem ⊥ loop ⊥

� � ins loop

ins

rem

⊕SN ins rem loop

ins ins

rem loop rem

loop loop loop loop

(a) (b)

Fig. 3. net-type τSN , and the simplified table of SSN = ({�, ins, rem, loop},⊕SN ,�).

Figure 4 shows the out-labelled arc in τEN and the ins-labelled arc in τSN .

0 1
out

0 1

ins

ins

Fig. 4. Difference between arcs from transitions to places in en-systems and set-nets.

The simplified Cayley table of the conn-monoid SSN is shown in Figure 3(b).
From the table we see, e.g., that if p is an output place of a transition t and

input place to u, pt u , then the connection of the step {t, u} w.r.t. p
is given by F (p, {t, u}) = F (p, t)⊕SN F (p, u) = ins⊕SN rem = loop and so, as
far as p is concerned, {t, u} can occur if p contains a token; moreover, p will also
have a token after the occurrence of {t, u}.

13

10 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

Another important property of the SSN monoid is the idempotence of its
operation (the diagonal of the Cayley table of SSN). This reflects one of the
main features of set-nets, namely that since resources are not quantified, they
can be used by many transitions with the same connectivity in tandem, as though
they were just one such transition. Note furthermore, that since set-nets know
no structural conflict, ⊥ is not introduced through ⊕SN . Consequently, ⊥ is not
necessary in the case of τSN and SSN . Actually, also SPN did not need ⊥, as
pt-nets know no structural conflicts either. However, if we consider the class of
k-bounded pt-nets then the situation is rather different as the corresponding
conn-monoid is defined as SBPT = ({⊥} ∪ Nk × Nk,+k, (0, 0)), where Nk =
{0, 1, . . . , k}, ⊥ is the absorbing element, and, for all n, m, n′, m′ ∈ Nk,

(n, m) +k (n
′, m′) =

{
(n+ n′, m+m′) if n+ n′ ≤ k ∧ m+m′ ≤ k
⊥ otherwise .

Proposition 2. {�, ins, rem} is the only basis of SSN .

Proof. Follows directly from the table in Figure 3(b). ��

This insight forms a formal justification of the way in which τSN -nets are
drawn: direct dashed arrows are used for ins and rem, but loop as a ‘compound’
connection can be depicted by the ‘compound’ representation for ins and rem.
Note that in the ⊥-less version of SSN , loop is the absorbing element, but this
will change when we add inhibitor arcs. First however, we add inhibitor arcs to
en-systems.

EN-systems with inhibitor arcs

In comparison with en-systems, we now have one more connection to take into
account:

– F (p, t) = inh there is an inhibitor arc from p to t p t

Figure 5 shows the net-type τENI , and the simplified Cayley table of the
conn-monoid SENI = ({�, out, in, inh,⊥},⊕ENI ,�). From this we see that the
monoid SENI captures an additional type of structural conflict: in ⊕ENI inh =
inh⊕ENI in = ⊥ . That out⊕ENI inh = inh⊕ENI out = out is a consequence
of the a priori semantics.

Proposition 3. {�, in, out, inh} is the only basis of SENI .

Proof. Follows directly from the table in Figure 5(b). ��

SET-nets with inhibitor arcs

Again, we have to cater for one additional connection:

– F (p, t) = inh there is an inhibitor arc from p to t p t

14

Classifying Boolean Nets for Region-based Synthesis 11

0 1

in ⊥ out inh ⊥

� inh �

out

in

⊕ENI out in inh

out ⊥

in ⊥ ⊥

inh out ⊥ inh

(a) (b)

Fig. 5. net-type τENI (a), and the simplified Cayley table of SENI (b).

Figure 6 shows the net-type τSNI , and the simplified Cayley table of the conn-
monoid SSNI = ({�, ins, rem, loop, inh, out,⊥},⊕SNI ,�). In this case we do
need ⊥ as structural conflicts occur when inhibitors are combined with consump-
tion (exactly as in en-systems). Thus SENI captures a conflict: rem⊕SNI inh =
inh⊕SNI rem = ⊥.

Furthermore, the monoid must be closed w.r.t. its operation and so due to
the a priori step semantics for sni-nets, out had to be added as a new connection
to describe ins ⊕SNI inh. Notice that out, although on its own has the same
meaning here as in en-systems and eni-systems, it is understood differently when
combined with other connections. An example is out⊕SNI out = ⊥ rather than
out ⊕ENI out = out since the step semantics of sni-nets is different from that
of eni-systems.

0 1

rem ⊥ loop inh out ⊥

� inh � ins loop

ins out

rem

⊕SNI ins rem inh loop out

ins ins

rem loop rem

inh out ⊥ inh

loop loop loop ⊥ loop

out out ⊥ out ⊥ out

(a) (b)

Fig. 6. net-type τSNI (a), and the simplified Cayley table of SSNI (b).

Proposition 4. {�, ins, rem, inh} is the only basis of SSNI .

Proof. Follows directly from the table in Figure 6(b). ��

Like for SSNI , also the operation of SSNI is idempotent. Even stronger:

15

12 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

Proposition 5. Let T �= ∅ be a set of transitions and T = {F (p, t) | t ∈ T }.

F (p, T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if T = {�}

ins if T ⊆ {ins,�} ∧ ins ∈ T

rem if T ⊆ {rem,�} ∧ rem ∈ T

inh if T ⊆ {inh,�} ∧ inh ∈ T

out if T ⊆ {inh, ins, out,�} ∧ (out ∈ T ∨ {inh, ins} ⊆ T)

loop if T ⊆ {ins, rem, loop,�} ∧ (loop ∈ T ∨ {rem, ins} ⊆ T)

⊥ otherwise .

Proof. Follows directly from the table in Figure 6(b). The table shows that ⊕SNI
is idempotent and that {ins, rem, inh,�} is SSNI ’s basis. ��

EN-systems with inhibitor and activator arcs

The last connection we consider is:

– F (p, t) = act there is an activator arc from p to t p t

Figure 7 shows the net-type τENC , and the simplified Cayley table of the conn-
monoid SENC for enc-systems (with the a priori step semantics).

0 1

in act ⊥ out inh ⊥

� inh � act

out

in

⊕ENC out in inh act

out ⊥

in ⊥ ⊥

inh out ⊥ inh

act ⊥ in ⊥ act

(a) (b)

Fig. 7. net-type τENC (a), and the simplified Cayley table of SENC (b).

In the simplified Cayley table of SENC , we see that inh⊕ENC out = out and
act⊕ENC in = in. These pairs of connections reflect that while the transitions
involved are enabled with respect to the given place (which should be empty for
the inh and out connections, and marked for the act and in connections) they
affect it in a different way. The connections that induce a state change (out and
in) are ‘stronger’ , while the connections designated for testing (inh and act)
are ‘weaker’.

16

Classifying Boolean Nets for Region-based Synthesis 13

Proposition 6. {�, out, in, inh, act} is the only basis of SENC .

Proof. Follows directly from the table in Figure 7(b). ��

SET-nets with inhibitor and activator arcs

Again we add an activator connection:

– F (p, t) = act there is an activator arc from p to t p t

Figure 8 shows the net-type τSNC , and the simplified Cayley table of the conn-
monoid SSNC = ({�, ins, rem, inh, act, loop, out,⊥},⊕SNC ,�) for set-nets
with inhibitor and activator arcs (under the a priori step semantics).

0 1

rem ⊥ loop act inh out ⊥

� inh � ins loop act

ins out

rem

⊕SNC ins rem inh act loop out

ins ins

rem loop rem

inh out ⊥ inh

act loop rem ⊥ act

loop loop loop ⊥ loop loop

out out ⊥ out ⊥ ⊥ out

(a) (b)

Fig. 8. net-type τSNC (a), and the simplified Cayley table of SSNC (b).

Proposition 7. {�, ins, rem, inh, act} is the only basis of SSNI .

Proof. Follows directly from the table in Figure 8(b). ��

There are 9 different patterns for the various connections: from 0 (unmarked)
and from 1 (marked), either to 0 or to 1, or undefined; see Figure 9.

In each conn-monoid considered before, different connections had different
topological patterns in the associated net-type. This changes now, as in τSNC
both loop and act give rise to the same pattern. The effect of combining act

and loop however is loop rather than act. This is because, according to the
step semantics of set-nets, adding tokens happens after removing or testing.
So, in this combination, loop as a connection that induces a change of the state
is ‘stronger’ than act. Another interesting pair in the table is formed by act

and rem. The effect of composing them is rem which differs from in due to the
different underlying step semantics even though the arc pattern of rem in τSNC
and that of in in τENC are the same.

Thus we arrive at the crucial point in our considerations where it becomes
clear that the sophisticated (and sometimes surprising) nature of different con-
nections necessarily involves algebraic properties in addition to topological ones.

17

14 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

0 1 0 1 0 1

(a) (b) (c)

0 1 0 1 0 1

(d) (e) (f)

0 1 0 1 0 1

(g) (h) (i)

Fig. 9. Topological patterns of connections in Boolean τ -nets.

5 General Boolean τ -nets

We now propose a general classification of all possible connections in Boolean τ -
nets. We take the general view that each connection defines enabling and effect,
and has an associated strength (weak or strong).

Weak connections impose constraints only with respect to enabling, but un-
like strong connections, they do not impose constraints on the state resulting
from the transition firing. So, when combined with a transition with a stronger
connection, it is the latter that dictates the final result. For example, loop is
strong in SSN as it ‘finishes’ by adding a token in operational sense, as this is
supported by the algebraic property of absorbtion. rem, on the other hand, is
weak in SSN as with this connection the enabling conditions are important, but
the state of the net place (connected in this way to some transition) after the
transitions fired may be changed by another transition (removing tokens or test-
ing precedes token insertion). This leads to 25 different connections ∂xy where
x, y ∈ {w, s, w, s, n}. Here x refers to arrows outgoing from 0, and y refers to
arrows outgoing from 1; w means a weak arrow, s a strong arrow, and n no ar-
row (non-enabledness); finally, (.) implies changing the state (from 0 to 1 or vice
versa). In particular, we have the following encoding of the previously discussed
connections:

⊥ � in out ins rem loop inh act

∂nn ∂ww ∂ns ∂sn ∂ss ∂nw ∂ns ∂wn ∂nw

The corresponding topological patterns are shown in Figure 10.

18

Classifying Boolean Nets for Region-based Synthesis 15

0 1 0 1 0 1

inh act loop

0 1 0 1 0 1

out ins �

0 1 0 1 0 1

in rem ⊥

Fig. 10. Connections in Boolean τ -nets with weak arcs indicated by dashed lines.

We will now formalise in a general way algebraic operations on the 25 con-
nections. Almost all will be motivated by enabledness, and the idea of weak
and strong. In this way, associativity will be automatic in most cases. Let
∂xy ⊕ ∂x′y′ = ∂x�x′ y�y′ . where � is a commutative operation given by:

� w w s s n

w w

w w w

s s s s

s s s n s

n n n n n n

The intuition behind, for example, ∂ss is that the transition is always enabled
but its execution keeps the marking in the place unchanged.

Proposition 8. Sconn = ({w, s, w, s, n},�, w) is a commutative monoid.

Proof. We need to show that (a�b)�c = a�(b�c) for all a, b, c ∈ {w, s, w, s, n}.
To start with, if n ∈ {a, b, c} then (a � b) � c = n = a� (b� c). Otherwise, we
observe that the following hold:

– If s ∈ {a, b, c} and s /∈ {a, b, c} then (a� b)� c = s = a� (b� c).
– If s ∈ {a, b, c} and s /∈ {a, b, c} then (a� b)� c = s = a� (b� c).

19

16 J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny and G.Rozenberg

⊕ENC out in inh act

out ⊥

in ⊥ ⊥

inh out ⊥ inh

act ⊥ in ⊥ act

⊕ENC out in inh act

out ⊥

in ⊥ ⊥

inh ⊥ ⊥ inh

act ⊥ ⊥ ⊥ act

Fig. 11. a-priori (a) and a-posteriori (b) semantics for enc-systems.

– If s ∈ {a, b, c} and s ∈ {a, b, c} then (a� b)� c = n = a� (b� c).
– If a, b, c ∈ {w, w} and w ∈ {a, b, c} then (a� b)� c = w = a� (b � c).
– If a = b = c = w then (a� b)� c = w = a� (b � c). ��

Theorem 1. Sbool = ({∂xy | x, y ∈ {w, s, w, s, n}},⊕, ∂ww) is a conn-monoid.

Proof. Follows from Proposition 8 and ∂xy ⊕ ∂x′y′ = ∂x�x′ y�y′ . ��

SSN , SSNI and SSNC are all sub-monoids of Sbool . The SSN sub-monoid is a
special one; it is non-blocking as composing connections never yields ⊥.

We can now formally describe Boolean net models as those classes of nets that
are defined by a net type over (a submonoid of) Sbool . From [2], it follows that
thanks to the interpretation of the step semantics in term of monoids, Boolean
nets are instances of τ -nets for which there exists a region-based solution to
the synthesis problem. Moreover, τ -nets with maximally concurrent semantics
(the semantics of set-nets when used to model reaction systems) fall within the
general framework of τ -nets with policies introduced in [2].

Finally, we should point out that in order to arrive at this general classifica-
tion of Boolean nets, we have had to make some (slightly arbitrary) assumptions
when the intended operational meaning of a combination was not clear. In par-
ticular, w � w has been defined in such a way as to give more priority to the
change of state. This and perhaps other assumptions are not cast in stone. With
differently motivated models in mind, one may freely modify them, study, ap-
preciate the differences. Also, we decided to define s�s as n because s and s are
both strong and so ‘uncompromising’: one changes the state whereas the other
insists on preserving the state. This contradiction cannot be reconciled.

A posteriori vs. a priori execution semantics Interestingly, conn-monoids
can distinguish between the ‘a priori’ semantics defined at the end of Section 2,
and the ‘a posteriori’ execution semantics. In the setting of en-systems, ‘a pos-
teriori’ is exactly the same as ‘a priori’ with one extra condition for an enabled
set of transitions: •U ∩ �U = U• ∩ ◦U = ∅. Figure 11 exhibits this difference.

6 Conclusions

The reader might wonder why we included in our presentation pt-nets which are
clearly non-Boolean nets. Apart from certain didactic motivations, we thought

20

Classifying Boolean Nets for Region-based Synthesis 17

that pt-nets come with a ‘calculus of connections’ based on a simpler monoid of
natural numbers. To our initial surprise, a similar effect can be achieved in our
symbolic setting where the monoid of ∂xy connections is completely determined
by a simpler monoid with the � operation. This could, perhaps, suggest a general
approach for constructing practical implementations of synthesis algorithms for
set-nets.

Note that there are variations of Petri nets, such as Boolean Petri nets, where
adding a token to an already marked place does not add another token [3, 9].
Also, behaviour of this kind was mentioned in [1] in the context of net synthesis.
Having said that, the semantics considered in prior works known to us was based
on single transition firings, rather than steps as is the case for set-nets.

Acknowledgement We would like to thank the anonymous reviewers for their
suggestions and comments. This research was supported by the Pascal Chair
award from Leiden University and the Epsrc Verdad project.

References

1. Badouel, E., Darondeau, Ph.: Theory of Regions. In: Part I of [14] (1998) 529–586
2. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of

Nets with Step Firing Policies. Fundamenta Informaticae 94 (2009) 275–303
3. De Bra, P., Houben, G.J., Kornatzky, Y.: A Formal Approach to Analyzing the

Browsing Semantics of Hypertext. Proc. CSN-94 Conference (1994) 78–89
4. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Part I of [14] (1998) 122–173
5. Ehrenfeucht, A., Main, M., Rozenberg, G.: Combinatorics of Life and Death for

Reaction Systems. International Journal of Foundations of Computer Science 22
(2009) 345–356

6. Ehrenfeucht, A., Rozenberg, G.: Partial 2-structures; Part I: Basic Notions and
Representation Problem, and Part II: State Spaces of Concurrent Systems. Acta
Informatica 27 (1990) 315–368

7. Ehrenfeucht, A., Rozenberg, G.: Reaction Systems. Fundamenta Informaticae 76
(2006) 1–18

8. Ehrenfeucht, A., Rozenberg, G.: Events and Modules in Reaction Systems. Theo-
retical Computer Science 376 (2007) 3–16

9. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Bi-
ology. Lecture Notes in Computer Science 5016 (2008) 215–264

10. Kleijn, J., Koutny, M., Rozenberg, G.: Modelling Reaction Systems with Petri
Nets. Technical Report CS-1244. Newcastle University (2011)

11. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Elementary Net Systems with
Context Arcs and Localities. Fundamenta Informaticae 88 (2008) 307–328

12. Pietkiewicz-Koutny, M.: The Synthesis Problem for Elementary Net Systems with
Inhibitor Arcs. Fundamenta Informaticae 40 (1999) 251–283

13. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: Part I of [14] (1998)
12–122

14. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets. Lecture Notes in Com-
puter Science 1491, 1492 (1998)

21

