
Mining with User Interaction

Robin Bergenthum, Sebastian Mauser

Department of Software Engineering, FernUniversität in Hagen

{robin.bergenthum,sebastian.mauser}@fernuni-hagen.de

Abstract. In this short paper we present an interactive mining approach which is
based on net synthesis. First, a net is generated from a log file by a liberal mining

algorithm such as the alpha-algorithm. Then, using concepts from the theory of

regions, runs of this net which are not included in the log are calculated and

feedbacked to a user who has to decide whether they are valid runs of the process

or not. Finally, a net having the runs of the log and the additionally specified runs

is synthesized.

1 Introduction

Many of today’s information systems record information about performed activities of

processes in so called event logs. Process mining techniques attempt to extract useful,

structured information from such logs. In this paper we focus on the problem of con-

structing a process model which matches the actual workflow of the recorded informa-

tion system, called process discovery. There are many process discovery techniques in

the literature (e.g. [1]), often implemented in the ProM framework (www.promtools.org/

prom6).

One main difficulty of process discovery is that a typical log contains only example

runs of the recorded process (we do not discuss the problem of noise here), i.e. logs are

incomplete. Therefore, precise mining algorithms based on net synthesis which exactly

reproduce a log (see e.g. [2]) are often not appropriate. Consequently, most mining

algorithms try to generate a process model which includes the recorded example runs

and also allows for some additional behavior – they overapproximate the given event

log. Since there is no information on runs missing in the log, overapproximation is a

heuristic approach. When a mining algorithm allows a run which is not given in the log,

it is not clear (without additional information) whether the added run (1) is a run of the

process which coincidentally has not been observed in the log or (2) is no possible run

of the process and for this reason is of course not included in the log. The only way to

solve this problem is to ask a user whether (1) or (2) is true. Therefore, we here suggest

an interactive mining approach where overapproximation is explicitly determined by

a user (first ideas in this direction have been developed in [3]). Note that a crucial

assumption of this approach is the existence of a process owner having enough insights

to decide if a feedbacked run is a run of the process or not.

The crucial challenge of this approach is to choose an appropriate set of runs for

user feedback. Of course it is not viable to feedback each run which is not given in

the log. It is important to only consider such runs which have a “high probability” for

79



being runs of the process. The basic idea of our approach is to feedback the difference

between a liberally mined net and an exactly synthesized net.

Starting with the given log, we first use a liberal mining algorithm to generate a net

representing an upper bound. Using the theory of regions we compute the runs which

are allowed by this net but not included in the log. For each such run, a user has to

decide whether it represents valid behavior of the process or not. Thus, the log is com-

pleted according to the feedback. The resulting log is then used as the input for an exact

synthesis algorithm, i.e. a model is generated which allows the recorded runs and the

runs explicitly specified by the user. In this way overapproximation becomes control-

lable. In particular, the conflict between underfitting, i.e. too much overapproximation,

and overfitting, i.e. not enough overapproximation, can be solved.

2 Interactive Mining Algorithm

In this section we explain the interactive mining approach in detail. As a preparative

step for our algorithm, we have to choose a mining algorithm (e.g. the alpha-algorithm

[1]) which we use as a reference for the overapproximation performed by our approach.

In the field of conformance checking there exist the notions of recall and precision.

Our interactive algorithm heavily depends on the recall and precision of the underlying

mining algorithm. While our approach works with any mining algorithm, an algorithm

having a high recall is preferred, since our interactive approach always generates a net

which allows all the behavior given in the log (we assume that there is no noise in

the given log file). The precision of the underlying mining algorithm determines the

search space of the interactive approach. The larger the search space the more queries

are necessary.

Having chosen a reference mining algorithm, the interactive mining algorithm is as

follows (see Figure 1):

Fig. 1. Interactive mining algorithm.

– The starting point is a typical event log as described e.g. in [1, 2] which defines a
set of runs. As a first step, the chosen mining algorithm is applied to the log gener-

ating a net which represents an upper bound for user feedback. The idea behind this

approach is that a liberal mining algorithm performs a “reasonable” overapproxi-

mation but has a tendency to introduce “too much” overapproximation.

– The second step is to compute runs to be feedbacked to the user. For this purpose,
we consider so called wrong continuations [2] of the given log. A wrong contin-

uation extends a run (or more precisely the Parikh-vector of a run) of the log by

one event such that the resulting run is not specified. That means, only minimal

non-specified behavior is considered for feedback. Still the set of all wrong con-

tinuations is too large for practical purposes. Therefore, we only consider wrong

80



continuations which are allowed by our upper bound, i.e. which are executable

w.r.t. the net mined by the chosen liberal mining algorithm. This set of wrong con-

tinuations is presented to the user for feedback. For each such run, the user then has

to decide whether it is a run of the underlying process or not. For this purpose, the

runs are illustrated in a list, and for each run there is a respective checkbox.

– As a third step, the log is updated by adding the runs which have been classified
by the user as valid runs of the process. For all these new runs, new wrong con-

tinuations appear which have not yet been feedbacked. Therefore, there is a choice

for the user now: He can decide to either proceed with the next final step (fourth

step) or to repeat the feedback steps (second and third step) with the new wrong

continuations. The latter choice means that the new wrong continuations which are

executable w.r.t. the initially mined net are again feedbacked to the user and possi-

bly added to the log. The second and third step can be iterated until no more new

valid runs are found or the upper bound is reached.

– The fourth step consists of using an exact synthesis algorithm on the updated log,
i.e. a net reproducing the log which has been completed by the user in the previ-

ous steps is generated. We here apply the mining algorithm based on regions of

languages from [2, 4] which is implemented in the tool VipTool.

We now illustrate this procedure by a small example log which defines the three

runs shown in Figure 2.

Fig. 2. Runs of the example log.

As a reference mining algorithm we use

the alpha-algorithm for this example. The alpha-

algorithm tries to extract from a log the direct depen-

dencies of activities and translates them into places

of a workflow net. Figure 4 shows a ProM screen-

shot of the net mined from the example log with the

alpha-algorithm. This net overapproximates the log.

It allows the three runs of the log and eleven further

runs. The exact synthesis algorithm of VipTool generates the net shown in Figure 5

from the example log. It coincidentally has the same places as the net from Figure 4

and some additional places which are shown in grey (in general such a relation does not

hold). Note that, since the log cannot precisely be represented by a Petri net, this net

not only allows the three runs of the log but also two additional runs. The idea of our

mining approach is now to construct a net in between the liberally mined net from Fig-

ure 4 and the synthesized net from Figure 5 by interacting with a user. That means, on

the net level in this example the question is whether the grey places of Figure 5 should

be included in the net or not.

Fig. 3. Feedback of wrong continuations.

Algorithmically, in the first step of our

algorithm we mine the net from Figure 4.

Then, in the second step first the set of

all wrong continuations of the log is com-

puted. For instance, A1 B1 is a prefix of

a run of the log (see Figure 2). Since A1

B1 B2 is not contained in the log and ex-

tends the previous run by one event, it is

81



a wrong continuation. Altogether, there are 97 wrong continuations in our example.

However, only four of the 97 wrong continuations are enabled in the net from Figure 4.

That means, for feedback we only consider these four runs which are given in Figure 3.

For each of these four wrong continuations the user has to decide whether in the

process the last task can occur after the occurrence of the given prefix. In the context

of the first two wrong continuations the question is if B2 (resp. C2) can immediately

occur after B1 (resp. C1) or if B2 (resp. C2) has to be ordered behind C1 (resp. B1). For

our example let us assume that the second case is true, i.e. the two wrong continuations

are marked to be no runs of our process. In the context of the third and fourth wrong

continuation the question is if task Z (resp. Y) can freely be chosen at the end of the

process also in the case that the part of the net including A1, B1, C1, C2, B2, A2 (resp.

D) has been chosen at the beginning of the process or if the choice of Z (resp. Y)

depends on the choice at the beginning of the process. Here we assume that the first

case is true, i.e. the two wrong continuations are marked as runs of our process. After

this user feedback, in the third step of our algorithm the two positively evaluated wrong

continuations are added to the log. In the following, a repetition of the feedback steps

is not necessary in our example, since all wrong continuations of the two newly added

runs are not enabled in the net from Figure 4, i.e. the upper bound is reached. Thus, in

the fourth step, the VipTool synthesis algorithm is applied to the completed log with five

runs. Since we use an exact synthesis method, for this step we only need the original

log and the positively evaluated runs here. The result is the net from Figure 5 without

the two grey places connected with the tasks Y and Z, i.e. there is a free choice between

Y and Z.

3 Alternative Approach

In the described approach, the liberally mined net is just used as the upper bound for

feedback when completing the log. Afterwards, this net is dropped and the final net is

constructed from scratch by using synthesis methods. However, as it is also the case for

our example, the net mined by a typical liberal mining approach is often nicely readable.

The places generated by such mining algorithms are mostly introduced according to

simple rules which in a natural way reflect the dependencies given in the log, i.e. they

often nicely reflect the intuition of users of the business process. Thus, an interesting

idea for the construction of the final net in our interactive mining approach is to keep

the initially mined places and to only complement them by newly synthesized places as

far as necessary. In this way, we support the generation of an intuitive and readable net.

Still, keeping the initially mined places causes the following problem: For most

mining algorithms it is possible that so called unfeasible places which prohibit runs

given in the log are generated. These places have to be deleted for enabling the approach

of this section.

Fig. 4. Net mined with the alpha-algorithm of ProM.

82



Fig. 5. Net synthesized with VipTool.

Altogether this alternative approach yields the algorithm shown in Figure 6. The

difference to the algorithm in Figure 1 is the additional step “delete unfeasible places”

and the changed last step. In this new last step, the runs which have explicitly been

specified by the user to be no runs of the process are considered. For this set of runs,

places which prohibit this set but are feasible w.r.t. the updated log (i.e. they allow the

runs of the log) are computed and added to the initially mined net.

Fig. 6. Alternative mining algorithm.

For the example log of Figure 2, again first the net given in Figure 4 is generated

using the alpha-algorithm of ProM. In this example, all places are feasible, i.e. all runs

of the log are executable in the initially mined net. Thus, the same set of wrong contin-

uations as in the first presented algorithm (Figure 3) are feedbacked to the user in a first

feedback step. We assume that the user makes the same choices as in the last section.

Consequently, the last two wrong continuations are added to the log and the first two

wrong continuations have to be stored to be prohibited later on. As before, after the first

feedback step the upper bound is reached. Therefore, it is proceeded with the last step of

the algorithm. With standard synthesis methods, the algorithm computes two regions,

each prohibiting one of the two stored wrong continuations. The initially mined net is

then extended by the two places corresponding to the two regions yielding the same net

as in the case of the first interactive approach.

When comparing the two approaches, it is a coincidence that we get the same result

in our example. In particular, it was a coincidence of the first approach that the result-

ing synthesized net included the liberally mined net from Figure 4. In this alternative

approach, it is the central idea to keep the initially mined net and to extend it with ad-

ditional places to always get such a nice result. Moreover, we do not anymore focus

on completing the log but on identifying runs to be prohibited. As a consequence, in

the case a user decides to stop the feedback phase, i.e. to not finish the completion of

the log, there is an important difference to the algorithm presented in the last section.

While the algorithm of the last section tries to prohibit all the behavior which has not

been feedbacked anymore in such case, the algorithm of this section keeps the liberal

control flow of the initially mined net.

83



Finally, it remains to mention that processes with loops are problematic for the pre-

sented basic interactive mining approaches. If a loop is included in the liberally mined

net, it is possible to repeat the feedback steps of the interactive approaches arbitrarily

often and thus the user has to cancel the iterated feedback at some point. In the case

of the first algorithm, the precise mining approach of VipTool then tries to detect such

loops from the extended log as described in [4]. In the case of the second algorithm, the

loop is simply kept from the liberally mined net. But, if it is not detected by the approach

from [4], it is still possible that the loop is coincidentally prohibited by the additional

places. In this context several improvements are possible, in particular mechanisms to

automatically stop the feedback steps in the case of loops and improved methods for

loop detection.

4 Conclusion

In this paper, we tackle the problem of incomplete logs by applying mining with user in-

teraction. We introduce overapproximation in a user controlled way. The starting point

is a net generated by a liberal mining algorithm. The behavior of this net is then re-

stricted by applying concepts from the theory of regions. We presented two different

approaches implementing this idea.

As future work it is important to both evaluate the quality of our interactive mining

approach and the practicability of the approach for users.

References

1. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process

Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004) 1128–1142
2. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of

Languages. In: BPM 2007, LNCS 4714, Springer (2007) 375–383

3. Esparza, J., Leucker, M., Schlund, M.: Learning Workflow Petri Nets. In: Petri Nets 2010,

LNCS 6128, Springer (2010) 206–225

4. Bergenthum, R., Desel, J., Kölbl, C., Mauser, S.: Experimental Results on Process Mining

Based on Regions of Languages. In: Workshop CHINA, Petri Nets 2008, X’ian (2008)

84


