
Dealing with Mathematical Relations in Web-Ontologies

Muthukkaruppan Annamalai
Department of Computer Science & Software

Engineering
The University of Melbourne

Victoria 3010, Australia

mkppan@cs.mu.oz.au

Leon Sterling
Department of Computer Science & Software

Engineering
The University of Melbourne

Victoria 3010, Australia

leon@cs.mu.oz.au

ABSTRACT
The growing use of agent systems and the widespread pen-
etration of the Internet has opened up new possibilities for
scientific collaboration. We have been investigating the role
for agent systems to aid with collaboration among Exper-
imental High-Energy Physics (EHEP) physicists. A neces-
sary component is an agreed ontology, which must include
complex mathematical relations involving such quantities as
the energy and momentum of elementary physics particles.
We claim that the current web-ontology specification lan-
guages are not sufficiently expressive to be useful for explicit
representation of mathematical expressions. We adapt some
previous work on representing mathematical expressions to
produce a set of mathematical representational primitives
and supporting definitions that will allow knowledge shar-
ing in agent systems. The paper sketches out a scheme
for dealing with mathematical relations in scientific domain
web-ontologies, illustrated with examples arising from our
interactions with the EHEP physicists.

1. INTRODUCTION
The growing use of agent systems and the widespread pen-
etration of the Internet has opened up new possibilities and
created new challenges for scientific collaboration. On one
hand, it is possible to make large amounts of scientific anal-
yses of Experimental High-Energy Physics (EHEP) experi-
ments available to scientists around the world [3, 4, 7]. On
the other hand different scientific groups, even within a sin-
gle collaboration, utilise different calculation methods, and
it is sometimes difficult to know how to interpret particu-
lar analyses. It is assumed that practitioners in this domain
possess the necessary background knowledge to interpret the
intended meaning of the appropriated jargon in the domain
of discourse. Unfortunately, application developers, new-
comers to this field, and software agents lacking in relevant
expertise are not capable of making a similar kind of inter-
pretation. Knowledge models, or ontologies built to express
specific facts about a domain can serve as the basis for un-
derstanding the discourse in that domain [5].

The notion of ontology as specification of a partial account
of shared conceptualisation [13, 16] is adopted in this pa-
per, that is an ontology defines a set of representational
vocabulary for specific classes of objects and the describable
relationships that exist among them in the modelled world
of a shared domain.

In 2002, we were involved in a project [1, 8] supported by

the Victorian Partnership for Advanced Computing [21] to
investigate whether ontologies would be useful for EHEP col-
laboration, in particular in the Belle [4] collaboration. The
research is founded on the idea that suitable web-ontologies
be developed and reused to facilitate this scientific commu-
nity to produce and share information effectively on the se-
mantic web. While the final verdict has not been reached,
it is clear that our project extends existing capabilities of
web-ontology specification languages and tools.

One concerning issue is as to how to define ‘function-concepts’
in the EHEP ontology, that is concepts equated with math-
ematical expressions involving such quantities as the energy
and momentum of elementary physics particles. A function-
concept is a manifestation of an n-ary mathematical relation
or function binding a set of quantifiable terms defined in the
ontology. The current web-ontology specification languages,
such as DAML [17] and OIL [10] are founded on Description
Logic [2] and can only express unary and binary relations.
They offer no representational features for expressing func-
tions. We ask, “How do we facilitate the semantic recogni-
tion of function-concepts in web-ontology?” The answer to
this question led us to cognise the extensions required for ad-
ditional expressivity in web-ontology. This paper shows the
approach we have taken in order to ensure that we could de-
scribe mathematical relation underlying a function-concept
in the ontology.

This paper is organised as follows. In Section 2, we provide
a glimpse of the function-concepts in the EHEP domain. In
Section 3, we describe the principles of dealing with math-
ematical relations in web-ontology and our approach to the
problem is elaborated in Section 4. Finally, Section 5 con-
cludes the contribution of this paper.

2. EVENT-VARIABLES IN THE EHEP ON-
TOLOGY

Mathematics plays a significant role in the EHEP experi-
mental analysis – from the time sensor data is captured up
to statistical analysis and systematic error calculation. In
this paper however, we limit our scope of discussion to the
treatment of mathematics in the vital event selection phase.

The superfluous event data captured by detectors is system-
atically filtered to suppress much of the background events,
while preserving the vital signal events. Parametric restric-
tions on the event selection variables or ‘cuts’ are utilised to
sift the signal events from background events. Loose cuts (or

skimming), followed by more decisive topological, kinematic
and geometric cuts is aimed to produce a set of desired event
data, fit for justification of the empirical findings.

A category of event selection variables is defined in the
EHEP ontology. These event-variables are identified based
on their use and need to specify the event selection or back-
ground suppression cuts. A set of competency questions [15]
drawn-up while the ontology being built guides the concep-
tualisation of these required event-variables. A typical com-
petency question is: “What are the kinematic selection cri-
teria applied in an analysis?” The ensuing answer would
list the selection criteria enforced, such as: “Beam con-
strained mass Mbc > 5.2 GeV/c2, Track transverse momen-
tum PT > 100 MeV/c, Energy difference ∆E < 0.2 GeV ,
Likelihood of electron over kaon Le/K > 0.95”. The ontol-
ogy must define the necessary vocabulary to represent the
competency questions that arose and the answers that were
generated.

Some event-variables are constants, while others are func-
tions. In the above illustrative example, Le/K is a con-
stant; whereas, Mbc is a function event-variable. Mbc =√

E2
beam − P 2

3B
, where Ebeam is the energy of the beam and

P3B is the 3-Momentum of B particle. Ebeam is a constant.
The 3-Momentum P3 =

√
P 2

x + P 2
y + P 2

z is a function. In
here, Px, Py and Pz are constant event-variables that de-
note the individualised track momentum along the x, y and
z axes, respectively.

Note that a function event-variable is expressed algebraically
in terms of constant event-variables. A simple function
event-variable accepts only constants as parameters. Ex-
amples are 3-Momentum, P3 and Transverse Momentum,
PT that describe the momentum of a track. The function
P3 is given above, while PT =

√
P 2

x + P 2
y .

On the other hand, a higher-order function event-variable
also admits other functions as parameters. The Mbc is a
higher-order function. One of its parameter is P3, a func-
tion event-variable. Another example is the Fox-Wolfram
Moment-0 event-variable, H0 =

∑
j

∑
k(P3j × P3k), whose

parameter is a set of 3-Momentum of tracks. The indices j
and k enumerate the tracks in an event.

Sometimes, a function requires weighted parameters. An ex-
ample is the Fisher Discriminant event-variable F =

∑
i(αi×

Ri), which combines a set of correlated event-variables R1,
R2, etceteras to form a single variable. As in the previous
case, the index i enumerates the considered event-variables.
The coefficient αi denotes the weight for the parameter Ri.

3. THE MAIN PRINCIPLES OF OUR AP-
PROACH

We are focusing on explicating mathematical relations that
bind a set of the scientific domain concepts in web-ontology.
We seek to find a formal way to represent the mathematical
relationships among domain concepts. The idea is to make
clear this factual knowledge to humans and software agents
during event analyses.1 Our development drew heavily from

1Note that our development is quite different from the
work being pursued by the mathematical-knowledge repre-

the EngMath ontology [14], an extensive past attempt to
capture the semantics associated with mathematical expres-
sions in engineering models. EngMath is a declarative first
order KIF [11] axiomatisation, which is supported by sets
of theories for describing physical quantities, mathematical
object such as scalar, vector, tensor and, functions and op-
erations associated with them.

To a lesser degree, general-purpose ontologies like CYC [9]
and SUMO [20] also attempt to declaratively capture the
semantics of ‘evaluatable’ function. However, such function
is categorised as unary, binary, ternary, quaternary and con-
tinuous types; thereby placing a limit on the number of its
argument. Perhaps, this restrain is imposed in order to refer
to a function’s argument based on its order in the ‘argument
list’. In our case, a function argument must be able to de-
note a collection of class instances, which SUMO does not
allow. In EngMath, such collection is represented as tensor
or vector.

Although, the EngMath approach of providing rigorous de-
scriptions appears to faithfully represent mathematical ex-
pressions in instantiated models, it is difficult to understand
and apply to working systems. The theories represented
in declarative style, as axioms (KIF sentences) are hard to
read and understand, more so by physicists who are not well
versed with ontology. Furthermore, it is not feasible to port
this ontology on the web because web-ontology languages do
not provide for definitions of arbitrary n-ary relations and
functions, and axioms that make up EngMath.

Since we aim to build suitable EHEP ontologies for the se-
mantic web, we parted from the EngMath approach from the
outset. The contrast between EngMath and our modelling
principles are described below.

I. Web-ontologies are serialised in XML [22], a mark up
language intended to encode metadata concerning web
document.

II. The domain concepts are assembled in a hierarchy
and their distinguishing properties and relationships
among them are specified, using a frame-like syntax.
In light of this fact, we have conceived the concepts
using notions like class, subclass, range-relation and
cardinality. (See the examples in next section)

III. A mathematical relation is closed on a function-concept
in the ontology. It explicates the algebraic expression
used to derive the function-concept. The knowledge
associated with this derivation is representationally at-
tached to the function-concept.

IV. The quantifiable terms in the ontology are modelled
upon mathematical data types such as scalar, boolean,
record (cartesian product), set and function. The types
specify how to interpret the values of these terms and
restrict the set of operations that can be applied on
them.

sentation community. Their work is concerned about con-
tent theories of mathematics and experiment with differ-
ent formalisms for representing theories, definitions, axioms,
proofs, etceteras in the domain of mathematics.

V. We also recognise the need to extend the algebra of
primitive data type operators to constant quantities.

VI. We have introduced the notion of a parameter, which is
associated with function quantity. We have classified
the parameters of a function quantity as individual,
collection and weighted parameters to distinguish ones
role from the other.

VII. The arithmetic-logical expression denoting the inten-
sion of a function quantity will be encoded in a suitable
format (not KIF expression). A possible candidate
is OpenMath [19], an XML standard for exchanging
mathematical objects on the web.

4. EXPLICATING MATHEMATICAL RELA-
TIONS IN ONTOLOGY

The constant and function event-variables mentioned in Sec-
tion 2 are physical quantities. We need to first define suit-
able concepts for representing these quantities in the ontol-
ogy. Then, we will propound a scheme for providing an ab-
stract description of mathematical relations involving these
quantities.

4.1 Representation of Quantity
The need to deal with physical quantities in scientific ontolo-
gies is obvious. Our conceptualisation of physical quantity
is different from that in EngMath. The definition of physi-
cal quantity is based upon our viewpoint on how quantities,
dimension and units are treated in the EHEP domain.

For this, we defined a metaclass called PhysicalQuantity,
having magnitude and dimension as its attributes (or prop-
erties). The concept-oriented definition shown in Figure 1 is
an abstract idea of a physical quantity described in a Pro-
tege [12] -like representation.2 A physical quantity has a
scalar (integer or real) magnitude and its unit of measure is
associated with a particular physical dimension specified in
the ontology.

class PhysicalQuantity
Property Range Relation Cardinality
magnitude Scalar = 1
dimension DimensionUnit = 1

Figure 1: Definition of PhysicalQuantity

A constant quantity is a representation of a quantifiable ob-
ject in the domain, which holds a single constant value of
measure. The metaclass ConstantQuantity is defined as a
‘concrete’ subclass of PhysicalQuantity and a constant quan-
tity can be directly instantiated from it. The constant event-
variables defined in the ontology are constant quantities. For
example, the fundamental track momentum, Momentum-X
defined in Figure 2, is a constant quantity. A Momentum-X
object’s magnitude is a real value and its unit of measure is
given in terms of units of momentum dimension. Note how-
ever that magnitude and dimension properties are inherited
from PhysicalQuantity.

2The semi-formal ontology developed using this frame-based
ontology modelling tool, will be eventually formalised as
EHEP web-ontology.

class Momentum-X : ConstantQuantity
subClassOf Momentum
Property Range Value
magnitude Real
dimension MomentumUnit

Figure 2: Definition of Momentum-X

The function event-variables defined in the ontology are
function quantities. A function quantity is distinguished
from constant quantity by the fact that the value of mea-
sure of the denoted quantifiable object is derived from other
constant quantities. In other words, a function quantity
can be seen as a function that maps one or more constant
quantities to a constant quantity. Consequently, a grounded
function quantity can be casted into constant quantity by
anchoring it in the domain ontology. The function quantity
is elaborated in Section 4.3.

Each quantity belongs to exactly one dimension. A unit is
a measure of quantity in some dimension. There is a range
of units associated with each dimension in the EHEP ontol-
ogy. For example, the units for Energy dimension are eV,
KeV, MeV, GeV and TeV.3 Relativistic physics asserts that
Energy = Momentum × SpeedOfLight. Accordingly, the
Momentum units such as eV/c, KeV/c, MeV/c etceteras
are always derived from Energy units in this domain. Like-
wise, Momentum = Mass×SpeedOfLight. So, Mass units
such as eV/c2, KeV/c2, MeV/c2 etceteras are always de-
rived from Momentum units.4

Note that in this system of units, the symbol c, which de-
notes the speed of light is featured as part of the unit. This
rather unconventional way of describing the unit of a phys-
ical quantity in terms of abstract dimension symbol allows
the physicists to work with a limited set of dimension unit
symbols. It also facilitates the dimensional analysis of alge-
braic expressions involving related quantities. It would not
be necessary, in our case to compose the dimension of a de-
rived quantity from a larger set of fundamental dimensions
as prescribed in EngMath and SUMO sub-model on ‘Unit of
Measure’. The onus of dimensional consistency in algebra
over the quantities rests with the modeller. However, the
ontology is needed to support the unit analysis involving
those quantities.

Based on the above standpoint, we have assigned a set of
canonical units to each of the dimensions that appears in the
ontology. In order to facilitate unit analysis over a dimen-
sion, a base unit is selected for each dimension. The other
units of the dimension are then specified as conversion fac-
tor from a unit to the base unit. For example, the base
unit for Energy dimension is eV . Its succeeding units, KeV,
MeV, GeV and TeV are 103, 106, 109 and 1012 multiples
of the base unit, respectively. Quantities to be manipulated

3eV stands for electronvolt, is a non-standard unit for en-
ergy. The SI unit for energy is J (joule).
4The SI units for mass is kg (kilogram), and momentum is
Ns (newton second) or kg.m/s, depending on the dimen-
sions that are employed in its derivation. EHEP physicists
are parsimonious in the use of dimensions so as to avoid such
indeterminate situations.

must be same dimension and unit. For instance, the differ-
ence in their conversion factor can be used to reconcile the
quantities before they are operated upon.

4.2 Quantity and Data Types
Data type identifies the type of values that may be assumed
by quantifiable objects and expressions in the ontology. We
will make use of mathematical data types [6] to model these
sets of values. The primitive data types are scalar and
boolean, while the composite data types are record and set.

4.2.1 Primitive Data Type
The simplest data types are scalar and boolean types. The
scalar types are Real and Integer. The arithmetic operators
in Figure 3 are required to operate on scalar data types.5

plus minus times divide pow mod max min
uminus abs log ln cos sin tan acos
asin atan

Figure 3: Arithmetic Operators

Binary operators such as plus, minus and times have signa-
ture: Scalar × Scalar → Scalar, while a unary operators
like uminus, abs and log have signature: Scalar → Scalar.
Arithmetic expressions are constructed using these opera-
tors.

A boolean type can have False or True constant values.
The boolean operators associated with this type are and,
or and not. The and and or operators have signature:
Boolean × Boolean → Boolean. The not operator’s sig-
nature is: Boolean→ Boolean.

and or not less more equal

Figure 4: Logical Operators

We also need the relational operators less, more and equal
that maps a pair of Scalars to Boolean. Logical expressions
constructed using the boolean and relational operators listed
in Figure 4 will be used to specify conditions and constraints
involving the quantifiable terms in the ontology.

4.2.2 Composite Data Type
The composite data types are built upon other data types.
We have identified the need for two kinds of composite data
types in the ontology, namely record and set data types.
A record is a cartesian product of its constructed element
types, while a set is a mathematical abstraction of a collec-
tion of elements.

Record
A record type is composed of a fixed number of data types.
The set of values represented by a record is a cartesian prod-
uct of its data types. A record is analogous to a class con-
struct defined in ontology specification language.

5Other scalar types such as Rational and Complex would be
included, when their need arise. Likewise, the existing set
of operators for will be expanded accordingly.

class Track : RecordQuantity
Property Range Value
mom-x Momentum-X
mom-y Momentum-Y
mom-z Momentum-Z
energy Energy

class Momentum-X : ConstantQuantity
subClassOf Momentum

class Momentum-Y : ConstantQuantity
subClassOf Momentum

class Momentum-Z : ConstantQuantity
subClassOf Momentum

class Energy : ConstantQuantity
subClassOf EventVariable

Figure 5: Partial Definition of Track and its Range
Relations

We utilise record data type to model a structured set of
values associated with an aggregate of disparate quantities
such as Track (Figure 5). Track information is typically de-
noted by an n-tuple of distinct quantities, partially described
as < Px, Py, Pz, E >. We choose to refer to such grouped
quantities in ontology as record quantity (actually a record
of quantities) because we are able to provide explicit names
for the individual quantities in the structure, rather than
simply rely upon the ordinal of the quantities in an n-tuple.

An access operator called select is required to select indi-
vidual elements of a record. The property names serve as
the identifier of a record element. For example, select(T,
mom-x) accesses the mom-x component of track T.

Set
A set is a data type representing a collection of things. In
the context of our work, we restrict the use of set to repre-
sent a collection of individuals with common characteristics,
that is class instances of same type. Set operators are specif-
ically defined to be applied on an entire collection of indi-
viduals. The operators named in Figure 6 are required for
constructing a set, determining its size, checking set mem-
bership, telling the maximum and minimum individual, and
summing up all the individuals in a set.

setOf union intersect oproduct filter
size member maximum minimum summation

Figure 6: Set Operators

The operators on the first row are set constructors. No-
tably, the oproduct operator constructs the outer product
of a pair of sets. For example, the Fox-Wolfram Moment-0
event-variable H0 =

∑
j

∑
k(P3j ×P3k) can be expressed as

follows: summation(oproduct(setOf(P3), setOf(P3))). The
summation operator repeatedly applies the plus operation
on all the individuals in the constructed set of outer prod-
uct of 3-Momentum.

The filter operator applies a condition (logical expression)
on a set to filter out a subset of desired individuals, that
is individuals that fulfil the specified condition. As an ex-
ample, the following expression sums up the transverse mo-

class FunctionQuantity
subClassOf PhysicalQuantity
Property Range Relation Cardinality
parameter Parameter ≥ 1
intension ArithmeticLogicalExpression

magnitude Scalar = 1
dimension DimensionUnit = 1

Figure 7: Definition of FunctionQuantity

class Parameter
Property Range Relation Cardinality
argument ConstantQuantity ≥ 1
coefficient Scalar ≤ 1

Figure 8: Definition of Parameter

mentum of tracks (PT) that makes an angle of more than

45◦ with the Thrust axis (T̂): summation(filter(setOf(PT),

and(more(angleBetween(x, T̂), π/4), member(x, PT))).
The function angleBetween is a geometric event-variable de-
fined in the ontology. It represents the plane angle between
any two axes in a particular frame of reference.

4.3 Mathematical Relations as Function Quan-
tities

Mathematical relations in the ontology can be described ab-
stractly in the form of grounded function quantities. A func-
tion quantity represents a physical quantity that is arith-
metically derived from previously defined quantities. It is
invoked with an explicit set of constant quantity parame-
ters, which map to a constant quantity. In other words,
a function quantity describes the numerical dependencies
between its parameters, and the resulting quantity. Conse-
quently, the intension of a function quantity is specified by
an arithmetic-logical expression involving its parameters.

We give the definition of function quantity in Figure 7. It is
conceptualised as a subclass of PhysicalQuantity with a set
of properties, namely parameter, intension, magnitude and
dimension. A function quantity inherits the magnitude and
dimension properties from PhysicalQuantity, which together
denote the characteristics of the resulting constant quantity.

4.3.1 Parameter of Function Quantity
Parameters identify the types of objects that are involved
in a mathematical relation described by a function quantity.
These parameters are constant quantities, which includes
existing grounded function quantities and record quantities.
Recall that a grounded function quantity delivers a constant
quantity as result. A record quantity constitutes a struc-
tured set of disparate constant quantities.

Each parameter of a function quantity is either an individ-
ual quantity or a collection of quantities. Alternatively, a
weight is attached to a parameter that indicates its degree
of influence on the resulting value. The metaclass definition
in Figure 8 is an abstraction of the various types of param-
eters of a function quantity, whose argument and coefficient
are constrained to ConstantQuantity and Scalar type, re-
spectively.

class TransverseMomentum : FunctionQuantity
subClassOf Momentum
Property Range Value
parameter Px, Py

intension abs(pow(sum(pow(Px,2),pow(Py,2))),0.5)

magnitude Real
dimension MomentumUnit

class Px : IndividualParameter
Property Range Value
argument Momentum-X

class Py : IndividualParameter
Property Range Value
argument Momentum-Y

Figure 9: Partial Definition of Transverse Momen-
tum and its Range Relations

Individual Parameter
An individual parameter is a subclass of Parameter whose
argument cardinality is equal to 1. It denotes a specific
quantity argument of a function quantity. Scalar and re-
lational operators can be applied on the magnitude of this
argument.

Figure 9 illustrates the definition of Transverse Momentum
function quantity with two individual parameters. An in-
stantiated TransverseMomentum maps instances of Momen-
tum-X and Momentum-Y to an instance of momentum quan-
tity, according to the specified intension.

Collection Parameter
A collection parameter is a subclass of Parameter whose
argument cardinality is greater than 1. This type of argu-
ment is viewed as a collection of homogenous quantities and
is typically applied to set operators as a whole. A case in
point is the collection parameter (a set of 3-Momentum) of
the Fox-Wolfram Moment-0 function quantity.

Weighted Parameter
A weighted parameter is a subclass of Parameter whose co-
efficient has a definite value, as in the case of Fisher Dis-
criminant function quantity. This value will be dealt within
the arithmetic-logical expression that specifies the intension
of this function quantity.

4.3.2 Intension of Function Quantity
An arithmetic-logical expression (a constrained sequence of
symbols) conveys the intension of a function quantity. The
semantics is determined largely by the arithmetic, logical
and set operations applied on the parameters of the func-
tion quantity. One possible way to encode this expression
is using OpenMath [19].6 Figure 10 shows the OpenMath
encoding of the arithmetic-logical expression that describes
the intension of TransverseMomentum (see definition in Fig-
ure 9).

6Another W3C data exchange standard is MathML [18].
While OpenMath focuses on the semantics in mathematical
expression, MathML gives importance to the presentation
(rendering) of the mathematical expression.

<OMOBJ>
<OMA>

<OMS cd=”arith1” name=”abs”/>
<OMA>

<OMS cd=”arith1” name=”pow”/>
<OMA>

<OMS cd=”arith1” name=”plus”/>
<OMA>

<OMS cd=”arith1” name=”pow”/>
<OMV name=”Px”/>
<OMI> 2 </OMI>

< /OMA>
<OMA>

<OMS cd=”arith1” name=”pow”/>
<OMV name=”Py”/>
<OMI> 2 </OMI>

< /OMA>
< /OMF dec=”0.5”/>

< /OMA>
< /OMA>

< /OMA>
< /OMOBJ>

Figure 10: Intension of TransverseMomentum En-
coded in OpenMath

Expressions encoded in OpenMath are constrained by XML-
syntax with implied semantics. An OpenMath object (OM-
OBJ) is a sequence of one or more application objects (OMA).
OpenMath maintains reportative definitions of the mathema-
tical-oriented metadata in a set of content dictionaries. In
this example, the content dictionary (cd) named arith1 holds
the definition of the following symbols (OMS): abs, pow and
plus. These symbols coincide with the data type operators
identified in Section 4.2. The parameter or variable (OMV)
is associated with constant quantity, in our case.

We appeal to an interpreter for manipulating this encoded
expression. OpenMath only recognises scalar values such as
integer (OMI) and real (OMF). The design decision will also
have to consider on how to extend the scalar and boolean
algebra to cover the constant quantities in the ontology.
For instance, the interpreter could apply the operators on
the scalar magnitude of dimensionally compatible quantities
whose units have been reconciled. We do not wish to dwell
further into this implementation issue at this stage.

4.3.3 Result of Function Quantity
The result of a grounded function quantity is a constant
quantity, whose magnitude and dimension are same as that
of the function quantity. Even a pure scalar result can be
viewed as a constant quantity whose magnitude is scalar
and its physical dimension is termed as ‘dimensionless’. The
dimension of a function quantity is only defined generically.
An instance of a function quantity will however use one of
the prescribed units associated with its dimension type.

4.4 Dynamic Mathematical Relations in On-
tologies

We want to deal with both static and dynamic mathematical
relations in the ontology. A static relation is a permanent
relationship that exist between conceptual terms in all in-
stantiated model (read ‘experimental analysis description’)

of the EHEP domain. An example is the relation describing
Transverse Momentum function quantity, which is always
composed from Momentum-X and Momentum-Y constant
quantities. In other words, the parameters of function quan-
tity denoting a static relation are fixed.

On the other hand, a dynamic relationship between con-
cepts is coerced specifically for a particular use or purpose.
An example is the relation described by Fisher Discrimi-
nant function quantity, which combines a set of correlated
event-variables. Different event selection analysis entails dif-
ferent sets of correlated event-variables. Therefore, the set
of event-variables combined by Fisher Discriminant varies
from one instantiated model to another. Although the in-
tension of this function quantity is fixed, its parameters are
not.

Function quantities to find the difference or the sum of any
two quantities also fall under the category of dynamic math-
ematical relations. In here, the number of parameters is
fixed, but their types can vary. For instance, the quantity
sum of two mass quantities is not same as the quantity sum
of two momentum quantities, as they have dissimilar dimen-
sions.

This paper mainly discusses on the representation of the
static relations. We think it is possible to extend the exist-
ing framework to handle dynamic relations in the ontology.
An alternative is to define a dynamic mathematical relation
as an ‘abstract’ function quantity, still ungrounded in the
ontology. The intension of this function quantity will be
described in terms of physical quantities (that is, the type
of the argument is PhysicalQuantity, instead of Constan-
tQuantity). Subsequently, a specialised form of this function
quantity can be derived from its abstract definition, to suit
a specific need. The specialised function quantity will assign
appropriate interpretation of the mathematical relation by
specifying the exact parameters and characteristics of the
resulting quantity. This idea is still under consolidation.

5. CONCLUSION
This EHEP ontology should provide the necessary repre-
sentational vocabulary to facilitate the scientific community
to collaborate effectively on the semantic web. One concern
however is due to the limitations of web-ontology languages,
which disallow the direct representation of mathematical re-
lations in ontologies. The existing web-ontology languages
falter when the need to specify metaclasses, n-ary relations
and functions arises. They also lack the necessary episte-
mological and arithmetic primitives to explicitly represent
algebraic expressions involving domain terms.

This paper highlights the additional vocabulary and lan-
guage features required to deal with mathematical relations
in web-ontology. Future web-ontology languages may offer
a richer set of primitives to express complex relationships
among entities. Until such time, our approach recommends
the use of implicitly defined metadata to partly describe the
meaning of the mathematical relations in web-ontology.

6. ACKNOWLEDGMENTS
We are grateful to Glenn Moloney and Lyle Winton of the
Physics department for providing insights into EHEP exper-

imental analysis. We also thank the members of the Intel-
ligent Agent Laboratory at the University of Melbourne for
their helpful comments.

7. REFERENCES
[1] M. Annamalai, L. Sterling, and G. Moloney. A

collaborative framework for distributed scientific
groups. In S. Cranefield, S. Willmott, and T. Finin,
editors, Proceedings of AAMAS’02 Workshop on
Ontologies in Agent Systems, Bologna, Italy, 2002.

[2] F. Baadar and W. Nutt. Basic description logics. In
F. Baadar, D. McGuiness, D. Nardi, and
P. Patel-Schneider, editors, Description Logic
Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2002.

[3] The Babar Physics Collaboration.
http://www.slac.stanford.edu/BFROOT/.

[4] The Belle Physics Collaboration.
http://belle.kek.jp/belle/.

[5] B. Chandrasekaran and J. R. Josephson. What are
ontologies, and why do we need them? IEEE
Intelligent Systems, pages 20–26, January/February
1999.

[6] J. C. Cleaveland. An Introduction to Data Types.
Addison-Wesley, 1986.

[7] The Cleo Physics Collaboration.
http://www.lns.cornell.edu/public/CLEO/.

[8] L. Cruz, M. Annamalai, and L. Sterling. Analysing
high-energy physics experiments. In B. Burg, J. Dale,
T. Finin, H. Nakashima, L. Padgham, C. Sierra, and
S. Willmott, editors, Proceedings of AAMAS’02
Workshop on AgentCities, Bologna, Italy, 2002.

[9] Cycorp. http://www.cyc.com/.

[10] D. Fensel, I. Horrocks, F. vanHarmelen,
D. McGuiness, and P. Patel-Schneider. Oil: Ontology
infrastructure to enable the semantic web. IEEE
Intelligent Systems, pages 38–45, March/April 2001.

[11] M. Genesereth and R. Fikes. Knowledge interchange
format. Technical Report Logic-92-1, Computer
Science Department, Stanford University, 1992.

[12] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H.
Gennari, S. W. Tu, and M. A. Musen. Knowledge
modeling at the millennium (the design and evolution
of Protege-2000). In Proceedings of KAW’99
Workshop on Knowledge Acquisition, Modelling and
Management, Banff, Alberta, 1999.

[13] T. Gruber. A translation approach to portable
ontologies. Knowledge Acquisition, 5(2):199–220, 1993.

[14] T. R. Gruber and G. R. Olsen. An ontology for
engineering mathematics. In J. Doyle, P. Torasso, and
E. Sandewall, editors, Proceedings of International
Conference on Principles of Knowledge Representation
and Reasoning. Morgan Kaufmann, 1994.

[15] M. Gruninger and M. S. Fox. Methodology for the
design and evaluation of ontologies. In Proceedings of
IJCAI’95 Workshop Basic Ontological Issues in
Knowledge Sharing. Montreal, Canada, 1995.

[16] N. Guarino. Ontologies and knowledge base: Towards
a terminological clarification. In N. Mars, editor,
Towards Very Large Knowledge: Knowledge Building
and Knowledge Sharing, pages 25–32. IOS Press,
Amsterdam, 1995.

[17] J. Hendler and D. McGuiness. The Darpa Agent
Mark up Language. IEEE Intelligent Systems, pages
67–73, November/December 2000.

[18] Mathematics Mark up Language.
http://www.w3.org/TR/MathML2/.

[19] Openmath Mark up Language.
http://monet.nag.co.uk/cocoon/openmath/index.html.

[20] Suggested Upper Merged Ontology.
http://ontology.teknowledge.com/.

[21] Victorian Partnership for Advanced Computing.
http://www.vpac.org/.

[22] EXtensible Mark up Language.
http://www.w3.org/XML/.

