
A UML ontology and derived content language for a travel
booking scenario

Stephen Cranefield, Jin Pan and Martin Purvis
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

scranefield@infoscience.otago.ac.nz

ABSTRACT
This paper illustrates an approach to combining the benefits of a
multi-agent system architecture with the use of industry-standard
modelling techniques using the Unified Modeling Language (UML).
Using a UML profile for ontology modelling, an ontology for travel
booking services is presented and the automatic derivation of an
object-oriented content language for this domain is described. This
content language is then used to encode example messages for a
simple travel booking scenario, and it is shown how this approach
to agent messaging allows messages to be created and analysed
using a convenient object-oriented application-specific application
programmer interface.

1. INTRODUCTION
This paper is a response to the challenge problem for the AAMAS
2003 Workshop on Ontologies in Agent Systems. The challenge
problem [1] was based on the description of a travel agent domain
previously developed for an ontology tool assessment exercise or-
ganised by the Special Interest Group on Enterprise-Standard On-
tology Environments within the European Union’s OntoWeb re-
search network [2]. The OAS’03 challenge was to “describe the
design and (preferably) an implementation of a multi-agent system
in that domain” with emphasis on “the ways in which ontological
information is referenced, accessed and used by agents”.

In this paper we illustrate the application of our previous work on
the use of the Unified Modeling Language (UML) for ontology
and content language modelling [3] and the automatic generation
of Java classes from these models [4]. This work rests on four ob-
servations:

� The Unified Modeling Language is a widely known and stan-
dardised modelling language with a compact graphical nota-
tion, an XML-based serialisation format, and a lot of existing
tool support. We believe that the use of UML for ontology
modelling has great benefits in terms of industry acceptance
of agent technology. Its principal weakness is the lack of (of-
ficial) formal semantics, but we believe that ongoing efforts
in this direction will remove this shortcoming.

� Much current software development is done using the Java
programming language, and the majority of widely used agent
development tools are based on Java. Programmers using
these tools are most familiar with the use of object-oriented
representations and application programmer interfaces (APIs).

Internet
Serialized knowledge

Domain

knowledge

Instance

knowledge

Schema

in terms of

in UML in UML

.. {

 ...(.) {

 }

}

Java classes Java objects

<....>

 <....>

 <...>

 <.>

<..>

RDF

Figure 1: Overview of our approach

� The use of object-oriented structures to refer to domain ob-
jects within messages is convenient, but must be restricted
to precise well understood usages in order to avoid semantic
problems. [5].

� Multi-agent systems must coexist and interact with other dis-
tributed systems (both technological and human). These other
systems have existing techniques for referring to domain ob-
jects using reference schemes such as World Wide Web Uni-
form Resource Identifiers (URIs). This style of reference
goes beyond the notion of “standard names” (logical con-
stants that denote each domain object) that lie behind the se-
mantics of FIPA ACL’s ��������� communicative act, and
it is desirable to allow agents to use a more general notion of
object reference when answering queries.

These observations have led us to develop our UML-based model-
driven approach to implementing multi-agent systems. In Section 2
we give a brief overview of this approach, before presenting a sim-
ple UML travel booking ontology in Section 3, a discussion of the
automatically generated ontology-specific content language in Sec-
tion 4 and an illustration of its use in an agent application in Sec-
tion 5. The paper closes with some comments on the applicability
of this techique and some areas for future work.

2. OVERVIEW OF OUR APPROACH
Figure 1 presents a schematic overview of our approach to design-
ing and implementing the message-handling component of agent
systems.

The designer of an agent must have a mental model of the con-
ceptual structure of the domain (the ontology) as well as an un-
derstanding of the structure of information describing instances of
these concepts and their relationships. We believe the graphical
nature of UML makes it a powerful tool for visualising these mod-
els: an ontology can be represented by a UML class diagram and
instance information can be conveyed as a UML object diagram
that shows the values of object attributes and the links (instances of
associations) that exist between objects.

When creating the agent application, the programmer must trans-
late these mental models into structures that can be manipulated
within a programming language. When using Java, the natural
counterpart to a concept in an ontology is a Java class. Although
other representations can be used, such as string-based encodings
of languages defined by grammars, the most convenient represen-
tation for a Java programmer is to have Java classes corresponding
directly to the concepts that the agent will need to refer to when
manipulating information about the world. To make this possible,
we have defined XSLT [6] stylesheets that produce Java class def-
initions from an XMI [7] serialisation of a UML model (currently
we support XMI 1.0 for UML 1.3) [4].

As agents need to communicate information about the world, it is
beneficial to provide a straightforward mapping from the progam-
mer’s model of the domain (inter-related Java objects in our case)
and the content language used to encode information within mes-
sages. However, standard agent content languages such as FIPA
SL and KIF use a string-based logical representation. These are
also generic and weakly typed languages in which domain con-
cepts can only be referred to by name, rather than by more stongly
typed mechanisms such as instantiation, and thus messages that do
not conform to the agent’s known ontologies can only be detected
by run-time analysis. As an alternative to this approach, our Java
classes generated from the ontology have a built-in serialisation
mechanism that allows networks of inter-related objects describing
domain objects to be included within messages. The serialisation
uses the XML encoding of the Resource Description Framework
(RDF) [8], which makes reference to concepts defined in an RDF
schema that is also generated automatically from the ontology in
UML [9].

This mechanism can also be used to serialise entire messages, in-
cluding the outer agent communication language (ACL) layer. By
defining the ACL in UML as well, and defining a set of UML
‘marker’ interfaces representing the concepts (such as predicate
and action description) that comprise the required argument types
for the ACL’s various communicative acts, it is possible to concep-
tualise messages with arbitrary content languages (if modelled in
UML) as object diagrams (see Figures 5 and 6 later in the paper).

Figure 2 illustrates how this technology can be integrated with a
Java-based agent platform, and highlights a crucial aspect that ad-
dresses the third observation from the introduction: the need for
careful use of object-oriented representations within messages. The
figure shows a number of UML models: an ontology (top left),
ACL and generic (i.e. SL-like) content language definitions, and
an ontology-specific content language (top right). The ACL and
the content languages are given as input to the XMI-to-Java trans-
formation, and this results in Java classes that provide an object-
oriented application programming interface that sits on top of the
platform’s built-in messaging system classes. However, the ontol-
ogy is not directly translated to Java classes. We regard an ontology

ACL

Ontology in UML Ontology-specific
content language

in UML

ACL in UML

Generic
content language

in UML

Agent Messaging System

Generic
CL

Ontology-
specific CL

Agent application

. . .

Java-based agent
platform

XSLT

XSLTXSLT

XSLT

(XMI to XMI)

(XMI to Java)(XMI to Java)

(XMI to Java)

Messages
serialized via

RDF/XML

Figure 2: Integration with an agent platform

as a model of the problem domain, not as a model of the language
used to encode information about the domain. In other words, an
instance of an ontological class �	
 would be an actual dog, not
a description of a dog. When a structured expression correspond-
ing to the structure of the �	
 class appears within a message, this
cannot be taken to be playing the role of a logical term (which al-
ways has a unique denotation), but instead might (depending on the
context) play the role of a proposition (stating that an object with
the specified properties exists) or an identifying reference expres-
sion (a reference to a possibly non-existent or non-unique object
by describing its attribute values) [5, 3].

To avoid any confusion between the notions of ontology and con-
tent language, we provide the facility to use domain-specific object-
oriented expressions within messages by generating from the on-
tology a UML model representing a specialised ontology-specific
content language. From this, Java classes can be generated as for
the ACL and generic content languages models. The generated
ontology-specific content language for the travel booking domain
is described in Section 4 and its use to create messages is illustrated
in Section 5.

3. A TRAVEL BOOKING ONTOLOGY IN
UML

Figure 3 shows a simple ontology in UML for the travel booking
scenario. This uses two stereotypes, �resourceType� and �value-
Type� from a UML profile for ontology modelling that has been
presented previously [3]. A resource type is a type of class for
which the instances have an intrinsic identity, i.e. two instances
with the same attribute values can be distinguished from each other.
There is a possibility that an object of that class might be referred
to using an identifier such as a unique name in some naming sys-
tem, a UUID, or a World Wide Web Uniform Resource Identifier
(URI). The semantics of the stereotype declare that the class has an
additional optional association with a class representing some type
of reference (e.g. the concept of a URI). This type is declared using
a tagged value in the resource type class declaration, but this fea-
ture will not be used in this paper. The resource types in the travel
booking ontology are ���
	���, �	����
�
�	�, and ����� and
its subclasses �	
��, ��
� and ����	�
.

<<valueType>>

Journey

<<valueType>>

TravelComponent

startDate : Date

endDate : Date

description : String

<<valueType>>

Stay

<<valueType>>

AirJourney

<<resourceType>>

Place

name : String

subPlace-superPlace

relationship is transitive

Only one of the associations

or the description attribute

can be instantiated at once

<<valueType>>

FlightSegment

airline : String

flightCode : String

depTime : DateTime

arrTime : DateTime

<<resourceType>>

Airport

code : String

'from' and 'to' have the same

values (respectively) as 'from'

of the first segment and 'to' of

the last segment.

Also, the 'depTime' and

'arrTime' attributes of the

segments respect the ordering

of the segments

Only one of the associations

or the description attribute

can be instantiated at once

All attributes have

multiplicity 0..1

<<resourceType>>

Hotel

address : String

<<resourceType>>

Customer

name : String

<<resourceType>>

Consultation

startDate : Date

status : String

<<resourceType>>

City

<<valueType>>

Itinerary

0..*

0..1

from

0..*

0..1

0..*

0..1

to

0..*

subPlace

0..*

superPlace

0..*

0..1

0..*

to

0..*

from

1..*

{ordered}

0..*

1..*

requirement

{ordered}

1..*

0..1

Figure 3: A travel booking ontology

A value type is a class with the opposite property: two instances
with the same attribute values cannot be distingushed. Essentially
it defines a type for (potentially complex) structured values that can
be treated as logical terms within messages. Although there may be
concepts included in an ontology which intrinsically seem to have
this property, in many other cases the labelling of a class as a value
type is a pragmatic decision about how instances of that type will
be treated during inter-agent communication. It is a declaration
that the Semantic Web principle that anything can be referred to
using a URI will not be applied to instances of this class. Agents
can expect to receive values of these types explicitly within mes-
sages, rather than have them referenced using URIs or other refer-
ence types. Also, they do not need to include mechanisms to keep
track of references for those types. For example, in the ontology
shown, the �
������� class is declared to be a value type. Neither
party in a travel booking conversation needs to be prepared to store
references associated with itineraries, whereas it is expected that
customers and consultations may be referred to by ID codes. This
does not mean that an agent cannot make a query about an existing
itinerary, but it must be done indirectly, e.g. by using an identifying
reference expression that means “the itinerary associated with the
consultation beginning on 15 July 2003 for the customer with code
C05321”.

The ontology defines a class �������	��	���
 which represents
both customer requirements and the proposed components of an
itinerary returned by the travel agent. This dual use is achieved by
defining the attributes of the �������	��	���
 class and the as-
sociations of its subclasses �
��, �	����� and ����	����� to be
optional. A requirement can then be vaguely specified by providing
only some of the possible information about a travel component.
In an extreme case, only a value for the �������
�	� string at-
tribute might be provided (although this paper does not attempt to
explain how a software agent might understand a textual descrip-
tion of the customer’s requirements). For a travel component that
is associated with an itinerary, it is expected that all information
is provided, with the possible exception of the �������
�	� at-
tribute (this constraint could be included in the ontology, but is not
modelled at present). Note that a consultation object may be linked
directly with travel components representing the customer require-
ments as well as indirectly with other, different, travel component
objects via an itinerary. The latter represent the final bookings.

The ontology includes a number of constraints presented as notes
in dog-eared rectangles. These could be defined in more detail us-
ing the UML’s Object Constraint Language, but are shown here
in English for clarity. It is not intended that these constraints be
used for inference in the current design—rather they serve as part
of the specification for the correct implementation of agents using
this ontology.

The ontology is not intended to be a complete model of the travel
booking domain. It does not include many concepts needed for a
realistic account (including the cost for a given itinerary). Also,
to keep the model simple it does not use some features of UML
that could provide a better model, such as the definition of an enu-
merated type defining a set of allowed values for the �	�����
�	�
class’s �
�
�� attribute. For simplicity we regard the types �
���
,
��
� and ��
����� as being ‘built in’ primitive types in our UML
profile which are handled specially during the generation of Java
classes.

Ontology-
Specific CL

«valueType»
AirJourney

«resourceType»
City

Ontology

AirJourney

City

CityPattern

CL::ValueTerm

CL::Proposition

«derive»

«derive»

«derive»

ACL
SL

OOCL

 boundVarName : String

OODefDescription

CL::DefDescription

 varName : String [0..1]
 constraint : String [0..1]

PatternNode root

1 1

AirJourneyPattern«derive»

AirJourneyDescription CL::IRE

CityDescription CL::IRE

«derive»

«derive»

CL

Figure 4: Derived classes in an ontology-specific content lan-
guage

4. THE ONTOLOGY-SPECIFIC CONTENT
LANGUAGE

Figure 4 presents an overview of the classes that are generated from
the ontology to form the ontology-specific content language. The
UML package in the middle of the diagram (“Ontology-Specific
CL”) contains the generated classes. This also includes classes
from two other packages: SL (a UML model of a generic content
language based on FIPA SL) and ACL (a UML model of a FIPA-
style agent communication language). The inclusion of these addi-
tional classes allows complex statements to be formed using con-
nectives from the SL language and also the use of ACL expressions
to represent communicative actions (the details of this are beyond
the scope of this paper). The CL package contains the set of marker
interfaces that represent the generic types of expression that content
languages are designed to describe (such as propositions and action
descriptions). There is also a package OOCL shown. This defines
some support classes used to create identifying reference expres-
sions as networks of inter-connected “pattern nodes”. These pat-
tern node networks are used to describe an object by its properties
and (possibly complex) inter-relationships with other objects.

To illustrate the nature of the derived classes in the ontology-specific
content language we show the classes that correspond to two partic-
ular classes in the ontology: one that is a value type (����	�����)
and one that is a resource type (��
�). Each of these classes re-
sults in three generated classes in the ontology-specific content lan-
guage. (Note that the dashed arrows labelled �derive� are UML
dependencies, so they are directed from each derived class back to
the one it depends on.)

As discussed in Section 3, an instance of a valuetype can be treated
as a logical term within a content language, and so a correspond-
ing class with the same name and structure (e.g. ����	�����) is
generated and declared to implement the ���� �������� inter-
face. Some associations between ����	����� and other classes
may need to be modified when translated to the new content lan-

guage, e.g. a reference to a resource type must be replaced by a
reference to a derived . . .�������
�	� class for that resource type
(this type of class is discussed below). However, the details of the
mapping rules for value types and for resource types are beyond the
scope of this paper.

An agent might also want to refer to a value type instance using
an identifying reference expression. Therefore, for each value type
class there are two corresponding generated classes that can be used
for this purpose: a simple . . .�������
�	� class and a more com-
plex . . .��

��� class. The description class (e.g. ����	�����
�������
�	�) implements the interface �����!" to show that that
this can be used as an identifying reference expression (in particu-
lar, as a definite description—the only type of IRE currently sup-
ported). Under the mapping, all attributes and associations become
optional because (for example) although an air journey in real life
must necessarily have at least one flight segment, it is possible to
refer to an air journey simply by specifying its date or departure
and arrival cities.

The . . .��

��� class is the same as the . . .�������
�	� class,
except it also extends the class ##������

���$	�� and any as-
sociation with another class must be changed to be an association
with the appropriate . . .��

��� class. The use of this type of class
is illustrated in Figure 5 (which is discussed later in the paper).

For resource type classes, there can be no derived class that im-
plements the ���� �������� interface as it is not semantically
meaningful to embed instances of that type within a message1.
Instead, corresponding . . .�������
�	� and . . .��

��� classes
are generated, as for value types. In addition, a class implement-
ing ������	�	��
�	� is generated in order to allow a convenient
object-oriented form of proposition about objects to be used within
messages. For this generated class, all attributes and associations
become optional.

Further details of this approach to generating ontology-specific con-
tent languages can be found elsewhere [3], although the presenta-
tion here takes account of some subsequent minor updates to that
previous work.

5. USING THE GENERATED CONTENT
LANGUAGE

In this section we illustrate the use of an ontology-specific con-
tent language generated from the travel booking ontology. Fig-
ures 5 and 6 show UML object diagrams representing (respectively)
query and response messages in a conversation between a customer
and a travel booking agent. The query is an instance of the class
%����!�� (predefined in the ACL package). This corresponds to
the FIPA ��������� message type which represents a question
asking another agent to identify an entity that satisfies particular
properties. The content part of the message (represented by a link
from the %����!�� object in Figure 5) is a instance of the class
##����������
�	� shown at the bottom of Figure 4. This class
represents an object-oriented version of the �	
� binding operator
from FIPA SL. It has an attribute &	��� ��$��� representing a
variable name to be used to refer to the subject of the ���������.
This object is then linked to a network of typed pattern nodes, each
of which describes some object in terms of its attributes and rela-

�We would argue that even electronic entities such as instances of
electronic currency are best regarded as external objects that agents
refer to using references.

tionships with other objects. One of these pattern nodes is expected
to have a ���$��� attribute value matching the &	��� ��$���

value of the ##����������
�	� object. The other nodes may also
have variable names specified, and these may be referred to within
Object Constraint Language expressions appearing as the values of
the optional �	��
����
 attribute of other nodes (this feature is
not used in Figure 4). The message in the figure represents the
following query:

Given a customer named Stephen Cranefield having a consultation
with the requirements of flying from Dunedin to Melbourne on 14
July 2003 and needing accommodation there from the 14th until the
19th, what is the associated itinerary? (For simplicity, we assume
our hero wishes to remain uncommitted after the 19th).

Figure 6 shows a UML object diagram representing a possible reply
to this request. The message is an instance of the ���	��!�� class
from the ACL package. This is a structured version of FIPA ACL’s
���	������ message type with two content expressions: a definite
description (generally this will be the one that was included in the
preceding ���������) and an expression that identifies the entity
that satisfies the query—this may be a value of a primitive type or
a value type, a reference to an object (e.g. a URI), or another, hope-
fully more detailed, definite description. In the case of Figure 6, the
definite description (not depicted in full) is the same as the one con-
tained in the query message, with two additional links that provide
references for the customer and the consultation objects.

The bottom part of Figure 6 represents the answer to the query
and contains an instance of the �
������� value type that com-
prises fully detailed value type instances for the air journey and the
stay. The details about the hotel, airports and cities are encoded by
links to . . .�������
�	� objects, which describe those external in-
stances of resource types in terms of their attribute values and some
required relationships between the objects.

Note that these diagrams conceptualise the messages as UML ob-
ject diagrams. As shown in Figure 1, the messages are physi-
cally realised as Java objects within the agent at run time and as
RDF documents when being transported between agents. The Java
classes are generated using an XSLT stylesheet [4] and they include
code that handles the marshalling and unmarshalling of messages
between the in-memory Java representation and the RDF serialisa-
tion format [9].

Figure 7 shows an example of how the query message can be cre-
ated and sent from Java code, using the generated classes for the
ACL and the content language (this is based on a simplication of
the ACL model presented previously [3]).

There is no doubt that using this object-oriented API to construct
messages is far more cumbersome for the programmer than writ-
ing a string in FIPA SL. However, it is likely that most messages
will be constructed dynamically within code rather than by a static
sequence of Java statements as shown in the figure. This approach
also has the benefits of being strongly typed and model-driven: sup-
port for new ACLs and content languages can quickly be provided
once they have been defined using UML. Furthermore, any disad-
vantages for the creation of messages are balanced by advantages
in the analysis of incoming messages: it is much easier to exam-
ine a message using its object structure than by performing string
matching operations.

varName = <no value>
constraint = <no value>

 : CustomerPattern
root

value = "Stephen Cranefield"
varName = <no value>
constraint = <no value>

 : StringPattern
name

boundVarName = "i"

 : OODefDescription

varName = <no value>
constraint = <no value>

 : ConsultationPattern

varName = "i"
constraint = <no value>

 : ItineraryPattern

startDate = 2003-07-14
endDate = 2003-07-14
description = ...
varName = <no value>
constraint = <no value>

 : AirJourneyPattern

startDate = 2003-07-14
endDate = 2003-07-19
description = ...
varName = <no value>
constraint = <no value>

 : StayPattern

requirement

requirement

name = "Dunedin"
varName = <no value>
constraint = <no value>

 : PlacePattern

name = "Melbourne"
varName = <no value>
constraint = <no value>

 : PlacePattern

from

to

place

 : QueryRef
Links representing other ACL message
components (e.g. sender and receiver)

have been omitted.

Figure 5: A travel booking request message

6. CONCLUSION
This paper has addressed the OAS’03 workshop challenge prob-
lem by illustrating the application of our UML-based model-driven
approach to defining ontologies and then automatically generating
related ontology-specific content languages along with correspond-
ing Java classes and an RDF-based serialisation mechanism. We
believe this approach has strong benefits for the software engineer-
ing task of designing and implementing agents to peform particular
tasks in a given domain. Our work does not currently provide sup-
port for the construction of agents that are expected to have more
general abilities, where inference may be required in order to deter-
mine how to respond to messages (although inference mechanisms
based on object networks could be developed).

This technique is being incorporated into the Opal FIPA-compliant
agent platform developed at the University of Otago.

An important avenue for future work is the enhancement of the API
offered to programmers for constructing messages by providing a
larger range of constructors in the generated classes. It would also
be highly desirable to develop a technique for annotating the UML
definition of ACLs and content languages with information that de-
scribes a concrete string-based syntax in such a way that parsers
for this language can be generated automatically. This will allow
interoperation with traditional FIPA agent platforms and will also
give programmers the option of using the string-based syntax for
creating messages within agent application code.

7. REFERENCES
[1] OAS 2003 Committee. OAS’03 challenge problem.

http://oas.otago.ac.nz/OAS2003/Challenge/challenge.html,
2003.

[2] OntoWeb project. Project Web pages.
http://www.ontoweb.org, 2003.

[3] S. Cranefield and M. Purvis. A UML profile and mapping for
the generation of ontology-specific content languages.
Knowledge Engineering Review, 17(1):21–39, 2002.

[4] S. Cranefield, M. Nowostawski, and M. Purvis. Implementing
agent communication languages directly from UML
specifications. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2002), volume 2, pages 553–554. ACM Press, 2002.

[5] Stephen Cranefield and Martin Purvis. Referencing objects in
FIPA SL: An analysis and proposal. In Proceedings of the
Workshop on Agentcities: Challenges in open agent
environments, 2nd International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2003),
2003.

[6] XSL transformations (XSLT) version 1.0. World Wide Web
Consortium Web page, 2003. http://www.w3.org/TR/xslt.

[7] XML metadata interchange specifications. Object
Management Group, 2003. http://www.omg.org/technology/
documents/modeling spec catalog.htm#XMI.

[8] Resource Description Framework. World Wide Web
Consortium Web page, 2003. http://www.w3.org/RDF/.

[9] S. Cranefield. UML and the Semantic Web. In I. Cruz,
S. Decker, J. Euzenat, and D. McGuiness, editors, The
emerging Semantic Web, pages 3–20. IOS Press, Amsterdam,
2002.

varName = <no value>
constraint = <no value>

 : CustomerPattern
value = "C03412"
varName = <no value>
constraint = <no value>

 : StringPattern
ref

varName = <no value>
constraint = <no value>

 : ConsultationPattern
value = "JS218"
varName = <no value>
constraint = <no value>

 : StringPattern
ref

 : InformRef
Links representing other ACL message
components (e.g. sender and receiver)

have been omitted.

boundVarName

 : OODefDescription
root

Definite description
subtree the same

as in the QueryRef
message, with the
addition of the two

'ref' links shown here

defDescription

Itinerary

startDate = 2003-07-14
endDate = 2003-07-14
description = <no value>

 : AirJourney

startDate = 2003-07-14
endDate = 2003-07-19
description = <no value>

 : Stay

name = "Mercure"
address = "..."

 : HotelDescription

airline = "Air New Zealand"
flightCode = ...
depTime = ...
arrTime = ...

 : FlightSegment

name = "Melbourne ..."
code = "MEL"

 : AirportDescription

name = "Dunedin ..."
code = "DUD"

 : AirportDescription
name = "Christchurch ..."
code = "CHC"

 : AirportDescription

airline = "Air New Zealand"
flightCode = ...
depTime = ...
arrTime = ...

 : FlightSegment

name = "Melbourne"

 : CityDescription

refOrValue { ordered }

{ ordered }

name = "Dunedin"

 : CityDescription

to
from

subPlace

superPlace

subPlace

superPlace

subPlace

superPlace

from to tofrom

Figure 6: A reponse message from the travel booking agent

// Construct query structure containing variable i
CustomerPattern cust = new CustomerPattern();
ConsultationPattern cons = new ConsultationPattern();
ItineraryPattern itin = new ItineraryPattern();
StringPattern custName = new StringPattern();
AirJourney journ = new AirJourney();
Stay stay = new Stay();
Date monday = new Date(2003, 7, 14);
Date saturday = new Date(2003, 7, 19);
PlacePattern dunedin = new PlacePattern();
PlacePattern melbourne = new PlacePattern();
custName.setValue("Stephen Cranefield");
cust.setName(custName);
dunedin.setName("Dunedin");
melbourne.setName("Melbourne");
journ.setStartDate(monday);
journ.setEndDate(monday);
journ.setFrom(dunedin);
journ.setTo(melbourne);
stay.setStartDate(monday);
stay.setEndDate(saturday);
stay.setPlace(melbourne);
itin.setVarName("i");
Set reqs = new HashSet(); reqs.add(journ); reqs.add(stay)
cons.setRequirement(reqs);
cons.setItinerary(itin);
// Construct message object
Message m = new QueryRef(new AgentRef("agent1"), // Sender

// Recipients:
Collections.singleton(new AgentRef("agent2")),
// Content:
new OODefDescription("i", patternNetwork));

// Send message
m.send();

Figure 7: Using the generated Java code to create and serialise a message

