
An Initial Response to the OAS’03 Challenge Problem
Ian Dickinson

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford

Bristol BS34 8QZ
U.K.

ian.dickinson@hp.com

Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool L69 7ZF

U.K.

m.j.wooldridge@csc.liv.ac.uk

ABSTRACT
We present our initial response to the OAS '03 Challenge
Problem. The Challenge Problem proposes an agent-assisted
travel scenario, and asks what the role of ontologies would be to
support the agent's activity. We discuss a belief-desire-intention
(BDI) approach to the problem using our Nuin agent platform,
and illustrate various ways in which ontology reasoning
supports BDI-oriented problem solving and communications by
the agents in the system.

Keywords
Agent applications, BDI agents, Ontology, Semantic web

1. INTRODUCTION
The call for papers for the AAMAS ’03 workshop on
Ontologies and Agent Systems (OAS’03) includes a challenge
problem, adapted from an exercise by the OntoWeb project to
assess different ontology environments. The challenge problem
outlines a set of objectives for an agent-assisted travel planning
system, in which an agent-based travel agent must co-operate
with other agents to book a trip for a human client.
We have been investigating the design and development of
belief-desire-intention (BDI) [16] agents for use in the Semantic
Web [6]. One outcome of this research is a BDI agent platform,
Nuin, which has been designed ab initio to work with Semantic
Web information sources. At the time of writing, Nuin is still a
work in progress. Nevertheless, we have investigated how key
parts of the OAS challenge problem would be addressed by our
platform.

This paper reviews the salient features of the Challenge
Problem, in the context of a BDI agent. We briefly review some
of the characteristics of the Nuin platform, before presenting a
series of vignettes that show how we address some of the
challenges in the Challenge Problem. As it represents a rich and
plausible scenario, we are continuing development of a
complete solution to the Challenge Problem using the Nuin
platform.

2. OUTLINE PROBLEM
The scenario for the Challenge Problem is based on a travel
agent in New York, for which we are asked to develop an
agent-based application. The travel agency’s clients come to
make bookings for trips they wish to take, and the agency is
responsible for making reservations with various travel service
providers (airlines, hotels, train companies, etc) to satisfy the
client’s needs. The Challenge Problem description gives a rich
description of the kinds of knowledge possessed by various
players in the scenario, from which we distil the following
principal objectives and assumptions:

1. Clients come to the travel agency with more-or-less
specific objectives for their trip, for example a

departure date and destination, a tourist attraction to
visit or an academic conference to attend.

2. Clients have individual preferences about many
aspects of the travel services that may be booked,
including dietary choice, smoking/non-smoking, cost,
comfort level, choice of provider, etc.

3. The travel agency does not posses the data to arrange
trips or trip segments, but must request this
information from other agents. For simplicity in
building the model, we assume that the travel agency
does know the identities of the supplier agents (a more
realistic interpretation would be to require that the
agency contacts suppliers through a brokerage or
advertising service).

4. Requests from the travel agency to the suppliers may
be made at varying levels of specificity (for example
“a flight from Washington to London” vs. “a seat on
BA1234 from Washington to London”).

5. Interaction with the suppliers will produce multiple
potential solutions to the client’s initial request.
Priority should be given to solutions that match the
clients’ preferences, noting that the preferences may
not be unambiguously consistent.

6. Solutions may specify constraints that are not relevant
to the client (“no dogs in the hotel”), or may be of
unknown relevance.

The vocabularies used by different suppliers and the travel
agency may vary – for example, one may use kilometres while
another uses miles.

2.1 Issues from the challenge problem
From the distilled problem statement, we highlight the
following challenges for agents to address in this scenario.
Note: this is not intended to be an exhaustive list.

• modelling the motivations and attitudes of the actors –
there are a number of actors in the scenario, and we
assume each to be predominantly self-interested. The
BDI model accounts for the mental attitudes of a given
agent, but to correctly represent the scenario, the travel
agency agent, for example, must also account for at
least the goals and preferences of the user. We do not
assume that user preferences can, in practice, be
reduced to a utility function.

• ownership and responsibility – arguably, the
motivations of the travel agency itself should be
accounted for. For example, should the agent
recommend suppliers that have high commission rates
for agency, even if the utility to the client is neutral or
reduced? Should the agent explicitly model its contract
to the client and the travel agency?

• reconciling vocabularies – different agents or services
will use different vocabularies, for the same or

overlapping concepts. A simple example is the use of
miles and kilometres for distance, but other examples
will be more subtle or complex.

• varying degrees of detail in queries – at different stages
in the trip design process, queries will have differing
degrees of specificity. For example, “is it possible to
take a train from London to Paris”, compared to “when
would a train departing Waterloo at around 10:00 on
the 27th arrive in Paris?”

• checking solutions for acceptability – testing for basic
feasibility, including such constraints as not being in
two separate vehicles at the same time

• ranking and critiquing candidate solutions – given that
more than one possible solution exists, the user’s
preferences should be used to rank the solutions. This
is likely to be needed incrementally, to control the
growth of the search space.

• choosing which constraints to relax during negotiation
– if a good solution is not available with the current
constraints, it may be that relaxing some of them will
yield an acceptable solution. For example, a three star
hotel might have to be used to keep the cost within the
client’s budget.

• choosing when to ask the client to resolve choices or
provide more preference constraints – this involves
managing the dialogue with the client to neither
require them to ‘brain-dump’ their entire preference set
at the beginning, nor to be barraged with low-level
questions.

Not all of these issues are addressed by the use of ontologies,
though it would seem that the use of an ontology representation
has some impact on the solutions to most, if not all, of them.

3. OVERVIEW OF THE NUIN
PLATFORM
Nuin [9] is an agent platform we have created to assist agent
designers to program deliberative agents, with a particular
emphasis on BDI [16] agents. Nuin is founded on Rao’s
AgentSpeak(L) [15], and extended to make a practical, Java™-
based programming tool. In this section, we briefly introduce
some of the key features of Nuin, in order to provide some
background for the solution vignettes in section 4.
A key objective in developing Nuin was to create a flexible
platform for building practical agents from high-level
abstractions, such as beliefs, desires, intentions and plans. The
emphasis has not been on building agent infrastructure services:
we assume the existence of an underlying services architecture,
and Nuin provides a services abstraction layer that allows to
bind to a particular service fabric, for example the Jade agent
platform [5]. Nuin’s architecture is influenced by the FIPA
abstract architecture [12], in order to better utilise existing agent
infrastructure projects. We do not, however, assume that Nuin
will operate only in an FIPA environment.

Figure 1: Outline Nuin architecture

As figure 1 shows, each Nuin agent has an interpreter, which
runs one or more scripts to provide the agent behaviour. An
agent also has a set of beliefs, as first-order sentences, and any
number of other knowledge sources, each of which is labelled
by a distinct symbol. A knowledge source can be wrapped by
one or more reasoners, which provide additional services over
the storage and retrieval of asserted sentences. Backwards-
chaining reasoners attempt to solve queries that they are given,
in essence by building a proof tree. Forwards-chaining
reasoners opportunistically assert additional entailments when
formulae are asserted into the knowledge store.

The key abstraction in defining an agent’s behaviour is the plan.
Following AgentSpeak(L), a plan has one or both of: a
triggering event condition or a logical postcondition. Internal
control flow within the agent is managed by a queue of events,
which can be exogenous or endogenous, and include messages
from other agents as a sub-type. A triggering condition is a
Boolean expression formed from two predicates over events:
on(E) is true when E unifies with the current event at the
head of the event queue, whereas after(E) is true when E
unifies with an event from the agent’s memory of past events.
The body of a plan is a set of individual actions, composed with
either a sequence operator (;) or a non-deterministic choice (|).
Plans may invoke other sub-plans directly or by post-condition,
and may recurse.
Currently, a plan library is supplied to the agent as part of its
script. However, there is no a priori reason why the plans could
not be dynamically generated by an online planner, and this is a
capability we intend to add in the future.
All of the abstractions shown in figure 1 are specified using
Java interfaces, and created using the design pattern Factory
Pattern. This makes it very easy for a programmer to provide a
customised variant of a particular part of the system. This
flexibility and extensibility was a key design goal for the
platform. The configuration of the agent is specified as an RDF
document, the URL of which is passed to the agent as a start-up
parameter.
Given that we want to develop agents for the Semantic Web, we
allow RDF stores as knowledge sources, using Jena [13]. In
addition, all internal symbols are URI’s. Jena’s ontology
reasoners are used to extend the entailments in the RDF stores,
where OWL or DAML+OIL sources are available.
The next section illustrates the use of Nuin in a series of
vignettes addressing some of the challenges outlined in section
2.1. Note that the script syntax illustrated is also a configurable
aspect of our platform. The encoding illustrated is NuinScript,

but this is only one possible syntax that can parse into the
internal abstract syntax form. An XML encoding is also
planned.

4. SOLUTION EXAMPLES USING NUIN
4.1 Preamble: use of ontologies
In the challenge problem description, a sample ontology for this
domain is provided by Corcho et al [7]. We decided to create
our own ontology, although it shares some characteristics with
that of Corcho and colleagues. Our ontology is written in
DAML+OIL [2], which allows us to use richer constructs than
that in the sample ontology. For example, figure 2 shows a 5-
star hotel in our formulation:

<daml:Class rdf:ID="QualityRating">
 <daml:oneOf rdf:parseType="daml:collection">
 <travel1:QualityRating rdf:about="#OneStar"/>
 <travel1:QualityRating rdf:about="#TwoStars"/>
 <travel1:QualityRating
rdf:about="#ThreeStars"/>
 <travel1:QualityRating
rdf:about="#FourStars"/>
 <travel1:QualityRating
rdf:about="#FiveStars"/>
 </daml:oneOf>
</daml:Class>

<daml:Class rdf:ID="FiveStarHotel">
 <rdfs:subClassOf rdf:resource="#Hotel"/>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#rating"/>
 <daml:hasValue rdf:resource="#FiveStars"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

Figure 2: DAML+OIL ontology fragment for five -star hotel
Compare this with the definition from the sample ontology
(slightly abbreviated):

<rdfs:Class rdf:ID=”hotel5star”>
 <rdfs:comment>First class hotel</rdfs:comment>
 <rdfs:subClassOf rdf:ID=”#hotel” />
 <NS0:numberOfStars>5</NS0:numberOfStars>
</rdfs:Class>

Figure 3: RDFS fragment from OAS'03 call for papers
RDFS does not have the machinery to declare that quality
ratings may have exactly one of one, two, three, four or five as
values. Nor is it possible to infer in RDFS that having a five-
star rating and being a hotel entails being in the class
FiveStarHotel. In the sample RDFS ontology, membership of
this class must be stated explicitly. Finally, we note that the
RDFS ontology requires class ‘hotel5star’ to be treated as an
instance, since the class itself is the subject of the statement
‘numberOfStars 5’. Looking ahead, we intend to switch to
using OWL [8] as our ontology language 1. The use of classes as
instances necessarily places the hotel5star construct in the
OWL Full variant of that language, for which it is known that
inferencing is expensive and incomplete. Note that we have
chosen not to use cardinality restrictions to define hotel star-
classes. Consider this definition

1 The only reason we have not yet adopted OWL is that tool

support is limited, partly because, at the time of writing, the
OWL specification is not yet complete. This situation is
improving rapidly, however, and we anticipate switching to
OWL very soon.

<daml:Class rdf:ID=”FourStarHotel”>
 <rdfs:subClassOf rdf:resource=”#Hotel” />
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource=”#hasStar” />
 <daml:cardinality rdf:value=”4” />
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

<Hotel rdf:about=”http://quite-nice.com”>
 <hasStar rdf:value=”*” />
 <hasStar rdf:value=”*” />
 <hasStar rdf:value=”*” />
 <hasStar rdf:value=”*” />
</Hotel>

Figure 4 Using cardinality restrictions as for hotel classes
Figure 4 suggests that the Quite-Nice hotel is a four star hotel,
but we cannot know this for certain. Given the open world
nature of the semantic web, we cannot be sure that we have
collected all of the relevant statements about URI
http://www.quite-nice.com – we may yet discover an
additional hasStar statement. We can only rule out the Three
Star and below classes.
Space does not permit a full explanation of our sample ontology
in this paper. Elements of the ontology will be introduced below
as needed. The full ontology is, however, available online at:
http://jena.hpl.hp.com/ontologies/travel1.

4.2 Initial client to agent communication
At the beginning of the process, the client’s basic goal to take a
trip of a certain form must be communicated to the agent. We
leave aside the machinery of the human-computer interface
(important though it is), to consider the process. The agent must
have access to two kinds of knowledge:

• the primary goal that initiated the travel request, and

• the client’s travel preferences

We assume that a message is delivered to the agent with the
first of these, and that the second can be queried from a general
database of known preferences. Since we are interested in
Semantic Web agents, we assume that the client preference
information is available in at least RDF (if not DAML+OIL or
OWL).
What should the message contain? An important choice is
whether the agent is seen as a collaborative partner, or a
subordinate. In the second case, the message might be a FIPA
request message, which takes an action as parameter. The
action is essentially an encoding of “book a trip respecting these
constraints”. The agent would directly adopt an intention to
carry out the action. The first case would correspond to sending
a FIPA inform message 2 saying “the client has a goal to go on
a trip, with these constraints”. We would then rely on the agent
being programmed with social or behavioural rules that would
translate this recognition of the user’s goal into an intent of its
own to assist with the development of the travel plan. For the
scenario of a single client walking into the travel agency’s
office seeking to make a booking, the difference between these
two approaches is slim. Indeed, the collaborative approach adds
extra complexity that the directive approach avoids. However,
consider the often quoted desire for proactive behaviour in
agents. The recognition of the user’s goal may arise by
inference, rather than by a directive from the user. If the agent is

2 Note that the FIPA ACL specification [11] does not include a

performative that directly delegates a goal to another agent.

able to infer that the user has a goal to make a trip (e.g. by
having a paper accepted at a conference), it can proactively
instigate the travel planning process.
Both approaches are supported by Nuin. Figure 5 shows a plan
fragment3 that reacts to an incoming message that the user has a
goal to make a booking, and creates a suitable intent.

plan
 on message()
 {fipa:performative ~ fipa:inform,
 fipa:content ~ goal() {
 user ~ ?u,
 makeTrip ~ ?t,
 constraints ~ ?c
 }
 }
 do
 holds desire(cooperate, ?u) ;
 intend-that
 finalised(trip(?t, ?proposal), ?c)
end.

Figure 5: plan to adopt user goal as agent intention
Thus: if a message is received informing the agent that the user
has a goal to make a given trip, and the agent desires to be
cooperative with that user (it may, of course, be predisposed to
be generally cooperative), then adopt an intention to achieve a
finalised proposal starting from the initial conditions ?t and
respecting constraints ?c. We can make use of an ontology of
different booking types to generalise this condition slightly:

plan
 on message()
 {fipa:performative ~ fipa:inform,
 fipa:content ~ goal() {
 user ~ ?u,
 makeBooking ~ ?b,
 constraints ~ ?c
 }
 }
 do
 holds desire(cooperate, ?u) ;
 holds rdf:type(?b, makeTrip) ;
 intend-that
 finalised(trip(?b, ?proposal), ?c)
end.

Figure 6: plan to detect a trip booking and adopt an
intention

Figure 6 shows a plan that reacts to any booking request, but
checks that it can infer a trip booking before proceeding. The
rdf:type makeTrip may be stated directly, or it may be an
entailment from the ontology class hierarchy, or rely on other
semantic entailments from the ontology language definition.

4.3 Interactions with suppliers
The travel agency’s agent does not handle provisioning of the
various elements of the trip itself. It will therefore need to
communicate with the various suppliers in order to decide on
flights, rail journeys, hotels and so on. It could be the case that

3 Syntax note: terms with fixed arity are encoded like Prolog

terms, with a functor and fixed argument list between
parentheses. However, many structured terms have variable
numbers of arguments (consider the FIPA message structure).
Nuin supports both constructions: a Prolog-like term may be
decorated with an additional list of named parameter-value
pairs, of the form functor() {key ~ value, … }.
Unification is extended to unify named arguments as well as
positional arguments.

the interface to each supplier is a web service, and the agent’s
job would then be to invoke the web service by fashioning a
suitable SOAP [17] call, or whatever the appropriate
mechanism is for that service. This can be accommodated in
Nuin by either designing a custom web-service action that gets
invoked from the script, or by registering a Java object binding
that gets invoked by the built-in invoke service action.
However, for the purpose of this exercise, we assume that the
suppliers are also agent-based, and that collaboration becomes a
problem of inter-agent communication.
First we note that a similar problem arises between agents as
between the client and the travel agency agent. Should the
agents invoke actions on the other agents, or delegate an
intention or goal? One determining factor may be the need to
build a coherent and optimal solution according to the client’s
preferences. The travel agency agent could determine which of
the customer’s preferences were relevant to a given subgoal,
and pass these to the supplier agent. Indeed, if the client’s
preferences are available as a Semantic Web source, then
(ignoring the important details of security and privacy) the
supplier agents could access the client’s preferences directly.
The potential difficulty here, though, is building a globally
optimal solution. Having each supplier agent construct an
optimal segment of the journey does not guarantee that the
overall solution is optimal. It may well be possible to use inter-
agent negotiations among the whole community of stakeholder
agents to build a globally optimal solution, but that is not the
focus of our current research. Therefore we assume that the
travel agency agent sends queries to the supplier agents, and
assembles the solution pieces into an overall trip proposal. All
negotiations are then pair-wise, with one of the parties always
being the travel agency agent. The travel agency agent is solely
responsible for optimising the solution.

The FIPA query-ref performative seems appropriate for the
task of seeking solution elements from the suppliers. But what
should the content of the message be? At the beginning of the
process, we may know that John wants to travel from Madrid to
Washington. We could query all known transportation services
providers for routes that originate in Madrid. This, however,
would generate many air-routes from Madrid, including those
taking John away from the USA, plus road and train journeys to
France and Portugal. We could ask for routes starting in Madrid
and terminating in Washington DC, which would allow airlines
to report their suggested routes (via Paris Charles de Gaulle, for
example). Another tactic would be to use the geographic
elements of the ontology to test whether a supplier is able to
provide a single journey to a given region (e.g. Madrid to the
Eastern USA) and use this to prune the search space by
querying in more detail only those agents that can provide
suitable routes in principle. This tactic may be invoked directly
from the agent’s script; it may also be invoked by the agent
monitoring the responses to queries, noticing a high branching
factor in the search space, and adopting an improved strategy.
The current version of Nuin does not support this meta-
monitoring directly. We will investigate convenient
mechanisms for doing so in future versions.
We make the distinction in our ontology between journeys,
routes and bookings. Initially, we query the supplier agent for
information on routes. A route has a start and end location,
distance and vehicle. A given instance of a route may start at
Madrid airport and end in Paris Charles de Gaulle, and use an
Airbus A320. We can infer that an A320 is an AirbusPlane
which is an Airplane, thus this trip is also in the class
AirTravel because AirTravel is defined as the class that

has vehicleType of class Airplane. Figure 7 shows a
fragment of our ontology class hierarchy (using Protégé [14]):

Figure 7: section of ontology class hierarchy

This approach highlights a particular difficulty with ontology
development: when to uses classes vs. instances. We can define
A320 as an instance of the class AirbusPlane, and for many
applications it is sufficient to know that a given route uses an
(i.e. some unknown) A320. But for other applications, such as
aircraft maintenance or scheduling, we need to know which
individual aircraft, so A320 should be a class, and instances of
it would be named by the individual aircraft identifiers. But to
define the route, naming the individual plane is incorrect, since
different actual planes will fly the route on different days. Using
DAML+OIL (or OWL), we can define an auxiliary Route
subclass using a restriction:

<daml:Class rdf:ID=”A320Route”>
 <daml:subClassOf rdf:resource=”#Route” />
 <daml:subClassOf>
 <daml:Restriction>
 <daml:onProperty
rdf:resource=”#vehicleType”/>
 <daml:toClass rdf:resource=”#AirbusA320” />
 </daml:Restriction>
 </daml:subClassOf>
</daml:Class>

Figure 8: class description for routes that fly A320's

For any A320Route, we can infer that the transporting vehicle
is an Airbus A320, even if we don’t know which one. It is an
open question, however, whether the extra complexity
introduced by this definition is worthwhile, or whether we
should have multiple ontologies (e.g. one for travel and one for
maintenance) and a process for translating between them when
necessary.

In Nuin, we implement the process of sending the query-ref
as a message send action, followed by a suspend until
the reply is received. This works for a single communication
with another agent. If, however, there are multiple agents
involved, a better alternative would be to send a series of
messages out, and have plans that trigger on the incoming reply
messages. There are two difficulties with the second approach:
firstly, enough state has to be asserted into the agent’s beliefs
(or other KS) to allow the agent to continue developing the plan
from that point, and secondly it is harder for the agent to
monitor a lack of response from the remote agents and adapt
accordingly. We solve the first by assigning each partial trip its
own unique identifier, and use the reply-with field to relate
incoming answers to the results of previous planning. This then
generates a set of new, extended partial plans that get new
identifiers. For the second problem we do not have a convenient
solution. A possible future extension to the Nuin platform will
be to include first-class support for the FIPA interaction
protocols [3]. Either directly as a result of supporting interaction
protocols, or as a result of implementing the necessary
supporting code, we hope that a clear and practical solution to
the meta-monitoring problem will emerge. Note that, in our
opinion, it remains an open question as to whether the ability of
PRS-based agent architectures to recurse to meta-level planning
is a viable solution to this problem (without creating enough
complexity in the agent plan to make it difficult to perform
software design and maintenance).

4.4 Reconciling vocabularies
In general, determining the correspondences between two (or
more) ontologies is a very difficult task, requiring extensive
human intervention [10]. Once the mapping between two
ontologies is defined, it is possible that translations between a
value expressed in one ontology and a value expressed in
another can be automated. Some transformations are fairly
straightforward, such as the units conversion (e.g. from km to
miles and vice versa).
In a multi-agent system, there is a open question about whose
responsibility it is to do ontology conversion. One possibility is
for each agent to have a normal form that it uses for its own
knowledge representation. Each received sentence would then
normalised, using the information from ontology mappings
where necessary. This would cope well with allowing
communications from agents that used different measurement
units, for example, providing that the units themselves are
explicit in the ontology . An alternative is that the ontology used
by the receiving agent is advertised in a public directory, and it
is the originating agent’s responsibility to do any necessary

translations before sending a sentence as part of a message. A
further alternative is an intermediate position between these
two, where the agent community includes translator agents that
can handle two-way translations between agents using different
ontologies. A version of the intermediary architecture may be
needed when providing large semantic web or other legacy
information sources into the agent community. It is often
impractical to translate the entire information source to a
different ontology, but it may well be possible to wrap the
information source with a mediating agent that dynamically
performs the necessary ontology -based transformations on
queries and results. We used this strategy effectively in a
project that used DMOZ [1] information in a distributed
knowledge-sharing application [4]. Rather than convert the very
large DMOZ data set to RDF, it was stored in a custom
database layout and queries and query results were dynamically
translated to RDF as needed.
Using Nuin, we can define a plan that triggers when incoming
messages are received, and use this to check that the message
content is in a suitable ontology. If not, it may be a simple
action to do the translation locally if the agent is capable of
doing so, or the agent may adopt an intention to translate the
message content to a suitable ontology. This intention may then
be discharged in different ways, for example by sending a
request to the translator agent. Once the message is expressed in
a known ontology, an event is raised to trigger further
processing on the message content.
Our current experiments with the Challenge Problem make the
simplifying assumption that the global ontology is shared. This
assumption is only valid for such a self-contained exercise. Any
realistic scale of application, especially one that uses open
semantic web information sources, will be exposed to the
ontology reconciliation problem.

4.5 Critiquing and ranking solutions
As the travel agency agent begins to assemble solutions to the
client’s requested travel goal, it will be faced with a rapidly
expanding search space. In order to improve its chances of
success, it should choose to pursue only those partial solutions
that are promising. If the agent waits until solutions (i.e. travel
plans) are complete to critique them, it is likely still to be
processing long after the client’s patience has run out and they
have left the store. This implies that we must be able to critique
partial solutions to the problem, and select which ones will be
further expanded. We note that planning algorithms have been
studied extensively for many years in AI, and it is not our intent
in this short paper to revisit the many choices that a planning
system can adopt to be able to plan effectively. Pending deeper
investigation of this topic, our current design uses a simple
forward-chaining means-end search algorithm. As mentioned
above, we assign each partial solution a unique identifier. A
solution is a series of segments, each of which is either a
journey segment or an accommodation segment. The journey
segment identifies the route, and may be composed of a series
of individual journeys. A segment has an associated cost.
Reviewing the Challenge Problem text, we hypothesise that the
following represent typical preferences a client may have over
journey segments:

• type vehicle (e.g. Airbus A370)

• cost

• quality rating (first class, business class, economy, five
star, etc)

• existence of facilities (TV, Internet connection,
smoking rooms, pool)

• preference of mode of transport (fly vs. drive) – which
may be conditional on other factors, such as
accessibility of airport

• distance to local amenities (sightseeing, ski, beach, etc)

Some of these preferences will be fixed, some context
dependent. On a business trip, customers might be less cost-
sensitive than on a personal vacation (or vice versa!). In
summer, distance from ski resorts is less important than
distance from the beach.
We would like to explore making this preference information as
widely available as possible, so encoding it as a semantic web
resource seems plausible (we ignore for the time being
important requirements to do with security and privacy).
One natural approach is to consider the various categories of
alternatives that the client might prefer as ontological classes.
Thus, a customer who prefers non-smoking hotel rooms has a
preference for a room in the class NonSmoking over class
Smoking. A simple way to encode this in the client’s profile is
shown in fig 9:

<Preference>
 <prefer rdf:resource=”#NonSmoking” />
 <over rdf:resource=”#Smoking” />
</Preference>

Figure 9: First attempt at encoding user preferences

<Preference>
 <prefer>
 <NonSmoking />
 </prefer>
 <over>
 <Smoking />
 </over>
</Preference>

Figure 10: alternative encoding for user preferences

This example uses classes as individuals, so again, exceeds the
limitations of OWL DL and OWL Lite. An alternative approach
would be to treat the preference arguments as expressions, using
RDF blank nodes (bNodes) as existential variables (an
interpretation sanctioned by RDF theory). This transforms the
preference from fig 9 into fig 10:
The difference between these approaches may be subtle to
readers unfamiliar with RDF. In the first encoding (fig 9), the
arguments to the preference relation are the classes themselves.
In the second encoding, the term <NonSmoking /> is RDF
shorthand for:
 <rdf:Description>
 <rdf:type rdf:ID=“NonSmoking” />
 </rdf:Description>
that is, an anonymous node of type NonSmoking.

To use this second encoding, the agent must match the
existential query implicit in the graph to the data at hand. This
exploits a feature of RDF (not, it must be admitted, a
universally loved feature) that meta-level information can be
encoded in the same formalism as the object-level information.
The preference query can be seen as expressing a predicate over
the proposed solution classes, but is encoded in the same graph
structure as the data itself.
By using pair-wise preferences of this kind, whichever
approach is adopted, we obtain a partial ordering over sets of
solutions. The reified Preference relationship is transitive, so a
data source aware of this fact could pre-compute the transitive
closure of preferences. Thus, if the client stated their preference
was for 5-star hotels over 4-star, and 4-star over 3-star, the
transitive closure would allow two proposed segments, one for a

5-star hotel and one for a 3-star hotel to be ranked correctly.
Since the ordering would be partial, however, not all solutions
could be ranked, so the solution evaluator would need to allow
for sets of equally preferred candidates at any one time.

The client should be able to order their preferences, so that the
preference for a certain cost band is allowed to dominate over
the preference for smoking rooms, or vice versa. This could be
achieved by adding a weight to the each Preference
instance, or allowing preferences that ranked other preferences
recursively. It is not clear which, if either, of these choices
would work better in practice, and more experimentation is
needed.
Again, speculating about the design (we have not yet
implemented the solution ranking mechanism), we could
encode context -dependent preferences by adding a condition
clause to the Preference instance. The problem we foresee
here is that there is no standard mechanism, de facto or
otherwise, for encoding general predicates in RDF. Thus any
mechanism that allowed the encoding of “if summer-time” on a
preference of NearBeach over NearSkiRun would be
dependent on a processor being aware of the encoding scheme
used. The choices presented above, assuming that the existence
of Preference is recognised, stay closer to standard RDF
interpretations.
Given that we can achieve a satisfactory encoding of user
preferences, we must then incorporate them into the strategy for
prioritising the search space. We envisage a plan that is
triggered by the asserting of a partial solution into the agent’s
beliefs KS, and which would rank the new solution against the
current unexpanded partial solutions. Thus each partial solution
is in one of two states: either it has been selected for expansion,
or it has not been expanded yet, but is sorted according to the
partial order defined by the user’s preferences. It would only be
necessary to find the highest ranked plan that has not yet been
expanded that is preferred over the new solution, so searching
from the front of the candidates list will be effective.
A more open question, and one that we have not yet addressed,
is to be able to critique full and partial solutions, rather than just
rank them. For example, if the agent was able to determine that
a client could save a substantial amount of money by accepting
a certain hotel that meets all criteria except having in-room
Internet connections, it may be able to propose this to the user.
Alternatively, such deductions might form the basis for
negotiation strategies that suggest which factors to yield on, and
which to stand firm on. This seems to be a fruitful area for
future investigation.

4.6 Determining acceptable solutions
Before proposing a solution to the client, the agent must be
certain that it has met the client’s expressed criteria for the trip.
We have not yet stated in this paper how the client’s constraints
are to be specified. This is in part because we run into
limitations of standard ontological languages, since we will
need constraints on the literal values of instance properties, and
this is not an area that current ontology languages address.
Assuming that we have an appropriate canonicalization of the
string form of a date, we can test for equality between two
departure dates. But if the client specifies a departure date of
“10-July -2003”, domain knowledge is needed to recognise that
“10-July -2003 10:16” is acceptable. Moreover, the client may
actually want specify a departure date of “around the 10th of
July” or “between the 4th and the 10th of July”.
We may also want to specify that the trip includes a visit to the
Statue of Liberty. While we can – just – imagine the creation of

a pseudo-class VisitToStatueOfLiberty, and
subsequently a check that some segment of the trip is subsumed
by this pseudo-class, it is hard to see what the definition of the
class would be in practice.

We thus currently define the constraints as a list of logical
predicates that are interpreted by problem solvers other than the
ontology reasoners. However, it remains an interesting area for
speculation and future research whether there is a reasonably
simple constraint language, that could be combined with a
description-logic –like reasoner to give a richer means of
checking consistency in candidate solutions.

5. Evaluation and conclusions
We have presented some vignettes of parts of the solution to the
OAS’03 Challenge Problem using our BDI agent platform,
Nuin. The key goal in the Challenge call for papers is to explore
how agents would actually use ontological information. Much
of the foregoing discussion represents our design thinking, since
we have only begun to build the complete solution.
Our agents are strongly knowledge-based, and use logical
sentences and mental attitudes for their internal modelling.
Ontological information is clearly useful compactly describing
the domain of discourse (especially if the same ontology is
shared with other agents), and allows the agent to use class and
property hierarchies to generalise and specialise queries and
results.

Given our interest in building agents for the semantic web, we
have restricted ourselves to the common semantic web ontology
languages: DAML+OIL and OWL. Both of these languages’
designs are based on description logic (DL) reasoning. The use
of description logic reasoners in practical agent applications is
not a widely explored topic, due in part to a limited availability
of DL reasoners. More such reasoners are now becoming
available, and we can expect more research into this area in
future. A key component of the description logic approach is
class description, and we have shown above a few instances of
using class descriptions in the agent’s reasoning. Using class
descriptions and a meta-level prefers predicate to
encapsulate the client’s preferences appears to be a useful way
to make those preferences available to a wider range of
semantic web services. The limitations of description logic
sentences, however, suggest that richer representations will
need to be developed to encode a broadly useful sub-set of the
client’s general preferences.
While we have shown the use of ontology information by BDI
agents, both as additional open knowledge sources for the agent
to access, and as additional entailments that the agent reasoners
can draw upon, we nevertheless feel that this is only a
preliminary account of the integration of these two areas.
Further practical experiences will help to resolve this, and we
continue to develop a complete implementation of the
Challenge Problem in the Nuin framework. We also look
forward to the development of theoretical treatments of the
interactions between the principles of deliberative agents and
the principles of description logics.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous OAS’03 reviewers for
their detailed comments on the original version of this paper.
Due to a short deadline and a lack of space, we have not been
able fully to address all of their comments, but we hope to do so
in future publications. Thanks also to Dave Reynolds of HP
Labs for his comments and suggestions.

7. REFERENCES
 1. ODP - The Open Directory Project.

http://www.dmoz.org
2. The DARPA Agent Markup Language (DAML+OIL).

2001.
Web site: http://www.daml.org

3. FIPA Interaction Protocol Specifications. 2003.
http://www.fipa.org/repository/ips.php3

4. Banks, Dave, Cayzer, Steve, Dickinson, Ian, and
Reynolds, Dave. The ePerson Snippet Manager: a
Semantic Web Application. (HPL-2002-328) HP Labs
Technical Report. 2002.
Available from:
http://www.hpl.hp.com/techreports/2002/
HPL-2002-328.html

5. Bellifemine F., Poggi A. & Rimassa G. "Developing Multi
Agent Systems With a FIPA-Compliant Agent
Framework". Software Practice and Experience. Vol.
31:2. 2001. pp. 103–128.

6. Berners-Lee, Tim, Hendler, James, and Lassila, Ora "The
Semantic Web". Scientific American. 2001.

7. Corcho, O., Fernandez-Lopez , M., & Gómez-Pérez , A.
An RDF Schema for the OAS Challenge Problem . 2003.
http://oas.otago.ac.nz/OAS2003/Challeng
e/MadridTravelOntology.rdfs

8. Dean, Mike, Schreiber, Guus, van Harmelen, Frank,
Hendler, Jim, Horrocks, Ian, McGuinness, Deborah L.,
Patel-Schneider, Peter F., and Stein, Lynn Andrea . OWL
Web Ontology Language Reference. 2003.
http://www.w3.org/TR/owl-ref/

9. Dickinson, I. & Wooldridge, M. "Towards Practical
Reasoning Agents for the Semantic Web". In: Int. Conf.
on Automomous Agents and Multi-Agent Systems
(AAMAS'03). 2003. pp. to appear.

10. Dou, D., McDermott, D., & Qi, P. "Ontology Translation
by Ontology Merging and Automated Reasoning". In:
Proc. EKAW Workshop on Ontologies for Agent Systems.
2002. pp. 3-18.
http://cs-
www.cs.yale.edu/homes/dvm/papers/DouMcDermot
tQi02.ps

11. FIPA. FIPA ACL Message Structure Specification.
(XC00061) 2000.
http://www.fipa.org/specs/fipa00061/

12. FIPA. Abstract Architecture Specifiation. 2002.
http://www.fipa.org/specs/fipa00001/

13. HP Labs. The Jena Semantic Web Toolkit. 2002.
http://www.hpl.hp.com/semweb/jena-
top.html

14. Noy N. F., Sintek M., Decker S., Crubezy M., Fergerson R.
W. & Musen M. A. "Creating Semantic Web Contents
With Protege-2000". IEEE Intelligent Systems. Vol. 16:2.
2001. pp. 60-71.
http://www-
smi.stanford.edu/pubs/SMI_Reports/SMI-
2001-0872.pdf

15. Rao, A. "AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language". In: Proc. 7th European
Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW '96). Springer-Verlag, 1996. pp.
42–55.

16. Rao, A. & Georgeff, M. "BDI Agents: From Theory to
Practice". In: Proc. First Int. Conf on Multi-Agent
Systems (ICMAS-95). 1995.

17. W3C. Simple Object Access Protocol (SOAP) 1.1. 2000.
http://www.w3.org/TR/SOAP/

