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ABSTRACT 
We present our initial response to the OAS '03 Challenge 
Problem. The Challenge Problem proposes an agent-assisted 
travel scenario, and asks what the role of ontologies would be to 
support the agent's activity. We discuss a belief-desire-intention 
(BDI) approach to the problem using our Nuin agent platform, 
and illustrate various ways in which ontology reasoning 
supports BDI-oriented problem solving and communications by 
the agents in the system. 
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1. INTRODUCTION 
The call for papers for the AAMAS ’03 workshop on 
Ontologies and Agent Systems (OAS’03) includes a challenge 
problem, adapted from an exercise by the OntoWeb project to 
assess different ontology environments. The challenge problem 
outlines a set of objectives for an agent-assisted travel planning 
system, in which an agent-based travel agent must co-operate 
with other agents to book a trip for a human client.  
We have been investigating the design and development of 
belief-desire-intention (BDI) [16] agents for use in the Semantic 
Web [6]. One outcome of this research is a BDI agent platform, 
Nuin, which has been designed ab initio to work with Semantic 
Web information sources. At the time of writing, Nuin is still a 
work in progress. Nevertheless, we have investigated how key 
parts of the OAS challenge problem would be addressed by our 
platform.  

This paper reviews the salient features of the Challenge 
Problem, in the context of a BDI agent. We briefly review some 
of the characteristics of the Nuin platform, before presenting a 
series of vignettes that show how we address some of the 
challenges in the Challenge Problem. As it represents a rich and 
plausible scenario, we are continuing development of a 
complete solution to the Challenge Problem using the Nuin 
platform. 

2. OUTLINE PROBLEM 
The scenario for the Challenge Problem is based on a travel 
agent in New York, for which we are asked to develop an 
agent-based application. The travel agency’s clients come to 
make bookings for trips they wish to take, and the agency is 
responsible for making reservations with various travel service 
providers (airlines, hotels, train companies, etc) to satisfy the 
client’s needs. The Challenge Problem description gives a rich 
description of the kinds of knowledge possessed by various 
players in the scenario, from which we distil the following 
principal objectives and assumptions: 

1. Clients come to the travel agency with more-or-less 
specific objectives for their trip, for example a 

departure date and destination, a tourist attraction to 
visit or an academic conference to attend. 

2. Clients have individual preferences about many 
aspects of the travel services that may be booked, 
including dietary choice, smoking/non-smoking, cost, 
comfort level, choice of provider, etc. 

3. The travel agency does not posses the data to arrange 
trips or trip segments, but must request this 
information from other agents. For simplicity in 
building the model, we assume that the travel agency 
does know the identities of the supplier agents (a more 
realistic interpretation would be to require that the 
agency contacts suppliers through a brokerage or 
advertising service). 

4. Requests from the travel agency to the suppliers may 
be made at varying levels of specificity (for example 
“a flight from Washington to London” vs. “a seat on 
BA1234 from Washington to London”). 

5. Interaction with the suppliers will produce multiple 
potential solutions to the client’s initial request. 
Priority should be given to solutions that match the 
clients’ preferences, noting that the preferences may 
not be unambiguously consistent.  

6. Solutions may specify constraints that are not relevant 
to the client (“no dogs in the hotel”), or may be of 
unknown relevance. 

The vocabularies used by different suppliers and the travel 
agency may vary – for example, one may use kilometres while 
another uses miles. 

2.1 Issues from the challenge problem 
From the distilled problem statement, we highlight the 
following challenges for agents to address in this scenario. 
Note: this is not intended to be an exhaustive list. 

• modelling the motivations and attitudes of the actors –  
there are a number of actors in the scenario, and we 
assume each to be predominantly self-interested. The 
BDI model accounts for the mental attitudes of a given 
agent, but to correctly represent the scenario, the travel 
agency agent, for example, must also account for at 
least the goals and preferences of the user. We do not 
assume that user preferences can, in practice, be 
reduced to a utility function. 

• ownership and responsibility – arguably, the 
motivations of the travel agency itself should be 
accounted for. For example, should the agent 
recommend suppliers that have high commission rates 
for agency, even if the utility to the client is neutral or 
reduced? Should the agent explicitly model its contract 
to the client and the travel agency? 

• reconciling vocabularies – different agents or services 
will use different vocabularies, for the same or 



overlapping concepts. A simple example is the use of 
miles and kilometres for distance, but other examples 
will be more subtle or complex. 

• varying degrees of detail in queries – at different stages 
in the trip design process, queries will have differing 
degrees of specificity. For example, “is it possible to 
take a train from London to Paris”, compared to “when 
would a train departing Waterloo at around 10:00 on 
the 27th arrive in Paris?” 

• checking solutions for acceptability – testing for basic 
feasibility, including such constraints as not being in 
two separate vehicles at the same time 

• ranking and critiquing candidate solutions – given that 
more than one possible solution exists, the user’s 
preferences should be used to rank the solutions. This 
is likely to be needed incrementally, to control the 
growth of the search space. 

• choosing which constraints to relax during negotiation 
– if a good solution is not available with the current 
constraints, it may be that relaxing some of them will 
yield an acceptable solution. For example, a three star 
hotel might have to be used to keep the cost within the 
client’s budget. 

• choosing when to ask the client to resolve choices or 
provide more preference constraints – this involves 
managing the dialogue with the client to neither 
require them to ‘brain-dump’ their entire preference set 
at the beginning, nor to be barraged with low-level 
questions. 

Not all of these issues are addressed by the use of ontologies, 
though it would seem that the use of an ontology representation 
has some impact on the solutions to most, if not all, of them. 

3. OVERVIEW OF THE NUIN 
PLATFORM 
Nuin [9] is an agent platform we have created to assist agent 
designers to program deliberative agents, with a particular 
emphasis on BDI [16] agents. Nuin is founded on Rao’s 
AgentSpeak(L) [15], and extended to make a practical, Java™-
based programming tool. In this section, we briefly introduce 
some of the key features of Nuin, in order to provide some 
background for the solution vignettes in section 4. 
A key objective in developing Nuin was to create a flexible 
platform for building practical agents from high-level 
abstractions, such as beliefs, desires, intentions and plans. The 
emphasis has not been on building agent infrastructure services: 
we assume the existence of an underlying services architecture, 
and Nuin provides a services abstraction layer that allows to 
bind to a particular service fabric, for example the Jade agent 
platform [5]. Nuin’s architecture is influenced by the FIPA 
abstract architecture [12], in order to better utilise existing agent 
infrastructure projects. We do not, however, assume that Nuin 
will operate only in an FIPA environment. 

 
Figure 1: Outline Nuin architecture 

As figure 1 shows, each Nuin agent has an interpreter, which 
runs one or more scripts to provide the agent behaviour. An 
agent also has a set of beliefs, as first-order sentences, and any 
number of other knowledge sources, each of which is labelled 
by a distinct symbol. A knowledge source can be wrapped by 
one or more reasoners, which provide additional services over 
the storage and retrieval of asserted sentences. Backwards-
chaining reasoners attempt to solve queries that they are given, 
in essence by building a proof tree. Forwards-chaining 
reasoners opportunistically assert additional entailments when 
formulae are asserted into the knowledge store. 

The key abstraction in defining an agent’s behaviour is the plan. 
Following AgentSpeak(L), a plan has one or both of: a 
triggering event condition or a logical postcondition. Internal 
control flow within the agent is managed by a queue of events, 
which can be exogenous or endogenous, and include messages 
from other agents as a sub-type. A triggering condition is a 
Boolean expression formed from two predicates over events: 
on( E ) is true when E unifies with the current event at the 
head of the event queue, whereas after( E )  is true when E 
unifies with an event from the agent’s memory of past events. 
The body of a plan is a set of individual actions, composed with 
either a sequence operator (;) or a non-deterministic choice (|). 
Plans may invoke other sub-plans directly or by post-condition, 
and may recurse. 
Currently, a plan library is supplied to the agent as part of its 
script. However, there is no a priori reason why the plans could 
not be dynamically generated by an online planner, and this is a 
capability we intend to add in the future. 
All of the abstractions shown in figure 1 are specified using 
Java interfaces, and created using the design pattern Factory 
Pattern. This makes it very easy for a programmer to provide a 
customised variant of a particular part of the system. This 
flexibility and extensibility was a key design goal for the 
platform. The configuration of the agent is specified as an RDF 
document, the URL of which is passed to the agent as a start-up 
parameter. 
Given that we want to develop agents for the Semantic Web, we 
allow RDF stores as knowledge sources, using Jena [13]. In 
addition, all internal symbols are URI’s. Jena’s ontology 
reasoners are used to extend the entailments in the RDF stores, 
where OWL or DAML+OIL sources are available. 
The next section illustrates the use of Nuin in a series of 
vignettes addressing some of the challenges outlined in section 
2.1. Note that the script syntax illustrated is also a configurable 
aspect of our platform. The encoding illustrated is NuinScript, 



but this is only one possible syntax that can parse into the 
internal abstract syntax form. An XML encoding is also 
planned. 

4. SOLUTION EXAMPLES USING NUIN 
4.1 Preamble: use of ontologies 
In the challenge problem description, a sample ontology for this 
domain is provided by Corcho et al [7]. We decided to create 
our own ontology, although it shares some characteristics with 
that of Corcho and colleagues. Our ontology is written in 
DAML+OIL [2], which allows us to use richer constructs than 
that in the sample ontology. For example, figure 2 shows a 5-
star hotel in our formulation: 

<daml:Class rdf:ID="QualityRating"> 
 <daml:oneOf rdf:parseType="daml:collection"> 
  <travel1:QualityRating rdf:about="#OneStar"/> 
  <travel1:QualityRating rdf:about="#TwoStars"/> 
  <travel1:QualityRating 
rdf:about="#ThreeStars"/> 
  <travel1:QualityRating 
rdf:about="#FourStars"/> 
  <travel1:QualityRating 
rdf:about="#FiveStars"/> 
 </daml:oneOf> 
</daml:Class> 
 
<daml:Class rdf:ID="FiveStarHotel"> 
 <rdfs:subClassOf rdf:resource="#Hotel"/> 
 <rdfs:subClassOf> 
  <daml:Restriction> 
   <daml:onProperty rdf:resource="#rating"/> 
   <daml:hasValue rdf:resource="#FiveStars"/> 
  </daml:Restriction> 
 </rdfs:subClassOf> 
</daml:Class> 

Figure 2: DAML+OIL ontology fragment for five -star hotel 
Compare this with the definition from the sample ontology 
(slightly abbreviated): 

<rdfs:Class rdf:ID=”hotel5star”> 
 <rdfs:comment>First class hotel</rdfs:comment> 
 <rdfs:subClassOf rdf:ID=”#hotel” /> 
 <NS0:numberOfStars>5</NS0:numberOfStars> 
</rdfs:Class> 

Figure 3: RDFS fragment from OAS'03 call for papers 
RDFS does not have the machinery to declare that quality 
ratings may have exactly one of one, two, three, four or five as 
values. Nor is it possible to infer in RDFS that having a five-
star rating and being a hotel entails being in the class 
FiveStarHotel. In the sample RDFS ontology, membership of 
this class must be stated explicitly. Finally, we note that the 
RDFS ontology requires class ‘hotel5star’ to be treated as an 
instance, since the class itself is the subject of the statement 
‘numberOfStars 5’. Looking ahead, we intend to switch to 
using OWL [8] as our ontology language 1. The use of classes as 
instances necessarily places the hotel5star construct in the 
OWL Full variant of that language, for which it is known that 
inferencing is expensive and incomplete. Note that we have 
chosen not to use cardinality restrictions to define hotel star-
classes. Consider this definition 

                                                                 
1 The only reason we have not yet adopted OWL is that tool 

support is limited, partly because, at the time of writing, the 
OWL specification is not yet complete. This situation is 
improving rapidly, however, and we anticipate switching to 
OWL very soon. 

<daml:Class rdf:ID=”FourStarHotel”> 
 <rdfs:subClassOf rdf:resource=”#Hotel” /> 
 <rdfs:subClassOf> 
  <daml:Restriction> 
   <daml:onProperty rdf:resource=”#hasStar” /> 
   <daml:cardinality rdf:value=”4” /> 
  </daml:Restriction> 
 </rdfs:subClassOf> 
</daml:Class> 
 
<Hotel rdf:about=”http://quite-nice.com”> 
 <hasStar rdf:value=”*” /> 
 <hasStar rdf:value=”*” /> 
 <hasStar rdf:value=”*” /> 
 <hasStar rdf:value=”*” /> 
</Hotel> 

Figure 4 Using cardinality restrictions as for hotel classes 
Figure 4 suggests that the Quite-Nice hotel is a four star hotel, 
but we cannot know this for certain. Given the open world 
nature of the semantic web, we cannot be sure that we have 
collected all of the relevant statements about URI 
http://www.quite-nice.com – we may yet  discover an 
additional hasStar statement. We can only rule out the Three 
Star and below classes. 
Space does not permit a full explanation of our sample ontology 
in this paper. Elements of the ontology will be introduced below 
as needed. The full ontology is, however, available online at: 
http://jena.hpl.hp.com/ontologies/travel1. 

4.2 Initial client to agent communication 
At the beginning of the process, the client’s basic goal to take a 
trip of a certain form must be communicated to the agent. We 
leave aside the machinery of the human-computer interface 
(important though it is), to consider the process. The agent must 
have access to two kinds of knowledge: 

• the primary goal that initiated the travel request, and 

• the client’s travel preferences 

We assume that a message is delivered to the agent with the 
first of these, and that the second can be queried from a general 
database of known preferences. Since we are interested in 
Semantic Web agents, we assume that the client preference 
information is available in at least RDF (if not DAML+OIL or 
OWL). 
What should the message contain? An important choice is 
whether the agent is seen as a collaborative partner, or a 
subordinate. In the second case, the message might be a FIPA 
request message, which takes an action as parameter. The 
action is essentially an encoding of “book a trip respecting these 
constraints”. The agent would directly adopt an intention to 
carry out the action. The first case would correspond to sending 
a FIPA inform message 2 saying “the client has a goal to go on 
a trip, with these constraints”. We would then rely on the agent 
being programmed with social or behavioural rules that would 
translate this recognition of the user’s goal into an intent of its 
own to assist with the development of the travel plan. For the 
scenario of a single client walking into the travel agency’s 
office seeking to make a booking, the difference between these 
two approaches is slim. Indeed, the collaborative approach adds 
extra complexity that the directive approach avoids. However, 
consider the often quoted desire for proactive behaviour in 
agents. The recognition of the user’s goal may arise by 
inference, rather than by a directive from the user. If the agent is 

                                                                 
2 Note that the FIPA ACL specification [11] does not include a 

performative that directly delegates a goal to another agent. 



able to infer that the user has a goal to make a trip (e.g. by 
having a paper accepted at a conference), it can proactively 
instigate the travel planning process. 
Both approaches are supported by Nuin. Figure 5 shows a plan 
fragment3 that reacts to an incoming message that the user has a 
goal to make a booking, and creates a suitable intent.  

plan 
 on message()  
     {fipa:performative ~ fipa:inform, 
      fipa:content ~ goal() { 
          user ~ ?u, 
          makeTrip ~ ?t, 
          constraints ~ ?c 
      } 
     } 
 do 
   holds desire( cooperate, ?u ) ; 
   intend-that  
     finalised( trip( ?t, ?proposal ), ?c ) 
end. 

Figure 5: plan to adopt user goal as agent intention 
Thus: if a message is received informing the agent that the user 
has a goal to make a given trip, and the agent desires to be 
cooperative with that user (it may, of course, be predisposed to 
be generally cooperative), then adopt an intention to achieve a 
finalised proposal starting from the initial conditions ?t and 
respecting constraints ?c. We can make use of an ontology of 
different booking types to generalise this condition slightly: 

plan 
 on message()  
     {fipa:performative ~ fipa:inform, 
      fipa:content ~ goal() { 
          user ~ ?u, 
          makeBooking ~ ?b, 
          constraints ~ ?c 
      } 
     } 
 do 
   holds desire( cooperate, ?u ) ; 
   holds rdf:type( ?b, makeTrip ) ; 
   intend-that  
     finalised( trip( ?b, ?proposal ), ?c ) 
end. 

Figure 6: plan to detect a trip booking and adopt an 
intention 

Figure 6 shows a plan that reacts to any booking request, but 
checks that it can infer a trip booking before proceeding. The 
rdf:type makeTrip may be stated directly, or it may be an 
entailment from the ontology class hierarchy, or rely on other 
semantic entailments from the ontology language definition. 

4.3 Interactions with suppliers  
The travel agency’s agent does not handle provisioning of the 
various elements of the trip itself. It will therefore need to 
communicate with the various suppliers in order to decide on 
flights, rail journeys, hotels and so on. It could be the case that 

                                                                 
3 Syntax note: terms with fixed arity are encoded like Prolog 

terms, with a functor and fixed argument list between 
parentheses. However, many structured terms have variable 
numbers of arguments (consider the FIPA message structure). 
Nuin supports both constructions: a Prolog-like term may be 
decorated with an additional list of named parameter-value 
pairs, of the form functor() {key ~ value, … }. 
Unification is extended to unify named arguments as well as 
positional arguments. 

the interface to each supplier is a web service, and the agent’s 
job would then be to invoke the web service by fashioning a 
suitable SOAP [17] call, or whatever the appropriate 
mechanism is for that service. This can be accommodated in 
Nuin by either designing a custom web-service action that gets 
invoked from the script, or by registering a Java object binding 
that gets invoked by the built-in invoke service action. 
However, for the purpose of this exercise, we assume that the 
suppliers are also agent-based, and that collaboration becomes a 
problem of inter-agent communication. 
First we note that a similar problem arises between agents as 
between the client and the travel agency agent. Should the 
agents invoke actions on the other agents, or delegate an 
intention or goal? One determining factor may be the need to 
build a coherent and optimal solution according to the client’s 
preferences. The travel agency agent could determine which of 
the customer’s preferences were relevant to a given subgoal, 
and pass these to the supplier agent. Indeed, if the client’s 
preferences are available as a Semantic Web source, then 
(ignoring the important details of security and privacy) the 
supplier agents could access the client’s preferences directly. 
The potential difficulty here, though, is building a globally 
optimal solution. Having each supplier agent construct an 
optimal segment of the journey does not guarantee that the 
overall solution is optimal. It may well be possible to use inter-
agent negotiations among the whole community of stakeholder 
agents to build a globally optimal solution, but that is not the 
focus of our current research. Therefore we assume that the 
travel agency agent sends queries to the supplier agents, and 
assembles the solution pieces into an overall trip proposal. All 
negotiations are then pair-wise, with one of the parties always 
being the travel agency agent. The travel agency agent is solely 
responsible for optimising the solution. 

The FIPA query-ref performative seems appropriate for the 
task of seeking solution elements from the suppliers. But what 
should the content of the message be? At the beginning of the 
process, we may know that John wants to travel from Madrid to 
Washington. We could query all known transportation services 
providers for routes that originate in Madrid. This, however, 
would generate many air-routes from Madrid, including those 
taking John away from the USA, plus road and train journeys to 
France and Portugal. We could ask for routes starting in Madrid 
and terminating in Washington DC, which would allow airlines 
to report their suggested routes (via Paris Charles de Gaulle, for 
example). Another tactic would be to use the geographic 
elements of the ontology to test whether a supplier is able to 
provide a single journey to a given region (e.g. Madrid to the 
Eastern USA) and use this to prune the search space by 
querying in more detail only those agents that can provide 
suitable routes in principle. This tactic may be invoked directly 
from the agent’s script; it may also be invoked by the agent 
monitoring the responses to queries, noticing a high branching 
factor in the search space, and adopting an improved strategy. 
The current version of Nuin does not support this meta-
monitoring directly. We will investigate convenient 
mechanisms for doing so in future versions. 
We make the distinction in our ontology between journeys, 
routes and bookings. Initially, we query the supplier agent for 
information on routes. A route has a start and end location, 
distance and vehicle. A given instance of a route may start at 
Madrid airport and end in Paris Charles de Gaulle, and use an 
Airbus A320. We can infer that an A320 is an AirbusPlane 
which is an Airplane, thus this trip is also in the class 
AirTravel because AirTravel is defined as the class that 



has vehicleType of class Airplane. Figure 7 shows a 
fragment of our ontology class hierarchy (using Protégé [14]): 

 
Figure 7: section of ontology class hierarchy 

This approach highlights a particular difficulty with ontology 
development: when to uses classes vs. instances. We can define 
A320 as an instance of the class AirbusPlane, and for many 
applications it is sufficient to know that a given route uses an 
(i.e. some unknown) A320. But for other applications, such as 
aircraft maintenance or scheduling, we need to know which 
individual aircraft, so A320 should be a class, and instances of 
it would be named by the individual aircraft identifiers. But to 
define the route, naming the individual plane is incorrect, since 
different actual planes will fly the route on different days. Using 
DAML+OIL (or OWL), we can define an auxiliary Route 
subclass using a restriction: 

<daml:Class rdf:ID=”A320Route”> 
 <daml:subClassOf rdf:resource=”#Route” /> 
 <daml:subClassOf> 
  <daml:Restriction> 
   <daml:onProperty 
rdf:resource=”#vehicleType”/> 
   <daml:toClass rdf:resource=”#AirbusA320” /> 
  </daml:Restriction> 
 </daml:subClassOf> 
</daml:Class> 

Figure 8: class description for routes that fly A320's 

For any A320Route, we can infer that the transporting vehicle 
is an Airbus A320, even if we don’t know which one. It is an 
open question, however, whether the extra complexity 
introduced by this definition is worthwhile, or whether we 
should have multiple ontologies (e.g. one for travel and one for 
maintenance) and a process for translating between them when 
necessary. 

In Nuin, we implement the process of sending the query-ref 
as a message send action, followed by a suspend until 
the reply is received. This works for a single communication 
with another agent. If, however, there are multiple agents 
involved, a better alternative would be to send a series of 
messages out, and have plans that trigger on the incoming reply 
messages. There are two difficulties with the second approach: 
firstly, enough state has to be asserted into the agent’s beliefs 
(or other KS) to allow the agent to continue developing the plan 
from that point, and secondly it is harder for the agent to 
monitor a lack of response from the remote agents and adapt 
accordingly. We solve the first by assigning each partial trip its 
own unique identifier, and use the reply-with field to relate 
incoming answers to the results of previous planning. This then 
generates a set of new, extended partial plans that get new 
identifiers. For the second problem we do not have a convenient 
solution. A possible future extension to the Nuin platform will 
be to include first-class support for the FIPA interaction 
protocols [3]. Either directly as a result of supporting interaction 
protocols, or as a result of implementing the necessary 
supporting code, we hope that a clear and practical solution to 
the meta-monitoring problem will emerge. Note that, in our 
opinion, it remains an open question as to whether the ability of 
PRS-based agent architectures to recurse to meta-level planning 
is a viable solution to this problem (without creating enough 
complexity in the agent plan to make it difficult to perform 
software design and maintenance). 

4.4 Reconciling vocabularies 
In general, determining the correspondences between two (or 
more) ontologies is a very difficult task, requiring extensive 
human intervention [10]. Once the mapping between two 
ontologies is defined, it is possible that translations between a 
value expressed in one ontology and a value expressed in 
another can be automated. Some transformations are fairly 
straightforward, such as the units conversion (e.g. from km to 
miles and vice versa).  
In a multi-agent system, there is a open question about whose 
responsibility it is to do ontology conversion. One possibility is 
for each agent to have a normal form that it uses for its own 
knowledge representation. Each received sentence would then 
normalised, using the information from ontology mappings 
where necessary. This would cope well with allowing 
communications from agents that used different measurement 
units, for example, providing that the units themselves are 
explicit in the ontology . An alternative is that the ontology used 
by the receiving agent is advertised in a public directory, and it 
is the originating agent’s responsibility to do any necessary 



translations before sending a sentence as part of a message. A 
further alternative is an intermediate position between these 
two, where the agent community includes translator agents that 
can handle two-way translations between agents using different 
ontologies. A version of the intermediary architecture may be 
needed when providing large semantic web or other legacy 
information sources into the agent community. It is often 
impractical to translate the entire information source to a 
different ontology, but it may well be possible to wrap the 
information source with a mediating agent that dynamically 
performs the necessary ontology -based transformations on 
queries and results. We used this strategy effectively in a 
project that used DMOZ [1] information in a distributed 
knowledge-sharing application [4]. Rather than convert the very 
large DMOZ data set to RDF, it was stored in a custom 
database layout and queries and query results were dynamically 
translated to RDF as needed. 
Using Nuin, we can define a plan that triggers when incoming 
messages are received, and use this to check that the message 
content is in a suitable ontology. If not, it may be a simple 
action to do the translation locally if the agent is capable of 
doing so, or the agent may adopt an intention to translate the 
message content to a suitable ontology. This intention may then 
be discharged in different ways, for example by sending a 
request to the translator agent. Once the message is expressed in 
a known ontology, an event is raised to trigger further 
processing on the message content. 
Our current experiments with the Challenge Problem make the 
simplifying assumption that the global ontology is shared. This 
assumption is only valid for such a self-contained exercise. Any 
realistic scale of application, especially one that uses open 
semantic web information sources, will be exposed to the 
ontology reconciliation problem. 

4.5 Critiquing and ranking solutions  
As the travel agency agent begins to assemble solutions to the 
client’s requested travel goal, it will be faced with a rapidly 
expanding search space. In order to improve its chances of 
success, it should choose to pursue only those partial solutions 
that are promising. If the agent waits until solutions (i.e. travel 
plans) are complete to critique them, it is likely still to be 
processing long after the client’s patience has run out and they 
have left the store. This implies that we must be able to critique 
partial solutions to the problem, and select which ones will be 
further expanded. We note that planning algorithms have been 
studied extensively for many years in AI, and it is not our intent 
in this short paper to revisit the many choices that a planning 
system can adopt to be able to plan effectively. Pending deeper 
investigation of this topic, our current design uses a simple 
forward-chaining means-end search algorithm. As mentioned 
above, we assign each partial solution a unique identifier. A 
solution is a series of segments, each of which is either a 
journey segment or an accommodation segment. The journey 
segment identifies the route, and may be composed of a series 
of individual journeys. A segment has an associated cost. 
Reviewing the Challenge Problem text, we hypothesise that the 
following represent typical preferences a client may have over 
journey segments: 

• type vehicle (e.g. Airbus A370) 

• cost 

• quality rating (first class, business class, economy, five 
star, etc) 

• existence of facilities (TV, Internet connection, 
smoking rooms, pool) 

• preference of mode of transport (fly vs. drive) – which 
may be conditional on other factors, such as 
accessibility of airport  

• distance to local amenities (sightseeing, ski, beach, etc) 

Some of these preferences will be fixed, some context 
dependent. On a business trip, customers might be less cost-
sensitive than on a personal vacation (or vice versa!). In 
summer, distance from ski resorts is less important than 
distance from the beach. 
We would like to explore making this preference information as 
widely available as possible, so encoding it as a semantic web 
resource seems plausible (we ignore for the time being 
important requirements to do with security and privacy). 
One natural approach is to consider the various categories of 
alternatives that the client might prefer as ontological classes. 
Thus, a customer who prefers non-smoking hotel rooms has a 
preference for a room in the class NonSmoking over class 
Smoking. A simple way to encode this in the client’s profile is 
shown in fig 9: 

<Preference> 
  <prefer rdf:resource=”#NonSmoking” /> 
  <over rdf:resource=”#Smoking” /> 
</Preference> 

Figure 9: First attempt at encoding user preferences 

<Preference> 
  <prefer> 
    <NonSmoking /> 
  </prefer> 
  <over> 
    <Smoking /> 
  </over> 
</Preference> 

Figure 10: alternative encoding for user preferences 

This example uses classes as individuals, so again, exceeds the 
limitations of OWL DL and OWL Lite. An alternative approach 
would be to treat the preference arguments as expressions, using 
RDF blank nodes (bNodes) as existential variables (an 
interpretation sanctioned by RDF theory ). This transforms the 
preference from fig 9 into fig 10: 
The difference between these approaches may be subtle to 
readers unfamiliar with RDF. In the first encoding (fig 9), the 
arguments to the preference relation are the classes themselves. 
In the second encoding, the term <NonSmoking /> is RDF 
shorthand for: 
  <rdf:Description> 
    <rdf:type rdf:ID=“NonSmoking” /> 
  </rdf:Description> 
that is, an anonymous node of type NonSmoking. 

To use this second encoding, the agent must match the 
existential query implicit in the graph to the data at hand. This 
exploits a feature of RDF (not, it must be admitted, a 
universally loved feature) that meta-level information can be 
encoded in the same formalism as the object-level information. 
The preference query can be seen as expressing a predicate over 
the proposed solution classes, but is encoded in the same graph 
structure as the data itself. 
By using pair-wise preferences of this kind, whichever 
approach is adopted, we obtain a partial ordering over sets of 
solutions. The reified Preference relationship is transitive, so a 
data source aware of this fact could pre-compute the transitive 
closure of preferences. Thus, if the client stated their preference 
was for 5-star hotels over 4-star, and 4-star over 3-star, the 
transitive closure would allow two proposed segments, one for a 



5-star hotel and one for a 3-star hotel to be ranked correctly. 
Since the ordering would be partial, however, not all solutions 
could be ranked, so the solution evaluator would need to allow 
for sets of equally preferred candidates at any one time.  

The client should be able to order their preferences, so that the 
preference for a certain cost band is allowed to dominate over 
the preference for smoking rooms, or vice versa. This could be 
achieved by adding a weight to the each Preference 
instance, or allowing preferences that ranked other preferences 
recursively. It is not clear which, if either, of these choices 
would work better in practice, and more experimentation is 
needed. 
Again, speculating about the design (we have not yet 
implemented the solution ranking mechanism), we could 
encode context -dependent preferences by adding a condition 
clause to the Preference instance. The problem we foresee 
here is that there is no standard mechanism, de facto or 
otherwise, for encoding general predicates in RDF. Thus any 
mechanism that allowed the encoding of “if summer-time” on a 
preference of NearBeach over NearSkiRun would be 
dependent on a processor being aware of the encoding scheme 
used. The choices presented above, assuming that the existence 
of Preference  is recognised, stay closer to standard RDF 
interpretations. 
Given that we can achieve a satisfactory encoding of user 
preferences, we must then incorporate them into the strategy for 
prioritising the search space. We envisage a plan that is 
triggered by the asserting of a partial solution into the agent’s 
beliefs KS, and which would rank the new solution against the 
current unexpanded partial solutions. Thus each partial solution 
is in one of two states: either it has been selected for expansion, 
or it has not been expanded yet, but is sorted according to the 
partial order defined by the user’s preferences. It would only be 
necessary to find the highest ranked plan that has not yet been 
expanded that is preferred over the new solution, so searching 
from the front of the candidates list will be effective. 
A more open question, and one that we have not yet addressed, 
is to be able to critique full and partial solutions, rather than just 
rank them. For example, if the agent was able to determine that 
a client could save a substantial amount of money by accepting 
a certain hotel that meets all criteria except having in-room 
Internet connections, it may be able to propose this to the user. 
Alternatively, such deductions might form the basis for 
negotiation strategies that suggest which factors to yield on, and 
which to stand firm on. This seems to be a fruitful area for 
future investigation. 

4.6 Determining acceptable solutions  
Before proposing a solution to the client, the agent must be 
certain that it has met the client’s expressed criteria for the trip. 
We have not yet stated in this paper how the client’s constraints 
are to be specified. This is in part because we run into 
limitations of standard ontological languages, since we will 
need constraints on the literal values of instance properties, and 
this is not an area that current ontology  languages address. 
Assuming that we have an appropriate canonicalization of the 
string form of a date, we can test for equality between two 
departure dates. But if the client specifies a departure date of 
“10-July -2003”, domain knowledge is needed to recognise that 
“10-July -2003 10:16” is acceptable. Moreover, the client may 
actually want specify a departure date of “around the 10th of 
July” or “between the 4th and the 10th of July”. 
We may also want to specify that the trip includes a visit to the 
Statue of Liberty. While we can – just – imagine the creation of 

a pseudo-class VisitToStatueOfLiberty, and 
subsequently a check that some segment of the trip is subsumed 
by this pseudo-class, it is hard to see what the definition of the 
class would be in practice. 

We thus currently define the constraints as a list of logical 
predicates that are interpreted by problem solvers other than the 
ontology reasoners. However, it remains an interesting area for 
speculation and future research whether there is a reasonably 
simple constraint language, that could be combined with a 
description-logic –like reasoner to give a richer means of 
checking consistency in candidate solutions. 

5. Evaluation and conclusions  
We have presented some vignettes of parts of the solution to the 
OAS’03 Challenge Problem using our BDI agent platform, 
Nuin. The key goal in the Challenge call for papers is to explore 
how agents would actually use ontological information. Much 
of the foregoing discussion represents our design thinking, since 
we have only begun to build the complete solution. 
Our agents are strongly knowledge-based, and use logical 
sentences and mental attitudes for their internal modelling. 
Ontological information is clearly useful compactly describing 
the domain of discourse (especially if the same ontology is 
shared with other agents), and allows the agent to use class and 
property hierarchies to generalise and specialise queries and 
results.  

Given our interest in building agents for the semantic web, we 
have restricted ourselves to the common semantic web ontology 
languages: DAML+OIL and OWL. Both of these languages’ 
designs are based on description logic (DL) reasoning. The use 
of description logic reasoners in practical agent applications is 
not a widely explored topic, due in part to a limited availability 
of DL reasoners. More such reasoners are now becoming 
available, and we can expect more research into this area in 
future. A key component of the description logic approach is 
class description, and we have shown above a few instances of 
using class descriptions in the agent’s reasoning. Using class 
descriptions and a meta-level prefers  predicate to 
encapsulate the client’s preferences appears to be a useful way 
to make those preferences available to a wider range of 
semantic web services. The limitations of description logic 
sentences, however, suggest that richer representations will 
need to be developed to encode a broadly useful sub-set of the 
client’s general preferences. 
While we have shown the use of ontology information by BDI 
agents, both as additional open knowledge sources for the agent 
to access, and as additional entailments that the agent reasoners 
can draw upon, we nevertheless feel that this is only a 
preliminary account of the integration of these two areas. 
Further practical experiences will help to resolve this, and we 
continue to develop a complete implementation of the 
Challenge Problem in the Nuin framework. We also look 
forward to the development of theoretical treatments of the 
interactions between the principles of deliberative agents and 
the principles of description logics. 
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