
XQuery Framework for Interoperable Multimedia Retrieval

Mario Döller, Florian Stegmaier, Alexander Stockinger, Harald Kosch
Chair of Distributed Information Systems

University of Passau
94034 Passau, GERMANY

firstname.lastname@uni-passau.de

ABSTRACT
Multimedia retrieval relies on the underlying metadata for-
mat for effective querying of multimedia information. Most
of the metadata formats are XML-based (for instance MPEG-
7 or P/META). In this context, the XQuery query language
is a natural choice for querying these data based on exact
matches. However, XQuery lacks in expressing and eval-
uating multimedia specific requests (e.q., spatial, fuzzy re-
quests). Therefore, the MPEG Query Format (MPQF), a
novel XML based query language tuned for standardized
multimedia requests, has been developed. Based on this, the
paper introduces a MPQF aware XQuery framework which
features a.) a plug-in architecture for external multimedia
routines, b.) an automatic approach for MPQF to XQuery
transformation and c.) an injection of information retrieval
capabilities to XQuery (e.g., scoring, ranking). Besides, the
framework can be adopted to any available XQuery reposi-
tory and allows the retrieval in any XML based multimedia
metadata format.

Categories and Subject Descriptors
H.2.4 [Systems]: Query Processing—Multimedia Databases;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query Formulation

Keywords
XQuery, MPEG Query Format, Multimedia retrieval

1. INTRODUCTION
Retrieving information in multimedia repositories is one

of the major challenging tasks in the multimedia life cy-
cle. Whenever, multimedia retrieval is discussed, one has
to deal with the related metadata (formats) which are of-
ten XML based (e.g. MPEG-71). In series, by investigating
XML based retrieval techniques, one finally ends up by the

1http://mpeg.chiariglione.org/

23rd GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 31.05.2011 - 03.06.2011, Obergurgl, Austria.
Copyright is held by the author/owner(s).

well known and established XQuery2 language. The XQuery
language has its strengthens in expressing data centric and
exact queries over XML data such as Give me all images
whose filesize > 100 kByte, but lack the ability to express
fuzzy requests common in multimedia retrieval (e.g., Query-
By-Example). To fill this gap, a new multimedia query lan-
guage, the MPEG Query Format [5] (MPQF) has been stan-
dardized in late 2008 by MPEG (formally known as ISO/IEC
SC29 WG11). The query language addresses XML based
metadata formats (e.g., MPEG-7) and combines data and
information retrieval components as well as management
functionalities.

In this context, the paper contributes with a XQuery
framework for multimedia search that features a.) a plug-
in architecture for external multimedia routines, b.) an
automatic approach for MPQF to XQuery transformation
and c.) an injection of information retrieval capabilities to
XQuery (e.g., scoring, ranking). Besides, the framework can
be adopted to any available XQuery repository and allows
the retrieval in any XML based multimedia metadata for-
mat. Another benefit of adopting XQuery for multimedia
retrieval is the broad diversity of available XQuery tools
(databases, parsers, etc.).

The paper uses the MPEG Query Format (MPQF). The
definition of the format is out of scope of this paper and has
been published elsewhere. Readers not familiar with MPQF
may look in [5] for detailed information. Further note, the
specified transformation model presents only selected trans-
formation rules and an extended version of this paper can
be found at: http://dimis.fim.uni-passau.de/iris/GI_

Workshop_extended.pdf.
The reminder of this paper is organized as follows: Sec-

tion 2 introduces related work in the area of XQuery exten-
sions for fuzzy retrieval. This is followed by Section 3 where
the proposed MPQF to XQuery framework is described. In
this context, Section 4 specifies our mapping approach for a
MPQF to XQuery transformation. The specification is eval-
uated by a small example in Section 5. Performance analysis
results are presented in Section 6. Finally, this article is con-
cluded in Section 7.

2. RELATED WORK
As highlighted in the introduction, multimedia retrieval

considers (to an high extend) multimedia metadata which
is often XML-based (e.g., TV-Anytime, MPEG-7, etc.). In
this context, in the past several query languages that are es-
pecially designed for XML data have been developed such as

2http://www.w3.org/TR/xquery/

73

XIRQL [4], but the most well known representative approach
is XQuery [8]. XML based query languages are strong in ex-
pressing data centric, but lack the ability to express fuzzy
requests common in multimedia retrieval (e.g., Query-By-
Example). There are already some approaches (e.g., VeX-
Query [9]) aiming to extend XQuery in this direction. How-
ever, none of them is completely adequate for multimedia
retrieval in terms of missing support for weighting of query
terms (to reflect user preferences) or support for tempo-
ral or spatial retrieval etc. Further approaches that extend
XQuery for fuzzy retrieval can be summarized as follows:
Early works (e.g. [6]) introduced an XQuery rank opera-
tor for the evaluation of information retrieval request that
target on an estimation of the relative relevance of docu-
ments within document collections. The integration of a
vector space model and an associated vscore function has
been presented in [7]. The vscore function returns the sim-
ilarity degree between a query vector and a content ele-
ment vector. Recently, in [3], the authors proposed a fuzzy
XQuery processing technique which allows the users to use
linguistic terms based user-defined functions in XQuery in-
stances. The approach has been implemented in the native
eXist XML database and provides better output than nor-
mal XQuery language execution.

3. MPQF BASED XQUERY FRAMEWORK
This section describes the overall structure and architec-

ture of the proposed MPQF based XQuery framework.

3.1 Architecture
Figure 1 presents the overall architecture and workflow of

the framework. First, the incoming MPQF request is parsed
by an internal MPQF parser which establishes a visitor pat-
tern syntax tree.

Figure 1: Overview of the system architecture

The MPQF syntax tree is forwarded to the transforma-
tion module which executes a mapping algorithm for pro-
ducing an equivalent XQuery request. The plug-in system
(see Subsection 3.2) supports the integration and evaluation
of external information retrieval routines (e.g. query by ex-
ample). After the finalization of the transformation process,
a final XQuery instance is available. In series, this XQuery
request is forwarded to the connected XQuery database for
execution.

3.2 Plug-in system
In order to support a flexible system, the framework in-

troduces a plug-in system. Figure 2 demonstrates where
plug-ins take action in the transformation life cycle.

The framework identifies different categories of plug-ins:
support for individual query types (e.g., QueryByMedia),

Figure 2: Overview of plug-in injection

extension of the XQuery language set (e.g., power function),
data model dependent transformations (e.g., MIME type fil-
tering) or functionality specific for the underlying XQuery
database. In general, a plug-in is a Java module which re-
ceives a fixed set of input parameters and is able to ma-
nipulate the internal context of the transformation process.
For instance, the plug-in module for our QueryByMedia im-
plementation receives as input parameters the possible el-
ements and attributes of the specified MPQF query type
(e.g., matchType and MediaResource). Then, the mod-
ule performs a similarity search at an external PostgreSQL3

database where the ScalableColor features of MPEG-7 are
stored. After finalization, the module responds with the re-
sults as presented by Transformation Rules 7 and 8.

4. MPQF TO XQUERY TRANSFORMATION
RULES

The transformation formalism presented in this paper con-
centrates on the implementation of a global framework for
fuzzy retrieval within XQuery based on the MPQF stan-
dard. In general, the rules distinguish between data model
depended and data model independent transformation. That
is, data model depended rules need to be adopted to the un-
derlying metadata format as the required information can
not be addressed by a given XPath4 within the MPQF query
request but need additional domain specific data.

4.1 Transformation Rules for Selection
The transformation rules for selection cover the mapping

of the filtering step which is described by the QueryCon-
dition element in an MPQF request. In this context, the
skeleton for integrating a single MPQF condition (e.g., query
type or comparison condition) into XQuery is implemented
as follows:

Transformation Rule 1 (Query Condition).
Let� Score i � be a substitute for the transformation of an
expression (e.g, comparison evaluation see Transformation
Rule 6), a boolean operator (see Transformation Rule 5) or
a query type which refers to external processing (see Trans-
formation Rule 8) for e.g., information retrieval evaluation.
Furthermore, let � Threshold i � be the user given limit
of the minimum similarity score for an operation (where
1 ≤ i ≤ n and n ∈ N). Then the transformation of a MPQF
query condition to XQuery is embedded as:

l e t
$ s c o r eVar i := <<Score i >>,
. . .

where
$ s c o r eVar i >= <<Thre sho l d i >>

Note, $scoreV ar i is a variable keeping the score value of
the evaluation.

3http://www.postgresql.org/
4http://www.w3.org/TR/xpath20/

74

Constitutively on the abstract transformation of query
conditions to score values, a closer look to its specific sub-
stitutions has to be performed. As defined in MPQF, an
individual query condition can contain comparison, string
and arithmetic operations. Exemplarily for this set of oper-
ations, the contains operation (see Transformation Rule 2)
and comparison operation (see Transformation Rule 3) are
defined.

Transformation Rule 2 (Contains Operator).
Let �Opi� be the respective operands of a MPQF contains
condition where 1 ≤ i ≤ 2. Then the corresponding trans-
formation to XQuery is defined as:

con ta in s(<<Op1>>, <<Op2>>)

Transformation Rule 3 (Comparison Condition).
Let �Operand i� be the respective operands of a MPQF
comparison operation where 1 ≤ i ≤ 2 and �Operator� is
the substitute of one of the defined MPQF operators (e.g.,
EQUAL to =). Then the transformation of a MPQF com-
parison condition to XQuery is defined as:

<<Operand 1>> <<Operator>> <<Operand 2>>

A special role plays the fuzzy boolean operators as they
combine the results of preceding evaluations by the means of
scoring functions. In this context, the fuzzy boolean opera-
tors of MPQF (OR, AND, etc.) are transformed as follows:

Transformation Rule 4 (Boolean operator).
Let�scoreV ar i� be the score value as described in Rule 1.
Further, �prefV ar i� specifies the given user preference
value (where i in [1 .. n] and n ∈ N) for the respective oper-
ation. Then, the mapping of fuzzy boolean operators (AND,
OR, XOR) follows the following interface:

<<OP>>
(<<scoreVar 1 >>,<<pre fVar 1 >> ,... ,<< scoreVar n >>,<<prefVar n >>)

Based on the abstract definition for fuzzy boolean oper-
ators in Rule 4 one example for a fuzzy AND operator is
specified in Rule 5.

Transformation Rule 5 (AND Boolean operator).
Let �scoreV ar i� and �prefV ar i� be specified as pre-
sented in Rule 4 and $scoreV ar (N + 1) the variable for
holding the final result. Then, a mapping for the AND fuzzy
boolean operator to a scoring function using the product t-
norm is defined as follows:
$ scoreVar (N+1) := math : pow (

math : pow(<<scoreVar 1 >>, <<pre fVar 1 >>)∗
. . .
math : pow(<<scoreVar n >>, <<prefVar n >>),
<<N>>)

Note, as the MPQF boolean operators rely on the fuzzy set
theory, the scoring functions should cope the t-norm and t-
conorm fuzzy logics [2], respectively. Further note, this Rule
assumes that the XML engine provides specific mathematic
libraries or is extensible in this direction. Otherwise, lookup
tables containing precalculated values in the interval [0.0 ..
1.0] can be provided (e.g., has been applied as plug-in for the
Berkeley DB XML).

The integration of data centric evaluations (e.g., compar-
ison operators) which base on a true/false basis is applied
by Transformation Rule 6.

Transformation Rule 6 (Expression).
Let �Expression� be any expression derived by the Rules 2
and 3. Then the score of those operations is gathered by the
following transformation:

i f (<<Express ion >>) then 1 .0 e l s e 0 .0

For the evaluation of information retrieval related tech-
niques (e.g., the QueryByMedia or SpatialQuery query type)
separate external processes have to be applied. These pro-
cesses filter the document set and produce document id and
score value pairs which are integrated into the final XQuery
request. For instance, as described in Subsection 3.2, the
QueryByMedia query type can be implemented by forward-
ing this part of the MPQF request to a specialized similarity
search engine for image retrieval by example. The result of
such an evaluation is then integrated as specified by Rule 7.

Transformation Rule 7 (Plug-in Integration).
Let $qbmVar be the container variable for results of an ex-
ternal evaluation and �anyURI i� an unique identifier of
an XML instance document and �anyScore i� its respec-
tive score value (where i in [1 .. n] and n ∈ N). Then, the
external result is integrated by the following format:
$qbmVar := (

<qbm>
<doc id=’<<anyURI 1>>’ s co re=’<<anyScore 1 >>’/>
. . .

<doc id=’<<anyURI n>>’ s co re=’<<anyScore n >>’/>
</qbm>

)

Note, this approach assumes that there is a unique iden-
tifier for every document. However, parts of a description
(e.g. low level features) can be swapped to specialized re-
trieval stores but the unique identifier remains as link be-
tween those parts.

Besides, the intermediate result set (stored in a variable)
is integrated into the overall evaluation by Rule 8 supporting
the access to already existing score results.

Transformation Rule 8 (Plug-in Evaluation).
Let �qbmVar� be the container as specified in Rule 7.
Then, access to individual score values is accomplished as
follows:

i f (e x i s t s ($qbmVar/doc [@id = base−ur i ($doc)]))
then (number ($qbmVar/doc [@id = base−ur i ($doc)] / @score))
e l s e (0 . 0)

The TargetMediaType element of MPQF restricts the mul-
timedia data set according to their mime type. This filtering
is data model depended as no additional information (e.g.
XPath to the data) is provided within the MPQF query it-
self. Therefore, the evaluation is embedded as follows:

Transformation Rule 9 (MIME type).
Let �MIME type i� be defined as a MIME type descrip-
tion where i in [1 .. n] and n ∈ N. Then, the filter criterion
extends the XQuery where clause as follows:
where

{<<MIME type 1>> OR
. . . .
<<MIME type n>>} AND

Finally, the resulting documents are ordered by their score
evaluation and stored in an internal format for further pro-
cessing (see Rule 10).

Transformation Rule 10 (Ordering).
Let $scoreVarN contain the final score value after N calcu-
lation steps, then the resulting documents are ordered and
preliminary stored as follows:
where

. . .
order by

$scoreVarN descend ing
re tu rn

<Doc score =’{ $scoreVarN } ’ i d =’{ $ i d } ’>{ $doc}</Doc>

75

4.2 Transformation Rules for Projection
In a final step, the desired information is extracted from

the filtered documents and integrated in a valid MPQF out-
put instance. As the wanted elements are addressed as
XPath expressions within an MPQF query, they can be re-
cycled in the transformation as well. Note, the final MPQF
query result is embedded in an internal proprietary format
in order to support enhanced functionalities such as caching,
paging, relevance feedback, etc. by the framework.

4.3 Transformation process
The so far introduced Transformation Rules (TR) describe

techniques for mapping parts of a MPQF request to its
equivalents in XQuery. The overall transformation process
creates a rule chain during the evaluation of the query in or-
der to map the entire MPQF request. Input of the chain is
the MPQF request. Then, a post order traversal is applied
which responds with a list of nodes (MPQF conditions) of
the QueryCondition element. By parsing this list, the type
of the current node is identified and the respective (set of)
Transformation Rule(s) is/are accomplished. Then, the al-
gorithm applies optional Rules for existing aggregation or
sorting parts. Finally, the rest of MPQF’s OutputDescrip-
tion element is evaluated by applying the Projection rule
(not shown in this paper). Finally, the output of this map-
ping process is an equivalent XQuery instance.

5. EXAMPLE TRANSFORMATION
For a better understanding of the defined Transformation

Rules, a simple example transformation is demonstrated by
the following MPQF query request (see Figure 3)5. The ex-
ample request addresses MPEG-7 based image descriptions
and selects the title and the creator information of all JPEG
images whose file size is greater or equal to 500000 Bytes
and where the creators family name contains the string Bob.
Besides, the threshold of the combined score result must ex-
ceed 0.5. Furthermore, the final result set should contain
not more then 30 elements.

The processing engine of the incoming query tree applies
a post order traversal to extract the internal nodes. For
our example, this results on the following sequence: Con-
tains, GreaterThanEqual, AND, TargetMediaType. Then,
by traversing this sequence, the assigned transformation rules
are executed.

Figure 3: Example tree

In the following, Subsection 5.1 describes the used rules
for the selection phase. Finally, in the project phase (see
Subsection 5.2) the desired information is extracted and the
entire XQuery is consolidated.

5Note, the request as MPQF language can be found in the
extended version of this article.

5.1 Selection phase
The transformation mechanism starts by parsing all ele-

ments of the generated sequence. The first element is the
contains condition which belongs to the set of expressions.
and triggers the execution of Transformation Rule 2. This
results in the following XQuery snippet (see Code 1).

Code 1 Transformation of the contains condition
contains($doc//mpeg7:FamilyName, ’Bob’)

This is followed by Transformation Rule 6 which is used
for the integration of expressions into XQuery (see Code 2)

Code 2 Integrating the contains condition
$scoreVar1 = if (contains($doc//mpeg7:FamilyName, ’Bob’))

then 1.0 else 0.0

Similarly to the contains condition, the next element in
the sequence is processed, namely the GreaterThanEqual
condition. Here, in our example, the Transformation Rule 3
followed by Rule 6 are evaluated, which results in the XQuery
snippet given in Code 3.

Code 3 Transformation of GreaterThanEqual
$scoreVar2 = if ($doc//mpeg7:FileSize >= 500000)

then 1.0 else 0.0

After applying the Transformation Rules for the leaf nodes,
our approach concentrates on the inner nodes (the boolean
operators). The inner nodes regulate how the results of the
leaf nodes are combined. For this purpose, scoring functions
are assigned to the respective boolean operators according
to t-norm and t-conorm rules. Our example uses the Prod-
uct function for the AND operation in order to combine the
individual score values. In this context, applying Transfor-
mation Rule 5 results in Code 4 for the AND condition.

The resulting score value and the threshold of an condi-
tion are integrated into the XQuery request by evaluating
Transformation Rule 1. Due to space constraints in this pa-
per, the final result for integrating the given thresholds is
shown in Code 5. If no threshold is assigned, the minimum
value is used (0).

As our example makes use of the TargetMediaType ele-
ment for restricting the result set according to the file for-
mat, a data model depended filtering has to be found. In
our example, we assume that the respective information is
annotated in the Content and FileFormat elements of the
MPEG-7 description. In assuming so, the following trans-
formation for MIME-types (see Rule 9) has to be applied
(see Code 6).

The final result of all combined transformations of the
selection phase can be found in Code 7.

5.2 Projection phase
The last stage in the transformation process is the cre-

ation of a valid MPQF response and the integration of the
requested information of the target data model. Our ex-
ample only instantiates the TextResult and Description el-
ements. As described beforehand, the final MPQF output
description is wrapped in a proprietary format (ResultDocu-

76

Code 4 Applying Transformation Rule for scoring function
$scoreVar3 = math:pow(math:pow($scoreVar1, 0.5)*

math:pow($scoreVar2, 0.5), 2)

Code 5 Integration of threshold values
$scoreVar1 >= 0.0 and
$scoreVar2 >= 0.0 and
$scoreVar3 >= 0.5

ment element) in order to support caching, paging, relevance
feedback, etc.

6. EVALUATION
This section describes the series of experiments we per-

formed in order to evaluate the effectiveness of our transfor-
mation approach. The tests were carried out on a subset of
the CoPhiR6 [1] data set containing MPEG-7 annotations
of Flickr images. The sizes of our test data sets varied from
100 up to 10000 annotations. In order to demonstrate the
transformation approach with various XML databases, the
following solutions have been chosen: Saxon7, Berkeley DB
XML8 and eXist DB9.

The overall performance evaluation is divided into two
main parts. First, the processing time of parsing and exe-
cuting the Transformation Rules has been analyzed in Sub-
section 6.1. The final execution of the resulting XQuery
instance at the mentioned databases is demonstrated in Sub-
section 6.2.

6.1 Transformation Evaluation
This subsection describes the set of experiments for evalu-

ating the performance of applying the Transformation Rules.
Input is a MPQF query request and output an equivalent
XQuery query request. In order to receive clear differences
between the used query classes a less powerful system config-
uration has been applied, namely an Intel Premium M 1.60
GHz CPU with 512 MB DDR2 400 main memory running
Windows XP.

The complexity of the queries is divided into the follow-
ing six classes in order to demonstrate the evaluation time
for different compositions of Transformation Rules: queries
where either aggregation or sorting is used (classes NoAg-
g/Sort, NoAgg/Sort Complex, Agg/NoSort), queries where
both (class Agg/Sort) and queries where none (class NoAg-
g/NoSort) of these features have been used. Except the
NoAgg/Sort Complex class, the example queries contain
only one condition (e.g. EQUAL condition). The com-
plex query class demonstrates the use of Boolean operators
(AND/OR) and multiple other conditions (e.g., contains or
comparison).

Finally, the sixth query class addresses the performance
of the plug-in system by demonstrating a QueryByMedia
query type which requires external processing. The external
processing has been realized by the integration of a relational

6http://cophir.isti.cnr.it
7http://saxon.sourceforge.net
8http://www.oracle.com/database/berkeley-db/xml/
index.html
9http://exist.sourceforge.net/

Code 6 Transformation of MIME type filtering
(
exists($doc//mpeg7:Content[@href = ’image’])
and
string($doc//mpeg7:FileFormat/mpeg7:Name/text()) = ’JPEG’
)

Code 7 Result of selection phase
$selected :=
(for

$doc in collection(’db.dbxml’)/*
let

$scoreVar1 = if (contains($doc//mpeg7:FamilyName, ’Bob’))
then 1.0 else 0.0,

$scoreVar2 = if ($doc//mpeg7:FileSize >= 500000)
then 1.0 else 0.0,

$scoreVar3 = math:pow(math:pow($scoreVar1, 0.5) *
math:pow($scoreVar2, 0.5), 2),

$id := base_uri($doc)
where
((
exists($doc//mpeg7:Content[@href = ’image’])
and
string($doc//mpeg7:FileFormat/mpeg7:Name/text()) = ’JPEG’

)) and
$scoreVar1 >= 0.0 and
$scoreVar2 >= 0.0 and
$scoreVar3 >= 0.5
order by

$scoreVar3 descending
return
<Doc score=’{$scoreVar3}’ id=’{$id}’>{$doc}</Doc>),

PostgreSQL10 database coping with low level features (color,
texture, etc.) of images. Similarity calculation has been
simplified on the basis of color features and the Euclidean
distance (no index has been used). Figure 4 presents the
average run time needed for the transformation of an MPQF
query request to an appropriate XQuery request. The tests
have been repeated 50 times. The evaluation shows that
there is a slight increase of time consumption depending on
the increase of query complexity. However, the maximum
differences between query classes do not increase 17%.

6.2 Database comparison
The experiments have been executed on a Windows based

stand-alone PC with Intel Core i7 1,6GHz (4 cores) CPU and
4 GB main memory. All databases have been tested out of
the box without optimization. Similar to Subsection 6.1 six
different query classes have been used during the evaluation,
whereas exemplarily only two are demonstrated in this arti-
cle. Note, the presented performance behavior is also valid
for the rest of the tests. Figure 5 show the results of our ex-
periments for a query where sorting has been enabled. The
y-axis describes the average processing time per document
(average processing time divided by the amount of docu-
ments in the database) and the x-axis shows the amount of
MPEG-7 documents stored in the database. The measured
overall processing time for one MPQF query consists of the
transformation time applied by our module and the time
needed for processing the resulting XQuery.

By evaluating the performance results, one can identify a
linear scaling of the Saxon and Berkeley DB XML engines,
which is stable over the increasing size of the test data set.
The impact of the initial phase needed by the engines can

10http://www.postgresql.org/

77

Figure 4: Performance of the transformation process

be observed by small test data sets (100 documents) and
here the Berkeley DB XML is outperformed by the others.
In contrast to Saxon and Berkeley DB, the eXist engine is
outperformed clearly for larger test data sets as it shows a
nearly quadratic scale factor.

Figure 5: Comparison of database performance for
XQuery with sorting

In general, the processing time for the MPQF-XQuery
transformation is in average under 7% of the overall pro-
cessing time for evaluating the final XQuery request and
therefore negligible.

The last experiment targets on the evaluation of the plug-
in injection process by the means of a QueryByMedia query
type which realizes similarity search on multimedia data.
As described beforehand, the test environment consists of a
PostgresSQL database storing the low level features (Scal-
ableColor of MPEG-7). As a proof of concept, similarity
search is implemented by an SQL function in the target
database. Of course, here is room for improvements (e.g.,
use of index structures or enhanced multimedia retrieval
modules). Figure 6 show the results for the QueryByMedia
evaluation.

7. CONCLUSIONS
This article proposed a MPQF based XQuery framework

which provides a specification of a set of Transformation
Rules for mapping a MPEG query format request to an
equivalent XQuery request. Based on this, a framework has
been developed featuring a plug-in system for external mul-
timedia retrieval routines, a threading model for fast and
scalable processing and an internal result set format enabling
caching, paging and relevance feedback operations. The
framework is able to connect to any available XQuery reposi-

Figure 6: Comparison of database performance for
XQuery with QueryByMedia plug-in

tory. By using the proposed framework, XQuery repositories
can be enhanced for multimedia retrieval on any XML based
multimedia metadata format in a standardized way.

Future work will concentrate on further developments for
the projection and output description part and the integra-
tion of additional plug-in elements coping for instance spa-
tial and temporal retrieval.

8. ACKNOWLEDGMENTS
This work has been supported in part by the THESEUS

Program, which is funded by the German Federal Ministry
of Economics and Technology.

9. REFERENCES
[1] Paolo Bolettieri, Andrea Esuli, Fabrizio Falchi, Claudio

Lucchese, Raffaele Perego, Tommaso Piccioli, and Fausto
Rabitti. CoPhIR: a test collection for content-based image
retrieval. CoRR, abs/0905.4627v2, 2009.

[2] Didier Dubois, Henri Prade, and Florence Sedes. Fuzzy
Logic Techniques in Multimedia Database Querying: A
Prelimiary Investigation of the Potentials. IEEE Transaction
on Knowledge and Data Engineering, 13(3):383–392, 2001.

[3] E.J. Thomson Fredrick and G. Radhamani. Fuzzy Logic
Based XQuery operations for Native XML Database
Systems. International Journal of Database Theory and
Application, 2(3):13–20, 2009.

[4] Norbert Furh and Kai Grossjohann. XIRQL: A Query
Language for Information Retrieval in XML Documents. In
Proceedings of the 24th ACM-SIGIR Conference on
Research and Development in Information Retrieval, pages
172–180, New Orleans, Louisiana, USA, 2001. ACM Press.

[5] ISO/IEC. Information technology - Multimedia content
description interface - Part 12: Query format. ISO/IEC
15938-12:2008, 2008.

[6] Ji-Hoon Kang, Chul-Soo Kim, and Eun-Jeong Ko. An
XQuery engine for digital library systems. In Proceedings of
the 3rd International ACM/IEEE-CS joint conference on
Digital libraries, pages 400–400, Houston Texas, 2003.

[7] Jacques Le Maitre. Indexing and Querying Content and
Structure of XML Documents According to the Vector Space
Model. In Proceedings of the IADIS International
Conference WWW/Internet, pages 353–358, Lisbon,
Portugal, 2005.

[8] Priscilla Walmsley. XQuery. O’Reilly Media, 2007. ISBN:
978-0596006341.

[9] Ling Xue, Chao Li, Yu Wu, and Zhang Xiong. VeXQuery:
an XQuery extension for MPEG-7 vector-based feature
query. In Proceedings of the International Conference on
Signal-Image Technology and Internet Based Systems
(IEEE/ACM SITIS’2006), pages 176–185, Hammamet,
Tunesia, 2006. Springer-Verlag.

78

