Creating Declarative Process Models Using
Test Driven Modeling Suite

Stefan Zugal, Jakob Pinggera, and Barbara Weber

University of Innsbruck, Austria
{stefan.zugall jakob.pinggera|barbara.weber}@uibk.ac.at

Abstract. Declarative approaches to process modeling promise a high
degree of flexibility. However, current declarative state-of-the-art model-
ing notations are, while sound on a technical level, hard to understand.
To cater for this problem, in particular to improve the understandabil-
ity of declarative process models as well as the communication between
domain experts and model builders, Test Driven Modeling (TDM) has
been proposed. In this tool paper we introduce Test Driven Modeling
Suite (TDMS) which provides operational support for TDM. We show
how TDMS realizes the concepts of TDM and how Cheetah Experimen-
tal Platform is used to make TDMS amenable for effective empirical
research. Finally, we provide a brief example to illustrate how the adop-
tion of TDMS brings out the intended positive effects of TDM for the
creation of declarative process models.

Key words: Declarative Business Process Models, Test Driven Model-
ing, Test Driven Modeling Suite.

1 Introduction

In today’s dynamic business environment the economic success of an enterprise
depends on its ability to react to various changes like shifts in customer’s atti-
tudes or the introduction of new regulations and exceptional circumstances [1].
Process-Aware Information Systems (PAISs) offer a promising perspective on
shaping this capability, resulting in growing interest to align information sys-
tems in a process-oriented way [2]. Yet, a critical success factor in applying
PAISs is the possibility of flexibly dealing with process changes [1]. To address
the need for flexible PAISs, competing paradigms enabling process changes and
process flexibility have been developed, e.g., adaptive processes [3], declarative
processes [4] and late binding and modeling [5].

Especially declarative processes have recently attracted the interest of re-
searchers, as they promise a high degree of flexibility [4]. Although the benefits
of declarative approaches seem rather evident [4], they are not widely adopted in
practice yet. In particular, as pointed out in [4], [6] ,[7], understandability prob-
lems hamper the usage of declarative process models. An approach tackling these
problems, the Test Driven Modeling (TDM) methodology, is presented in [7].
TDM aims at improving the understandability of declarative process models as

2 Pre-proceedings of CAISE’11 Forum

well as the communication between domain experts [8] and model builders [8] by
adopting the concept of testcases from software engineering. This tool paper de-
scribes Test Driven Modeling Suite (TDMS)! that provides operational support
for TDM.

The remainder of this tool paper is structured as follows: Section 2 briefly
introduces TDM. Then, Section 3 discusses the software architecture and features
of TDMS, while Section 4 illustrates the usage of TDMS by an example. Finally,
Section 5 concludes with a summary and an outlook.

2 Test Driven Modeling

In this section we briefly sketch what constitutes a declarative process model
and how TDM is intended to support the creation of declarative process mod-
els. Please note that we focus on TDMS and necessary backgrounds only. A
discussion of, e.g., related approaches, is out of scope and can be found in [7].
A declarative process model is characterized by a set of activities and a set
of constraints. In contrast to imperative process modeling languages like, e.g.,
BPMN, the control-flow is not explicitly, but implicitly defined through con-
straints which exclude forbidden behavior. For instance, a constraint in process
model S might specify that activity A is not allowed to be executed more than
once. Then, every process instance that contains not more than one execution
of A is considered to be a valid instance of S—independent of when A has been
executed. An exemplary declarative process model can be found in Fig. 4 (2).
While constraints focus on forbidden behavior, TDM introduces the concept
of testcases to focus on desired behavior of the process model. In particular, a
testcase consists of an execution trace (i.e., a sequence of activities that constitute
a process instance) as well as a set of assertions (i.e., conditions that must hold
at a certain state of the process instance) (cf. Fig. 1). The execution trace of
a testcase thereby specifies behavior that must be supported by the process
model, whereas assertions additionally allow to test for unwanted behavior, i.e.,
behavior that must be prohibited by the process model. A typical example for
an assertion would be to check whether activity N is executable at time M.
Consider, for illustration, the testcase depicted in Fig. 1. It contains the ex-
ecution trace <A,B> (1) as well as an ezecution assertion that specifies that
A cannot be executed between the completion of A and the start of B (2) and
termination assertions that specify that the process instance cannot be termi-
nated before the completion of A (3), however, it must be possible to terminate
after the completion of A (4). The times in Fig. 1 do not necessarily constitute
real times, but rather provide a timeline to test for control-flow behavior, i.e.,
define whether activities can be executed subsequently or in parallel. Further-
more testcases are validated automatically, i.e., no user interaction is required
to check whether the specified behavior is supported by the process model.
So far we have introduced the concept of testcases, in the following we will
sketch how their adoption intends to improve the communication between do-

! Freely available from: http://www.zugal.info/tdms

Creating Declarative Process Models Using Test Driven Modeling Suite 3

Execution Term. |

o 2
GE—O ™= 0]

Fig. 1. A Simple Testcase

main expert (DE) and model builder (MB). Testcases provide information in a
form that is not only understandable to the MB, but also understandable to the
DE, who usually does not have the knowledge to read formal process models [8].
Usually the DE needs the MB to retrieve information from the model, cf. Fig. 2
(2) and (3). Since testcases are understandable to the DE, they provide an ad-
ditional communication channel to the process model, cf. Fig. 2 (4) and (6). It
is important to stress that TDM’s intention is not to make the DE specify the
testcases in isolation. Rather, testcases should be created by the DE and the
MB together and provide a common basis for discussion.

/ Testl

R Test2
(4)/ Test3 \(6)

re

O I

Domain Expert (DE) /

AR ©)
@, ﬁ o

Model Builder (MB)

Fig. 2. Communication Flow

Besides improving the communication between DE and MB, testcases aim
at improving the MB’s understanding of the process model by providing an ad-
ditional point of view. As pointed out in [7], especially so-called hidden depen-
dencies [9], i.e., information that is not ezplicitly available in the process model
can impede a model’s understandability. An exemplary hidden dependency is
shown in Fig. 3 (2): A must be executed exactly once (cf. cardinality constraint
on A) and after A has been executed, B must be executed (cf. response con-
straint between A and B). Thus, B must be executed at least once for every
process instance. However, this information is present in the process model im-
plicitly only. Therefore the MB cannot rely on explicit information only, but has
to inspect the model carefully for such hidden dependencies. Using TDM this

4 Pre-proceedings of CAISE’11 Forum

problem can be tackled by specifying a testcase that tests for this hidden de-
pendency as shown in Fig. 3 (1): the testcase specifies that the process instance
can only be terminated if B has been executed at least once. As soon as the MB
conducts changes to the process model that violate the testcase, the automated
validation of TDMS (cf. Section 3) immediately informs the MB.

|'. Execution | Term. |

)

Fig. 3. Hidden Dependency

3 Test Driven Modeling Suite

Up to now we have introduced the concept of TDM. This section deals with Test
Driven Modeling Suite (TDMS) which provides operational support for TDM.
In particular, Section 3.1 discusses the features of TDMS in detail. Subsequently,
Section 3.2 describes how TDMS is integrated with existing frameworks for em-
pirical research and business process execution.

3.1 Software Components

To provide an overview of TDMS’ features, all integrated components are illus-
trated in Fig. 4; each component will be described in detail in the following.
On the left hand side TDMS provides a graphical editor for editing testcases
(1). To the right, a graphical editor allows for designing the process model (2).
Whenever changes are conducted, TDMS immediately validates the testcases
against the process model and indicates failed testcases in the testcase overview
(3)—currently listing three testcases from which one failed. In addition, TDMS
provides a detailed problem message about failed testcases in (4). In this exam-
ple, the MB defined that the trace <A,B,B,B,A,C> must be supported by the
process model. However, as A must be executed exactly once (cf. the cardinal-
ity constraint on A), the process model does not support this trace. In TDMS
the failed testcase is indicated by the activity highlighted in (1), the testcases
marked in (3) and the detailed error message in (4).

Testcase Editor. As mentioned before, testcases are a central concept of TDM,
have precise semantics for the specification of behavior and still should be un-
derstandable to domain experts. To this end, TDMS provides a calendar-like
testcase editor as shown in Fig. 4 (1).

Creating Declarative Process Models Using Test Driven Modeling Suite 5

%] trace <AB,BAC> must be supported ©1 - ¢ C requires B = O)[of2 Declarative Modeler =0
Execution Tem.) — | 4 Palette b
2000 [; Auswahlen
or 5 ey
‘ A ‘ ‘ o | = Basic @

S— = Selection

it Init

e Last.

b4 :
— . \ —» Precedence
[e+ s Response

ofe | o |o|w| =

42 Succession
_ (= Negation
« i v | OCther

[TOM Project Explorer = O /[2 problems =g
2 My First Declarative Process Problem
g C requires B
0o i trace <D,AB,C> must be supported
— g trace <AB,B,B,A,C> must be supported

: | Yo

Fig. 4. Screenshot of TDMS

@ 'A’ cannot be executed: Activity 'A' must be execute..,

Declarative Process Model Editor. The declarative process model editor,
as shown in Fig. 4 (2), provides a graphical editor for designing models in Dec-
SerFlow [4], i.e., a declarative process modeling language.

Testcase Creation and Validation. In order to create new testcases or to
delete existing ones, Fig. 4 (3) provides an outline of all testcases. Whenever a
testcases is created, edited or deleted, or, on the other hand, the process model
is changed, TDMS immediately validates all testcases and provides a detailed
problem message in Fig. 4 (4) if a testcase failed. It is important to stress that
the validation procedure is performed automatically, i.e, no user interaction is
required to validate the testcases.

In order to ensure that all components work properly, TDMS has been devel-
oped using Test Driven Development, where applicable. In addition, researchers
with different backgrounds, e.g., economics and computer sciences, have been
included to develop an intuitive user interface. In a recent application of TDMS
in a controlled experiment [10] no abnormal program behavior was observed. In
addition, students considered TDMS as intuitive and easy to use.

3.2 Integration of Test Driven Modeling Suite

TDM, as introduced in Section 2, focuses on the modeling of declarative pro-
cesses, TDMS provides the necessary operational support, i.e., tool support. To
this end, TDMS makes use of Cheetah Experimental Platform’s (CEP) [11] com-
ponents for empirical research and integrates Declare [12] for workflow execution,
as illustrated in Fig. 5 and detailed in the following.

Cheetah Experimental Platform as Basis. One of the design goals of TDMS
was to make it amenable for empirical research, i.e., it should be easy to employ
in experiments; data should be easy to collect and analyze. For this purpose,
TDMS was implemented as an experimental workflow activity of CEP, allowing

6 Pre-proceedings of CAISE’11 Forum

Tests Export

Model

I
I
I
i
I

! Declare Framework

I (Worfklow Engine)

i

| Declare Worklist

| (Worfklow Client)

| Execute Process

I

I

I

I

I

I

Instance

Process Modeling Process Execution

Fig. 5. Interplay of TDMS, CEP and Declare

TDMS to be integrated in any experimental workflow (i.e., a sequence of ac-
tivities performed during an experiment, cf. [11]). In addition, we use CEP to
instrument TDMS; i.e., to log each relevant user interaction to a central data
storage. This logging mechanism, in combination with CEP’s replay feature, al-
lows the researcher to inspect in detail how TDMS is used to create process
models and testcases by watching the process of modeling step-by-step.
Business Process Execution. In order to allow for the execution of declara-
tive process models created in TDMS, an export mechanism to Declare [12] is
provided. As illustrated in Fig. 5, testcases and process models are iteratively
created in TDMS. For deployment, the process model is converted into a format
that can be directly fed into the Declare framework, i.e., workflow engine. Then,
the Declare worklist allows for the execution of the process instance.

4 Example

A preliminary empirical evaluation shows the positive influence of TDM on cog-
nitive load and perceived quality during model maintenance [10]. To illustrate
the influence of TDMS on process modeling, we provide an example that shows
how a DE and a MB could use TDMS to create a process model and respective
testcases describing of how to supervise a master thesis (cf. Fig. 6-8). For the
sake of brevity, the example is kept on an abstract level and the following ab-
breviations are used:

D: Discuss topic P: Provide feedback G: Grade work

Starting from an empty process model, the DE lines out general properties
of the process: “When supervising a master thesis, at first the topic needs to be
discussed with the student. While the student works on his thesis, feedback may
be provided at any time. Finally, the thesis needs to be graded.”. Thus, possibly
with help of the MB, the DE inserts activities D, P and G in the testcase’s
execution trace (cf. Fig. 6); TDMS automatically creates respective activities in
the process model. Now, the DE and MB run the testcase and the test engine
reports that the testcase passes.

Subsequently, the DE and MB engage in a dialogue of questioning and
answering [13]—the MB challenges the model: “So every thesis must start by
discussing the topic?”. “Yes, indeed—you need to establish common knowledge
first.”, the DE replies. Thus, they create a new testcase capturing this require-
ment and run it. Apparently, the testcase fails as there are no constraints in the

Creating Declarative Process Models Using Test Driven Modeling Suite 7

|’. Execution | Term. | '8 'l

:.UU:: — | [Provide feedback .|‘ Grade work .“ Discuss topic
010 Provide feedback |

02:: Grade wark |

030

Fig. 6. Testcase 1: <D,P,G> Proposed by the DE

model yet. The MB inserts an init constraints on D (i.e., D must be the first
activity in every process instance); now the testcase passes (cf. Fig. 7).

i Execution .\'|'.‘Term. .\'|
00~ Provide feedback QJ (!
— 4 ‘ Discuss topic ‘
01+ Grade work @J d
02 Discuss topic | Provide feedback H Grade work ‘
0200

Fig. 7. Testcase 2: Introduction of Init on D

Again, the MB challenges the model and asks: “Can the supervisor grade a
thesis multiple times?”. The DE replies: “No, of course not, each thesis must be
graded exactly once.” and together they specify a third testcase that ensures that
G must be executed exactly once. By automatically validating this testcase, it
becomes apparent that the current model allows G to be executed several times.
Thus, the MB introduces a cardinality constraint on G (cf. Fig. 8).

Execution Y Term.

— — - [Cinit |

oo™ Discuss topic | ’ N
— : Discuss topic ‘

01 Grade work | (= \ y

0200 Grade work Q“] S‘ - \ 1

03,, Provide feedback “ Grade work ‘

Fig. 8. Testcase 3: Introduction of Cardinality on G

While this example is kept small for the sake of brevity, it illustrates the
benefits of using TDMS for modeling. First, the DE, who is usually not trained
in reading or creating formal process models [8], is not required to modify the
model itself, rather he defines behavior through the specification of testcases
(possibly with the help of the MB). Second, testcases provide a common basis
for understanding, thus supporting communication between the DE and MB.
Third, behavior that is specified through testcases is validated automatically by
TDMS, thereby ensuring that model changes do not violate desired behavior.

8 Pre-proceedings of CAISE’11 Forum

5 Summary and Outlook

TDMS, as described in this tool paper, provides operational support for the
TDM methodology. More specifically, TDMS allows for a tight integration of
declarative process models and testcases, thereby aiming at improving the com-
munication between domain expert and model builder as well as resolving hidden
dependencies. In addition, we sketched how we employ CEP as basis to make
TDMS amenable for empirical research and showed how the Declare system is
employed for the execution of declarative processes modeled in TDMS. Finally,
we illustrated the intended usage of TDMS, in particular the iterative develop-
ment of testcases and process model, with the help of a small example.

Future work focuses on further empirical validation: TDMS will be used in
case studies to investigate whether the proposed methods are feasible in prac-
tice. In addition, TDMS will be employed in further controlled experiments to
complement the case studies’ results with quantitative data.

References

1. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives. DKE 61 (2007) 39-58

2. Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley-
Interscience (2005)

3. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow
without Losing Control. JIIS 10 (1998) 93-129

4. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, TU Eindhoven (2008)

5. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. ISJ 30 (2005) 349-378

6. Weber, B., Reijers, H.A., Zugal, S., Wild, W.: The Declarative Approach to Busi-
ness Process Execution: An Empirical Test. In: Proc. CAiSE ’09. (2009) 270-285

7. Zugal, S., Pinggera, J., Weber, B.: Toward Enhanced Life-Cycle Support for Declar-
ative Processes. JSME (accepted)

8. van Bommel, P., Hoppenbrouwers, S., Proper, E., van der Weide, T.: Exploring
Modelling Strategies in a Meta-modelling Context. In: Proc. OTM ’06. (2006)
1128-1137

9. Green, T.R., Petre, M.: Usability Analysis of Visual Programming Environments:
A ’Cognitive Dimensions’ Framework. JVLC 7 (1996) 131-174

10. Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability
of declarative process models. In: Proc. BPMDS ’11. (to appear)

11. Pinggera, J., Zugal, S., Weber, B.: Investigating the process of process modeling
with cheetah experimental platform. In: Proc. ER-POIS ’10. (2010) 13-18

12. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proc. EDOC ’07. (2007) 287-298

13. Hoppenbrouwers, S.J., Lindeman, L., Proper, E.H.: Capturing Modeling Processes
- Towards the MoDial Modeling Laboratory. In: Proc. OTM ’06. (2006) 1242-1252

