
Integrating Fuzzy c-Means Clustering with PostgreSQL ∗

c⃝ Ruslan Miniakhmetov

South Ural State University
tavein@gmail.com

M.Sc. advisor Mikhail Zymbler

Abstract

Many data sets to be clustered are stored in rela-
tional databases. Having a clusterization algo-
rithm implemented in SQL provides easier clus-
terization inside a relational DBMS than out-
side with some alternative tools. In this pa-
per we propose Fuzzy c-Means clustering algo-
rithm adapted for PostgreSQL open-source re-
lational DBMS.

1 Introduction
Integrating clustering algorithms is a topic/xplore/al is-
sue for database programmers [11]. Such an approach,
on the one hand, encapsulates DBMS internal details
from application programmer. On the other hand, it al-
lows to avoid overhead connected with export data out-
side a relational DBMS. The Fuzzy c-Means (FCM) [9,
6, 2] clustering algorithm provides a fuzzy clustering of
data. Currently this algorithm have many implementa-
tions on a high-level programming languages [5, 7]. For
implementation the FCM algorithm in SQL we choose
an open-source PostgreSQL DBMS [15].

The paper is organized as follows. Section 2 intro-
duces basic definitions and an overview of the FCM al-
gorithm. Section 3 proposes implementation of the FCM
in SQL called pgFCM. Section 4 briefly discusses related
work. Section 5 contains conclusion remarks and direc-
tions for future work.

2 The Fuzzy c-Means Algorithm
K-Means [10] is one of the most popular clustering algo-
rithms, it is a simple and fairly fast [3]. The FCM algo-
rithm generalizes K-Means to provide fuzzy clustering,
where data vectors can belong to several partitions (clus-
ters) at the same time with a given weight (membership
degree). To describe FCM we use the following notation:

• d ∈ N — dimensionality of a data vectors (or data
items) space;

• l ∈ N : 1 ⩽ l ⩽ d — subscript of the vector’s coor-
dinate;

∗ This paper is supported by the Russian Foundation for Basic Re-
search (grant No. 09-07-00241-a).

Proceedings of the Spring Researcher’s Colloquium on Database
and Information Systems, Moscow, Russia, 2011

• n ∈ N — cardinal number of training set;

• X ⊂ Rd — training set for data vectors;

• i ∈ N : 1 ⩽ i ⩽ n — vector subscript in a training
set;

• xi ∈ X — the i-th vector in the sample;

• k ∈ N — number of clusters;

• j ∈ N : 1 ⩽ j ⩽ k — cluster number;

• C ⊂ Rk×d — matrix with clusters’ centers (cen-
troids);

• cj ∈ Rd — center of cluster j, d-dimensional vec-
tor;

• xil, cjl ∈ R — l-s coordinates of vectors xi and cj
respectively;

• U ⊂ Rn×k — matrix with membership degrees,
where uij ∈ R: 0 ⩽ uij ⩽ 1 is a membership
degree between vector xi and cluster j;

• ρ(xi, cj) — distance function, defines a member-
ship degree between vector xi and cluster j;

• m ∈ R : m > 1 — the fuzzyfication degree of ob-
jective function;

• JFCM — objective function.

The FCM is based on minimization of the objective
function JFCM :

JFCM (X, k,m) =

N∑
i=1

k∑
j=1

um
ijρ

2(xi, cj) (1)

Fuzzy clusterization is carried out through an iterative
optimization of the objective function (1). Membership
matrix U and centroids cij are updated using the follow-
ing formulas:

uij =
k∑

t=1

(
ρ(xi, cj)

ρ(xi, ct)

) 2
1−m

(2)

∀j, l cjl =

n∑
i=1

um
ij · xil

n∑
i=1

um
ij

(3)



Table 2: Relational Tables of pgFCM Algorithm

No. Table Semantics Columns Number of rows

1 SH training set for data vectors (horizontal form) i, x1, x2, . . . , xd n

2 SV training set for data vectors (vertical form) i, l, val n·d
3 C centroids’ coordinates j, l, val k·d
4 SD distances between xi and cj i, j, dist n·k
5 U degree of membership vector xi to a cluster cj on step s i, j, val n·k
6 UT degree of membership vector xi to a cluster cj on step s+1 i, j, val n·k
7 P result of computation function δ (6) on step s d, k, n, s, delta s

Let s is a number of iteration, u(s)
ij and u

(s+1)
ij are el-

ements of matrix U on steps s and s+1 respectively, and
ε ∈ (0, 1) ⊂ R is a termination criterion. Then the ter-
mination condition can be written as follows:

max
ij

{|u(s+1)
ij − u

(s)
ij |} < ε (4)

Objective function (1) converges to a local minimum (or
a saddle point) [1].

Algorithm 1 The Fuzzy c-Means Algorithm
Input: X, k,m, ε
Output: U

1: s := 0, U (0) := (uij) {initialization}
2: repeat
3: {computation of new centroids’ coordinates}

Compute C(s) := (cj) using formula (3)
where uij ∈ U (s)

4: {update matrixes values}
Compute U (s) and U (s+1) using formula (2)

5: s := s+ 1
6: until max

ij
{|u(s)

ij − u
(s−1)
ij |} ⩾ ε

Algorithm 1 shows the basic FCM. The input
of algorithm receives a set of data vectors X =
(x1, x2, . . . , xn), number of clusters k, fuzzyfication de-
gree m, and termination criterion ε. The output is a ma-
trix of membership degrees U .

3 Implementation of Fuzzy c-Means Algo-
rithm using PostgreSQL

In this section we suggest pgFCM algorithm as a way to
integrate FCM algorithm with PostgreSQL DBMS.

3.1 General Definitions

To integrate FCM algorithm with a relational DBMS it is
necessary to perform matrixes U and X as relational ta-
bles. Subscripts for identification elements of relational
tables are presented in Table 1 (numbers n, k, d a defined
above in a section 2).

As a function of distance ρ(xi, cj), without loss of
generality, we use the Euclidean metric:

ρ(xi, cj) =

√√√√ d∑
l=1

(xil − cjl)2 (5)

Table 1: Data Elements Subscripts

Subscript Range Semantics
i 1, n vector subscript
j 1, k cluster subscript
l 1, d vector’s coordinate subscript

To compute the termination criterion 4 we introduce
the function δ as follows:

δ = max
ij

{|u(s+1)
ij − u

(s)
ij |} (6)

3.2 Database Scheme

Table 2 summarizes database scheme of pgFCM algo-
rithm (underlined columns are primary keys).

In order to store sample of a data vectors from set X it
is necessary to define table SH(i, x1, x2, . . . , xd). Each
row of sample stores vector of data with dimension d and
subscript i. Table SH has n rows and column i as a
primary key.

FCM steps demand aggregation of vector coordinates
(sum, maximum, etc.) from set X . However, because
of its definition, table SH does not allow using SQL ag-
gregation functions. To avoid this obstacle we define a
table SV (i, l, val), which contains n·d rows and have
a composite primary key (i, l). Table SV represents a
data sample from table SH ans supports SQL aggrega-
tion functions max and sum.

Due to store coordinates of cluster centroids tempo-
rary table C(j, l, val) is defined. Table C has k·d rows
and the composite primary key (j, l). Like the table SV ,
structure of table C allows to use aggregation functions.

In order to store distances ρ(xi, cj) ta-
ble SD(i, j, dist) is used. This table has n·k rows
and the composite primary key (i, j).

Table U(i, j, val) stores membership degrees, calcu-
lated on s-th step. To store membership degrees on
s+1 step similar table UT (i, j, val) is used. Both tables
have n·k rows and the composite primary key (i, j).

Finally, table P (d, k, n, s, delta) stores iteration num-
ber s and the result of computation function (6) delta for
this iteration number. Number of rows in table P de-
pends on the number of iterations.

3.3 The pgFCM Algorithm

The pgFCM algorithm is implemented by means of a
stored function in PL/pgSQL language. Algorithm 2
shows the main steps of the pgFCM.



Algorithm 2 The pgFCM Algorithm
Input: SH, k,m, eps
Output: U

1: {initialization}
Create and initialize temporary tables (U,P, SV ,
etc.)

2: repeat
3: {computations}
4: Compute centroids coordinates. Update table C.
5: Compute distances ρ(xi, cj). Update table SD.
6: Compute membership degrees UT = (utij).

Update table UT .
7: {update}

Update tables P and U .
8: {check for termination}
9: until P.delta ⩾ eps

The input set of data vectors X stored in table SH .
Fuzzyfication degree m, termination criterion ε, and
number of clusters k are function parameters. The ta-
ble U contains a result of pgFCM work.

3.4 Initialization

Initialization of tables SV , U , and P provided by SQL-
code I1, I2, and I3 respectively. Table SV is formed by
sampling records from the table SH .

I1: INSERT INTO SV
SELECT SH.i, 1, x1 FROM SH;

...
INSERT INTO SV
SELECT SH.i, d, xd FROM SH;

For table U a membership degree between data vec-
tor xi and cluster j takes 1 for all i = j.

I2: INSERT INTO U (i, j, val)
VALUES (1, 1, 0);

...
INSERT INTO U (i, j, val)
VALUES (j, j, 1);

...
INSERT INTO U (i, j, val)
VALUES (n, k, 0);

In other words, as a start coordinates of centroids,
first d data vectors from sample X are used.

∀ i = j uij = 1 ⇒ cj = xi

When initializing the table P , the number of points k
is taken as a parameter of the function pgFCM . A data
vectors space dimensionality d and a cardinal number of
the training set n also provided by function pgFCM pa-
rameters. The iteration number s and delta initializes as
zeros.

I3: INSERT INTO P(d, k, n, s, delta)
VALUES (d, k, n, 0, 0);

3.5 Computations

According to Algorithm 2, the computation stage is split-
ted to the following three sub-steps: computation coor-
dinates of centroids, computation of distances, and com-
putation membership degrees, marked as C1, C2, and C3
respectively.

C1: INSERT INTO C
SELECT R1.j, l, R1.s1 / R2.s2 AS val
FROM (SELECT l, j,

sum(U.val^2 * SV.val)
AS s1

FROM U, SV
WHERE U.i = SV.i
GROUP BY l, j) AS R1,
(SELECT j, sum(U.val^2) AS s2
FROM U
GROUP BY j) AS R2

WHERE R1.j = R2.j;

C2: INSERT INTO SD
SELECT i, j,

sum((SV.val - C.val)^2)
AS dist

FROM SV, C
WHERE SV.l = C.l;
GROUP BY i, j;

Through the FCM, computations of the distances pro-
vide by formula (2). Let us notice that in formula (3) the
fraction’s numerator does not depend on t, and rewrite
this formula as follows:

uij = ρ
2

1−m (xi, cj) ·
k∑

t=1

ρ
2

m−1 (xi, ct) (7)

So, the computation of membership degrees can be
written as follows:

C3: INSERT INTO UT
SELECT i, j,

SD.dist^(2.0^(1.0-m))
* SD1.den AS val

FROM (SELECT i,
sum(dist^(2.0^(m-1.0)))
AS den

FROM SD
GROUP BY i) AS SD1, SD

WHERE SD.i = SD1.i;

3.6 Update

Update stage of the pgFCM modifies P and U tables as
shown below in U1 and U2 respectively.

U1: INSERT INTO P
SELECT L.d, L.k, L.n, L.s + 1 AS s,

E.delta
FROM (SELECT i, j,

max(UT.val - U.val)
AS delta

FROM U, UT
GROUP BY i, j) AS E,
(SELECT d, k, n, max(s)
FROM P
GROUP BY d, k, n) AS L) AS R

Table UT stores temporary membership degrees to be
inserted into table U . To provide the rapid removal all the
table U rows, obtained at the previous iteration, we use
the truncate operator.



U2: TRUNCATE U;
INSERT INTO U
SELECT * FROM UT;

3.7 Check

This stage is the final for the algorithm pgFCM. On each
iteration the termination condition (4) must be checked.

To implement the check, the result delta of the func-
tion (6) from table P is stored in the temporary vari-
able tmp.

CH1: SELECT delta INTO tmp
FROM P, (SELECT d, k, n,

max(s) AS max_s
FROM P
GROUP BY d, k, n) AS L

WHERE P.s = L.max_s AND P.d = L.d
AND P.k = L.k AND P.n = L.n;

After selecting the delta, we need to check the condi-
tion δ < ε. Then if this condition is true we should stop,
otherwise, work will be continued.

CH2: IF (tmp < eps) THEN
RETURN;

END IF;

The final result of the algorithm pgFCM will be stored
in table U .

4 Related Work
Research on integrating data mining algorithms with re-
lational DBMS includes the following. Association rules
mining is explored in [13]. General data mining primi-
tives are suggested in [4]. Primitives for decision trees
mining are proposed in [8].

Our research was inspired by papers [11, 12], where
integrating K-Means clustering algorithm with relational
DBMS, was carried out. The way we exploit is similar
to mentioned above. The main contribution of the pa-
per is an extension of results presented in [11, 12] for
the case where data vectors may belong to several clus-
ters. Such a case is very important in problems connected
with medicine data analysis [14, 16]. To the best of our
knowledge there are no papers devoted to implementing
fuzzy clustering with relational DBMS.

5 Conclusion
In this paper we have proposed the pgFCM algorithm.
pgFCM implements Fuzzy c-Means clustering algorithm
and processes data stored in relational tables using Post-
greSQL open-source DBMS. There are following issues
to continue our research. Firstly, we plan to investigate
pgFCM scalability using both synthetical and real data
sets. The second direction of our research is develop-
ing a parallel version of pgFCM for distribution memory
multiprocessors.

References
[1] J. Bezdek, R. Hathaway, M. Sobin, and W. Tucker.

Convergence Theory for Fuzzy c-means: Coun-
terexamples and Repairs. IEEE Trans. Syst. Man
Cybern., 17:873–877, October 1987.

[2] J. C. Bezdek. Pattern Recognition with Fuzzy Ob-
jective Function Algorithms. Kluwer Academic
Publishers, Norwell, MA, USA, 1981.

[3] P. S. Bradley, U. M. Fayyad, and C. Reina. Scal-
ing Clustering Algorithms to Large Databases. In
KDD, pages 9–15, 1998.

[4] J. Clear, D. Dunn, B. Harvey, M. Heytens,
P. Lohman, A. Mehta, M. Melton, L. Rohrberg,
A. Savasere, R. Wehrmeister, and M. Xu. Non-
Stop SQL/MX primitives for knowledge discovery.
In Proceedings of the fifth ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, KDD ’99, pages 425–429, New York, NY,
USA, 1999. ACM.

[5] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer,
and Weingessel A. Machine Learning Open-Source
Package ‘r-cran-e1071’, 2010. http://cran.r-project.
org/web/packages/e1071/index.html.

[6] J. C. Dunn. A Fuzzy Relative of the ISODATA
Process and Its Use in Detecting Compact Well-
Separated Clusters. Journal of Cybernetics, 3:32–
57, 1973.

[7] Apache Software Foundation, I. Drost, T. Dunning,
J. Eastman, O. Gospodnetic, G. Ingersoll, J. Man-
nix, S. Owen, and K. Wettin. Apache Mahout,
2010. https://cwiki.apache.org/confluence/display/
MAHOUT/Fuzzy+K-Means.

[8] G. Graefe, U. M. Fayyad, and S. Chaudhuri. On
the Efficient Gathering of Sufficient Statistics for
Classification from Large SQL Databases. In KDD,
pages 204–208, 1998.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clus-
tering: a review. ACM Comput. Surv., 31:264–323,
September 1999.

[10] J. B. MacQueen. Some Methods for Classifica-
tion and Analysis of MultiVariate Observations. In
L. M. Le Cam and J. Neyman, editors, Proc. of the
fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, volume 1, pages 281–297.
University of California Press, 1967.

[11] C. Ordonez. Programming the K-means cluster-
ing algorithm in SQL. In W. Kim, R. Kohavi,
J. Gehrke, and W. DuMouchel, editors, KDD, pages
823–828. ACM, 2004.

[12] C. Ordonez. Integrating K-Means Clustering with a
Relational DBMS Using SQL. IEEE Trans. Knowl.
Data Eng., 18(2):188–201, 2006.

[13] S. Sarawagi, S. Thomas, and R. Agrawal. Integrat-
ing association rule mining with relational database



systems: alternatives and implications. In Pro-
ceedings of the 1998 ACM SIGMOD international
conference on Management of data, SIGMOD ’98,
pages 343–354, New York, NY, USA, 1998. ACM.

[14] A. I. Shihab. Fuzzy Clustering Algorithms and their
Applications to Medical Image Analysis. PhD the-
sis, University of London, 2000.

[15] M. Stonebraker, L. A. Rowe, and M. Hirohama.
The Implementation of POSTGRES. IEEE Trans.
on Knowl. and Data Eng., 2:125–142, March 1990.

[16] D. Zhang and S. Chen. A Novel Kernelized Fuzzy
c-Means Algorithm with Application in Medical
Image Segmentation. Artificial Intelligence in
Medicine, 32:37–50, 2004.


