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Abstract. In this paper we present main challenges related to scaling-out the 
NCBO Resource Index further. We look into several recent developments that 
can relate to those challenges. Finally, we propose a solution that we plan to 
implement together with a description of an intended evaluation. 
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1   Introduction 

The NCBO Resource Index is a system for ontology based annotation and indexing of 
biomedical data. The key functionality of this system is to enable users to locate 
biomedical data resources related to particular concepts. That functionality is based 
on semantically-enhanced search1. The Resource Index currently includes 22 different 
data resources comprising over 3.5 million data elements resulting in 16.4 billion 
annotations stored in a 1.5 terabyte MySQL database. The semantic expansion 
consumes considerable amount of resources in terms of storage and processing power. 
Based on research in density and evolution metrics it became possible to significantly 
reduce processing requirements so the Resource Index can be computed in an 
acceptable time on a single machine [1]. However, when scaling from 22 resources to 
100 (or more) some form of distributed processing becomes a necessity. Currently, 
the amount of indexed resources reaches storage and processing limits of a single 
machine. Of course, more a powerful machine could be used; however, that does not 
seem to be a sustainable approach in a longer term. 

In recent years data-intensive, non-relational processing has seen significant 
development starting with Google’s MapReduce paper [2] and continuing with 
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development of Hadoop2 and related technologies. It seems natural to investigate 
those technologies in the context of our problem. 

In Section 2 of this paper we name particular challenges that we face while scaling 
the NCBO Resource Index processing and maintenance. We analyze related work to 
search for possible approaches to those challenges in Section 3. Finally, in Section 4, 
we propose architecture of a solution that we plan to implement and evaluate. We 
conclude the main points in Section 5. 

2   Challenges 

Storing source data. The data that are indexed can be divided in two major types. 
The first type is raw data harvested directly from each resource before any processing 
is done. The second type is data after concept recognition that includes term 
expansion based on semantics. Storing and maintaining the semantically expanded 
data is what causes the system to exceed 1.5 terabytes at the moment. As the number 
and kinds of resources grows, we expect to see a more than 10-fold increase in the 
storage space requirement, far exceeding the capabilities of typical systems. For 
example, to include the entire PubMed resource (20M articles) in the Resource Index, 
it was projected to consume nearly 20TB of disk space. Protection against data lost 
due to mechanical or program failure will add additional complexity–keeping up to 
three replicas of the data. Fig 1 (A) illustrates the expected increase in data storage 
requirements. These estimations do not include possible compression. 

Processing source data into the Resource Index. There are three main processing 
steps required to perform the semantic expansion. The first step is concept 
recognition, which can be classified as embarrassingly parallel—it can easily be 
divided among processing nodes. The second step is term expansion based on 
semantics, where the most computationally expensive process relies mostly on join 
operations. During that stage, information on ontological distance between concepts is 
also utilized. For every recognized term, approximately 14 additional terms are also 
associated. Finally, an inverted index is applied on the entire set of associated terms 
for efficient search. Unlike concept recognition, the expansion step, i.e. join 
operations, is not easy to parallelize; however, based on the earlier metrics [1], we 
believe it is possible to achieve. The main method in earlier metrics was to shard the 
data by resource, with around 10 tables per each resource, which may need to be re-
evaluated. 

In general, processing time is expected to increase linearly with the amount of data. 
The linear increase is in itself not a problem. However, the expected increase in data 
amount is significant. Processing capabilities of a single machine are already limiting 
frequency of Resource Index update process and that will of course deteriorate even 
further with more resources. Therefore, it becomes clear that some form of data-
intensive distributed processing is necessary. 
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Maintaining the Resource Index. The Resource Index that is used for search 
purposes is a product of several complex processes. However, that does not provide a 
full picture of complexity of updating Resource Index. At the same time, Resource 
Index has to be available for search and it would be beneficial to introduce the update 
as soon as possible. We need special architecture that will allow for concurrency of 
updates and searches. That will allow for continuous updates to Resource Index 
without taking the search offline. Moreover, such architecture should support many 
concurrent requests without noticeable decrease in performance. 

3   Related Work 

In this section we present related work that has the potential to help with the 
aforementioned challenges. The biggest focus is not on scientific publications, but on 
several open-source projects that could be directly or indirectly applied to our 
scenario. However, some scientific publications are also mentioned where relevant. 

We focus on solutions in so called NOSQL or non-relational domain. An 
alternative could be a distributed relational database. It would require fewer changes 
in the current architecture. However, less structured nature of the non-relational 
solution fits our data better. It also seems that non-relational approach should offer 
greater flexibility in future. 

Our approach in this work focuses on materialization of semantic expansion. That 
is, data is expanded on disk and queries are directly performed on the data. Query 
should be understood here as a search query, not as a SQL nor as a SPARQL query. 
The alternative approach would be to expand the query and perform it on non-
expanded data. It would save disk space, but might negatively impact the performance 
at run time as some query expansions might have significant size. The query-
expansion approach is the topic of separate research work. 

Storing source data. One of the prominent developments in storage is the Hadoop 
Distributed File System (HDFS)3 designed based on Google File System [3]. It is a 
file system that abstracts data distribution across cluster nodes. At the same time it 
provides transparent and automatic data redundancy. It provides strong scalability and 
also allows storing unstructured data. Another development is HBase4, which is based 
on the HDFS designed based on Google BigTable [4]. HBase is in fact an ordered 
multidimensional map. Moreover, the final level of the map is always a timestamp 
that can be later utilized while reading the data to represent state of data at a particular 
time in past. Both HDFS and HBase directly support Hadoop MapReduce5, which we 
describe in the next subsection. 

HyperTable6 is scalable database also based on BigTable. It can run on top of 
HDFS and several other file systems. It offers relatively more limited integration with 
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other Hadoop subprojects than HBase. Cassandra7 is a more recent development also 
inspired by BigTable; however, to a lesser extent. It provides limited support in terms 
of further data processing. 

 
Fig. 1. Current (22 resources) and Expected (100 resources) Data Storage Requirements for the 
NCBO Resource Index (A). Scheme of Architecture for Scaling-out the NCBO Resource Index 
Processing and Maintenance (B). 

Processing source data into the Resource Index. Processing mechanisms are 
generally connected to a particular storage system. HDFS and HBase offer probably 
the biggest variety of choices. First and foremost, they support Hadoop MapReduce 
which is a generic processing framework based on Google MapReduce [1]. Data 
processing is performed through java functions. Several different query languages 
have appeared that base on top of MapReduce. To name a few: Hive8 is a SQL-like 
query language, Pig9 is script-like data processing language and Cascalog10 is datalog-
inspired query language. While Hive and Pig are custom languages Cascalog queries 
are first-class in Clojure (Lisp dialect that works in Java Virtual Machine). 

HyperTable has its own HyperTable Query Language with a SQL-like syntax. 
Casandra does not offer support of any query language at the moment. 

Maintaining the Resource Index. Maintaining the Resource Index includes two 
main tasks: updating and making it available for rapid search. In the best scenario 
both tasks should work in parallel. Cassandra and Voldemort11 can both be considered 
here as they focus on fast data serving in contrast with bulk processing in, for 
example, HBase. They can also handle parallel read and writes well. However, they 
do not offer any dedicated mechanism for handling the connection with the bulk 
processing backend. Though, it can be constructed. The most recent project that 
emerged is ElephantDB12. It consists of two integrated components where one is 
dedicated to creating the Resource Index and the other to serving it. 
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4   Proposed Solution and Evaluation 

It this section we outline a solution we intend to implement and a related evaluation 
plan. In Fig. 1 (B) we present a sketch of the architecture to be implemented.  The 
main processing will be evaluated on a 10 node cluster, and the query processing part 
will be implemented on a smaller cluster. 

Based on the available solutions we plan to implement data storage both directly in 
HDFS and in HBase. We will evaluate relative performance differences. In particular, 
potential benefits of standard and custom HBase index (not to be confused with the 
Resource Index) and its multidimensional structure. The multidimensional structure 
of HBase will be also investigated as a way to reduce storage requirements for 
semantic expansion. In later phases, we will investigate possible applications of time 
stamping in HBase for analyzing the Resource Index evolution with time. The subject 
of evaluation will be mostly performance (processing and storage); however, 
additional elements like ease of maintenance or support for processing approaches 
will be also assessed. Independently of other tests, compression will be applied to data 
to examine its impact on both storage requirements and processing time. 

The processing stage will be initially implemented in Pig. In later phases, we will 
compare it with pure MapReduce jobs to potentially leverage a custom HBase index. 
Finally, we plan to implement the Resource Index maintenance using ElephantDB. To 
our knowledge this would be first independent evaluation of that system. 

5   Conclusions 

In this paper we presented challenges related with scaling-out the NCBO Resource 
Index. A parallel could be found between our challenges and recent developments in 
data-intensive processing. By looking into those developments we proposed a solution 
that we plan to implement and evaluate. This should allow scaling-out the NCBO 
Resource Index to cover all the required resources. In addition, the evaluation will fill 
gaps in knowledge about relative (processing and storage) performance of the 
aforementioned technologies. 
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