Ontology-based User-defined Rules and
Context-aware Service Composition System

Victoria Beltran', Knarig Arabshian?, and Henning Schulzrinne?
! Dept of Telematics, Universitat Politécnica de Catalonia/Fundacié 12Cat,
Barcelona, Spain
2 Alcatel-Lucent Bell Labs, New Jersey, USA
3 Dept of Computer Science, Columbia University, New York, USA

Abstract. The World Wide Web is becoming increasingly personalized
as users provide more of their information on the Web. Thus, Web ser-
vice functionality is becoming reliant on user profile information and
context in order to provide user-specific data. In this paper, we discuss
enhancements to SECE (Sense Everything, Control Everything), a plat-
form for context-aware service composition based on user-defined rules.
We have enhanced SECE to interpret ontology descriptions of services.
With this enhancement, SECE can now create user-defined rules based
on the ontology description of the service and interoperate within any
service domain that has an ontology description. Additionally, it can use
an ontology-based service discovery system like GloServ as its service
discovery back-end in order to issue more complex queries for service
discovery and composition. This paper discusses the design and imple-
mentation of these improvements.

Keywords: context-aware systems, ontologies, semantic web, rule-based
systems, service discovery, service composition, web services

1 Introduction

In recent years, the World Wide Web has been advancing towards greater person-
alization. Services on the Web such as, social networking, e-commerce or search
sites, store user information in order to profile the user and target specific prod-
ucts or ads of interest. Since web service functionality is increasingly relying on
user information, a user’s context is becoming more crucial towards creating a
personalized set of services within the Web.

As these types of services proliferate, a framework is needed where multiple
services can be discovered and composed for a particular user within a cer-
tain context. With this in mind, we have developed SECE (Sense Everything,
Control Everything), a platform for context-aware service composition based on
user-defined rules. The contributions to SECE are two-fold: a user-friendly rule
language and the design and implementation of a context-aware service compo-
sition framework.

SECE differs from other rule-based systems in that it provides an interface for
creating rules in natural English-like language commands. The main drawback

of rule-based systems is that the rule languages involve complex formulaic or
XML descriptions. Lay people are not as inclined to use these systems as the
learning curve for these languages may be steep. Thus, we have defined a formal
rule language which resembles English. With a simplified English-like interface
to creating rules, users will be more prone to incorporate rule-based systems into
their lives, making context-aware computing a seamless part of everyday life.

Additionally, SECE provides a platform for context-aware service composi-
tion for a number of services, such as, presence, telecommunication, sensors and
location-aware services. Users can subscribe to various services by formulating
simple rules that create a composition of services. The rules trigger event-based
service discovery and composition depending on the user’s context, such as her
location, time, and communication requests. Traditional rule-based systems are
mostly designed to handle a single service domain. SECE, on the other hand,
interacts with a few service domains. For more information on the SECE ar-
chitecture and rule language, we encourage the readers to refer to the following

paper [1].

In this paper, we discuss enhancements to both aspects of SECE: its rule
language and back-end architecture. Whereas previously SECE had a hard-coded
rule language for a limited number of event-based service domains, we have now
improved SECE to use the Web Ontology Language (OWL) description of a
service domain to dynamically create a rule language for that service domain.
Additionally, SECE’s architectural platform has been modified to integrate with
a back-end ontology-based global service discovery system, GloServ, to access
any type of service domain within the GloServ directory [2] [3]. GloServ classifies
services in an ontology and provides ontology descriptions of different service
domains. It also has an ontology-based query interface for service discovery and
composition.

With these improvements, SECE can now be generalized to include all types
of service domains, described in an ontology, as well as issue more complex
ontology-based queries for service discovery and composition. Having the ability
to adapt a rule language to new service domains makes SECE into a powerful
front-end context-aware system. Additionally, by using GloServ as its back-end,
SECE can now interoperate with any type of service that has an OWL descrip-
tion, broadening its scope drastically. We envision that SECE will enable services
to seamlessly integrate into people’s lives. A person can now create rules with
ease and be notified of services at the right time and place. This will create a
profound impact in how people interact with services. There will now be a closer
connection between a person and services available, establishing a personalized
network of services.

The organization of this paper is as follows: Section 2 describes current work
in the field of context-aware computing and service composition; Section 3 gives
an overview of the original SECE architecture and functionality; we discuss the
enhancements to SECE and its implementation in Section 4; Section 5 discusses
future work; finally, Section 6 summarizes the main contributions of this paper.

2 Related Work

Several solutions for user created services have been proposed; some of these so-
lutions are compared to SECE in Figure 1. The second column indicates the user
language for defining events and conditions that trigger action scripts. The third
column indicates the language for action scripts. The fourth column shows the
kinds of communication services that the users can use. The following columns
show the types of information handled by the systems. CPL [4], LESS [5], SPL [6],
VisuCom [7] and DiaSpec [8] are attempts to allow end users to create services,
but they are all limited to controlling call routing. Also, CPL and LESS use XML
and, hence, even simple services require long programs. Moreover, XML-based
languages are difficult to read and write for non-technical end-users. DiaSpec is
very low level. Writing a specification in DiaSpec and then developing a service
using the generated framework is definitely not suitable for non-technical end
users. The authors of DiaSpec extended [9] their initial work to support services
beyond telephony, which include sensors and actuators. However, it is still only
suitable for advanced developers. SPL is a scripting language which is suitable
for end-users but only for telephony events. VisuCom has the same functionality
as SPL, but allows users to create services visually via GUI components.

SECE Matural-language- Tel seripts Call, email, IM v User & buddies Rich v v v
like rules
CPL XML tree Fixed XML actions Call x ® = x® x x
LESS XML tree XML actions Call v L3 Basic x x X10, ver
SPL seript Signaling actions Cal x x x x x x
WisuCam Graphical Ul Signaling actions Call x x x x x x
CybreMinder Form based Reminder » v 4 x 4 » ®
Task.fm Time rule Reminder x v ® = x® x x
Diaspec lava Java U] v X A x 1% e

Fig. 1. Comparison to related work

CybreMinder [10] is a context-aware tool which allows users to setup email,
SMS, print out and on-screen reminders based not only on time but also loca-
tion and presence status of other users. It uses local sensors to detect a user’s
location. It does not take any actions, but rather displays reminders to the end
user. Also it is not as powerful as scripting-based systems due to its form-based
nature. Task.fm [11] is a similar SMS and email remainder system which uses
natural language to describe time instants when email or SMS reminders will
be sent. However, Task.fm only supports time-based rules and does not include
information from sensors. This tool does not take actions other than reminding
users via SMS, email or phone call.

Regarding composition of web services, SWORD [12] was one of the first
prototypes. However, this offers a quite limited composition that is not automatic

and its scripting language is targeted at developers. Ezweb [13] is a graphical
tool by which users can connect web services manually. However, this does not
provide automatic web service discovery or a language for composing services.
Moreover, service composition is not context-aware and proactive. Yahoo Pipes
[14] is other graphical tool for web service composition. However, it presents the
same limitations as Ezweb and its graphical interface is not really easy-to-use
and intuitive, which makes it very difficult for non-technical users. We only found
a prototype described in a research paper [15] that offers event-based web service
composition. This means that service composition is triggered by events, such
as changes in the user’s context, instead of end users. However, this work does
not provide any language or tool for specifying the web service compositions and
events that trigger them. The authors seem to implement low-level compositions
that may be personalized according to user preferences. Thus, this does not offer
end users control of service composition. Moreover, this prototype seems not to
be available in the Internet.

To the best of our knowledge, there is no implemented platform for allowing
end users to compose services of different kind based on events. The current
solutions are not proactive because the end-user is who triggers the composite
services or only provides template-based compositions (i.e., the user is not who
defines the compositions). There is neither a platform for event-based web ser-
vice discovery. The composition tools that take user context into account, only
consider a limited set of context. The graphical interfaces of the studied tools are
quite limited and not flexible for non-technical users. The scripting languages
provided by some tools are neither suitable for non-technical users and only sup-
port a limited set of context information. Moreover, none of the studied tools
proactively discover web services based on the user preferences.

3 SECE

SECE is a rule-based context-aware system that connects services, that may have
otherwise been disconnected, to create a personalized environment of services for
a user. It has two fully-integrated components: user-defined rules in a natural
English-like formal language and a supporting software architecture. Users are
not required to continually interact with the system in order to query for or
compose a set of services. They need to only define rules of what they want to
accomplish and SECE does the rest by keeping track of the user’s context, as well
as information from external entities such as sensors, buddies, or social events in
order to notify the user about a service. It accomplishes this by communicating
with several third party applications and web services such as Google services
(e.g., GMail, GContacts and GCalendar), Social Media services (e.g., Facebook
or Twitter), VoIP proxy servers, presence servers, sensors and actuators. Figure
2 gives an overview of the overall SECE architecture and how it interacts with
its environment. We will discuss these two components of SECE in this section.

A waa!

+1 212 555 1234

¢ P N
J’ : { y WY ooy Ykt ~
RFID - LU w . @ I;' f.,‘l
Alice > ab.com, | |' “ |
H —

geocoding
SUB/NOT
PIDF-LD, RPID,

travel time J |
|'; n "IJI'
update S, , email...
other \4

call state Call events, VM, SMS

manitor energy

‘ usage
m ann(rolappllances H‘*“ ‘ ,

Fig. 2. SECE and its external components

3.1 SECE Architecture

As Figure 2 depicts, SECE is a web service that interacts with other web ser-
vices, namely Google Services and Social Media services such as Twitter, Flickr
and Facebook. The rules that are running on SECE and the rule actions that
will potentially be executed determine the services with which SECE needs to
interact. Thus, based on the kinds of rule that the user wishes to create and the
actions that she wishes to compose, the user will need to configure the proper
third-party services in her SECE account. Section 3.2 explains the SECE rules
and actions, and their required services in more detail.

We are developing two services that tightly collaborate with SECE: the pres-
ence server and the VoIP proxy server. The presence server is built on the Mo-
bicents Presence Service [16], which is compliant with SIMPLE (SIP for Instant
Messaging and Presence Leveraging Extensions) [17]. It is responsible for col-
lecting and aggregating context from different sources and sending it to SECE.
It accomplishes this by receiving presence publications from context sources that
contain the latest information about a user and, in turn, notifying SECE of the
context changes. In the SECE framework, context sources include user devices’
presence applications and gateways that control sensor networks, energy con-
sumption and user location via RFID. To use the presence service, the end user
needs to create an account from the SECE website in order to obtain the SECE
presence server’s access information. Thus, the user can configure the SIMPLE-
compliant presence applications (e.g. SIP Communicator and Pidgin) that run
on her mobile devices or desktop computers to use the SECE presence server. In
the future, the presence server will interact with the home gateway for obtaining
information from sensor networks and changing the state of actuators.

The VoIP proxy server is a SIP (Session Initiation Protocol) Express Router
(SER) [18] extended to interact with SECE for handling users’ SIP communi-

cations. This server and SECE implement an efficient binary protocol that lets
SER inform SECE of a SIP event and lets SECE notify SER of the action to
take for this event. Basically, SER informs SECE of users’ incoming and outgo-
ing calls and instant messages (IM). If an event of this kind matches a rule, the
rule is triggered and, therefore, decides to either forward, reject, or modify the
call by invoking an action. Then, SECE will let SER know about the action to
take. As the presence service, the user needs to create a SER account through
her SECE account for using the VoIP proxy service. The user also needs to set
her SIP-compliant multimedia applications to use the SECE VoIP proxy server
as outbound/inbound SIP proxy. A first prototype of SECE has already been
developed as a web service and is being tested by members of the Internet Real
Time (IRT) group at Columbia University. For a more detailed description of
the SECE architecture, we refer the readers to the following paper [1].

3.2 SECE rules

The SECE language supports five types of rules: time, calendar, location, context
and communication. As a formal language, it states the valid combinations of
keywords and variables for each kind of event and provides a set of commands,
such as “sms”, “email”, “tweet” or “call”. SECE rules and actions interact with
different third party services based on their subscribed events and functions.
Thus, SECE users need to learn about the services needed by the rule types
and actions that they wish to use and configure their SECE accounts for such
services. SECE will provide online documentation that gives users information
about each rule’s and action’s syntax and required services. This documentation
will also contain example rules to help users build rules for specific events and
goals, and get familiarized with SECE rules. Figure 3 summarizes the required
and optional services for the SECE rules and some actions.

Any SECE rule has the structure “event { actions }”. Fvent defines the
conditions that need to be satisfied to execute the actions that are delimited by
braces. The SECE language for describing events is a formal language similar
to English that has been designed to be easy to use and remember by end-
users. This language is generated by an ANTLR grammar [19]. We use the Tecl
language [20] as the syntax for the rule actions. This choice is due to Tcl’s
extensibility that allows adding new commands to its core with relative ease.
Tcl provides a command that receives the name, arguments and code of a new
command as parameters, constructs the corresponding Tcl command and incor-
porates it into the Tcl interpreter. Below, we describe the types of SECE rules
and their involved services. In order to clearly display the structure of the rule
and action language, the variables that are set by the user are highlighted in
bold and the language keywords are italicized.

Time rules: Below are two types of rules: single time events and recurrent time
events. The former starts with the keyword on and the latter starts with the
keyword every. Both are fully-compliant with the Internet Calendar (ICal)

GContact GCalendar GVoice Twitter PS SER GMail GMaps Flickr

| RoiETvPes . _______________
Time Optional
Calendar Reguired
_Context Optienal
Communication Optional Required for Required for = Required
sms, voicemail SIP call, IM for email

Location | | Required

_actons |
email Optional Optional |
tweet Required
flickr Required
sms Optional Required
call Optional Required for Required for
| phone number SIP address |
status Reguired
forward Optional Required
schedule Reguired
homelights | | | Required

Fig. 3. Third party services of SECE rules and some actions

standard [21]. The on, until, except and including keywords are always fol-
lowed by a date expression that can have different formats (e.g., “December
31, 20117, “31st day of December, 2011” and “12/31/2011”) or can be an
entry in the user’s GCalendar. In the first example below, the user defined
an entry named “Anne’s birthday” in her 2011 GCalendar.

on Anne’s birthday, 2011 at 12:00 in Europe/Zurich {
sms Anne ”Happy Birthday!!! John”;
}

every week on WE at 6:00 PM from 1/1/11 until May 10, 2011
except 3rd WE of Feb, 2011 including first day of June, 2011 {

email irt-list ”"reminder: weekly meeting today at 6:00 PM”;
}

Calendar rules: These rules specify events that are defined in the user’s GCal-
endar and always start with the keyword when. Thus, the user needs to
configure his GCalendar in his SECE account before entering rules of this
kind.

when 30 minutes before ” weekly meeting” {
email [event participants] ” The weekly meeting will start in 30 minutes”;
if {{ ! my location within 3 miles of campus } {
email [status bob.email] ”I’'m away” ”Please, head the conference room and
prepare everything for the weekly meeting. Not sure if I will be on time.”;

}

Location rules: A location rule starts with the keyword me, if it is about the
user that is entering the rule, or an identifier of one of his friends such
as a nickname, email and SIP address. Five types of location information
are supported: geospatial coordinates, civic information, well-known places,
user-specified places and user locations. Different location-related operators
can be used, such as near, within, in, outside of or moved. Below we show a
location rule using the near operator. Within means that the user is within a
radius of the reference point. Near means the same but the radius is a default

distance that the user defines in his SECE account. Outside of and in means
that the user is outside of and inside the reference point, which must be
represented as a polygonal structure. We are working on a location database
that allows users to predefine polygonal locations through a GMaps-based
graphical interface. Moved means that the user moved the given distance
from where he was located when the rule was entered or triggered for the
last time.

Bob near ” Columbia University” {
if{ my status is idle } { call bob; }

Context rules: These specify the action to execute when some context infor-
mation changes, such as presence or sensor state. These rules always start
with the keyword if. If the rule is about the user that is entering the rule,
this keyword if followed by my. Otherwise, the if keyword is followed by
the friend’s identifier. Below, we show an example of a context rule about a
friend.

if Bob’s status is available { alarm me; }

Communication rules: These specify the actions to execute in response to
incoming, outgoing or missed communication requests. A request rule can
start with the keyword incoming, outgoing or missed, followed by the type
of event. The following rule is an example of incoming call handling.

incoming call to me.phone.work {
if { [my location is not office] } {
autoanswer audio no_office.au;
email me ” [incoming caller] tried to reach you on your work phone at
[incoming time]”;

4 Enhancing SECE Toward Ontology-based User-defined
Rules for Automatic Service Discovery

As it stands, SECE has no way of automatically discovering a new type of ser-
vice, generating a rule language for it and incorporating it in its system. The set
of services that are supported in SECE are hard-coded. Thus, we have enhanced
SECE to support ontology-based user-defined rules for automatic service discov-
ery. The simple but illustrative example below emails the user whenever a new
restaurant that satisfies the given conditions is found.

Any japanese restaurant that is cheaper than 208 and whose location contains Manhattan {
email me “new restaurant found” “Details: [event description]”;
}

We have incorporated GloServ, an ontology-based service discovery system,
within SECE’s back-end architecture. GloServ provides an API whereby service
ontology descriptions, for a number of domains, can be downloaded and queried
for with an ontology query. GloServ uses the OWL DL ontology to describe its
services. Thus, SECE can access these OWL specifications in order to dynami-
cally define rules for the specific service domain. Users are made aware of these
services by a front-end application to SECE that displays the discoverable ser-
vices’ descriptions. For each service domain, SECE will provide documentation
on how to create rules. Currently, users will still need to learn how the rules are
constructed, however, for the future, we plan on building a GUI that will use
the ontology description to aid the user in constructing the rules. This section
will describe the design and implementation of these enhancements.

4.1 SECE Architecture

Design Figure 4 outlines the main interactions between SECE, GloServ, front-
end applications and web services. We assume that end users are connected to
front-end applications, which detatches users from SECE and offers more flexi-
bility. Front-end applications retrieve user data from SECE and allow users to
create their rules probably by means of more fancy graphical interfaces, sug-
gestions and user preferences, for example. From the moment at which a web
service rule is entered in SECE on, SECE will periodically communicate with
GloServ for discovering the web services that match the rule. A GloServ request
specifies the web service of interest as a SPARQL query [22] and matched ser-
vices’ profiles, if any, are sent to SECE into a GloServ response. If a new web
service matches a rule, SECE executes the rule’s body.

WEB
SERVICE

Y Autematie service
invecation

Automatic service

Service model
discovery

(wsDL)

HTTP request/
response

-~
GloSery response [SECE
Gloecty (Service profile} User) &
| rules
User Front- ,(‘/L/(
rules end =~ Q\L\
3 — . > J
Advertised e e
= GloSery request User | Ontology User 3
SERviceS (SPARQL) Weontext J context

Fig. 4. SECE, GloServ, front-end applications and web services

SECE has a layered architecture, as Figure 5 shows. For details of each of the
components, we encourage the reader to refer to the original SECE paper [1].
We will discuss the components that have been added to the enhanced SECE
architecture in this section.

The new components that have been added to the SECE architecture are:
1) WBRL rule, which implements the web service rules; 2) Jena Ontology Model,

which contains the necessary ontologies’ schemes; 3) GloServ Context Mediator,
which periodically pulls GloServ for checking out new web services of interest. .

| crxr | REQRL J LOCRL | TIMERL | cALRL | WBRL |

ACTIONS JENA ONTOLOGY RULE EVENT
INTERPRETER L MODEL BROKER J

| SAORCHESTROR || PLUGIN ENABLER || CM ORCHESTROR |

GMAIL | | GMAPS | |_FACEBOOK J | GLOSERV

| cvoice B TWEETER | | ccaL | [Mufilt:l:hn]

|GLOSERV) | LosT | | noareway) ser |

b
JaINsIP B ANTLR coara Pl jact |

EE EE

Fig. 5. SECE architecture

Implementation SECE stores the OWL specifications of web services in an
ontology database that is built upon the Jena Framework [23]. When a web
service rule is entered into SECE, it has to go through the following steps: 1)
parse the rule (i.e., syntactic checking); 2) verify that the described kind of web
service exists (i.e., semantic checking); 3) subscribe to the described web service
event; and 4) take the rule’s actions whenever this event occurs. Figure 6 outlines
the main interactions for creating a web service subscription.

The SECE core coordinates the software components in SECE. First, the
SECE parser checks that the input rule is consistent with the SECE language,
which is generated by an ANTLR grammar [19]. As a result, the parser creates a
WSRule object that encapsulates information about the rule, namely a web ser-
vice event and the actions that will be taken if this event occurs. The web service
event is defined by the service name and optionally a set of property constraints
in the form of (propertyName, operator, value). If the rule parsing is success-
ful, the SECE core verifies that the rule’s web service description corresponds
to a web service’s ontology. To do it, this interacts with the SECE Ontology
Model (i.e., SECEOntModel in Figure 6). The SECE Ontology Model encapsu-
lates the Jena database that contains the web services’ ontologies and provides
convenient functions for searching and retrieving information about them. A web
service description is semantically correct if there exists a web service’s ontology
that describes a service that is named as the described web service and can be
associated with the described properties and constraints. Thus, SECE will ask
the SECE Ontology Model for the namespace URI of the web service and its
properties. If this web service does not correspond to any ontology, the SECE
ontology Model returns null values. This means that the rule’s web service event
is semantically incorrect, which results in aborting rule creation and warning

the user. Otherwise, the rule’s web service event is semantically correct and the
SECE core proceeds to create the corresponding subscription (i.e., WSSubs in
Figure 6).

The SECE core then retrieves an event monitor from the Event Monitor
Broker (OntEM and EMBroker in Figure 6). An event monitor is the agent that
watches a particular service and generates an event whenever a new instance of
this service is discovered. The Event Monitor Broker maintains a list of the event
monitors that are actually monitoring a web service. Thus, if an event monitor
for the web service event already exists, the Event Monitor Broker returns it.
Otherwise, the Event Monitor Broker creates a new one, appends it to the list of
monitors and returns it. Then, the SECE core associates the event subscription
with the event monitor and starts the subscription.

Starting and pausing an event subscription makes it subscribe and unsub-
scribe to the associated event monitor, respectively. When an event monitor
receives a subscription request and there are no other subscribers, it creates
the corresponding SPARQL query that describes the web service event. This
also starts up a recursive timer to query the GloServ Context Mediator (i.e.,
GloServCM in Figure 6) at fixed intervals with the SPARQL query. If this query
results in any matched service, the event monitor creates an OntEvent object
that describes the discovered service and notifies the subscriber of this event.
Note that the outbound messages between GloServCM and GloServ are omitted
in Figure 6 because of lack of space. When an event monitor is associated with
more than one subscriber, the SPARQL query represents the least restrictive
subscription. When a web service matches this subscription, the event monitor
checks out whether the service matches any of the other subscriptions. Figure 6
only shows this check on the web service subscription wss through the matched-
Serv method. Furthermore, the event monitor maintains a cache of discovered
events. When a new subscription is created, this cache is checked out and the
matching web services are notified.

4.2 SECE Ontology-based Sublanguage

SECE provides a simple and generic ontology-based language for end-users to
define web service rules. In line with SECE’s philosophy, this language looks like
natural English and is easy to learn. Its basic structure is “any service whose
prop rel value” given that service is a web service class, prop is one of this service
class’ properties and rel and wvalue represent a restriction on the property. Rel
is a relational operator that depends on the property’s type: contains and is for
strings and =, <, >, < and > for numbers.

Multiple property constraints can be added by the and and or boolean op-
erators as for example “any shopping offer whose type contains “ski boots” and
whose price is cheaper than 150$”. Equality on numeric properties can be ex-
pressed by the verb has followed by a number and the property name as in
“any happy hour and inexpensive bar that has 20 free seats”. Users can place
property values before the class name when the property works as adjective. In
the previous example, the bar class has the boolean properties happyHour and

“EFarser s- WSRul ECECome wss: WSSub: “Broker g nitode! niER loServC weni: OniEvent
oker Qem. =
I parseRule() I I I 1
t i |
new(serviceName} | | : : I
I | | I
addConstrainname.op value) : i 1 |
4_r‘] | | | 1
wer | ! : ! 1
7777777 N getServiceUnis(wsr) |
|

i T
I [uris!=nullleonstrains=uriCans(uris, war) 1
| | I
| new(constrains) | | I
| I

|

|

|

|

|

1

1

1

i

;& ; Uris U :
|

|

:

| getEventProducer(canstiains) | :
L‘haukl!JEM\cuhlrsmsj :

|

|

Toermjnew()

|
| | | |
salEventProduces(oem) | i
1 I

|

|

| |
| |
| |
| |
1 |
| |
1 |
| |
| |
| |
| |
| |
| |
| | I
| | |

| |
: : | starService() D | |
I | F———— subscribelthis, constrains) i
1 | | | »
1 | 1 1 | 1 | .
| | | | | 1 sQuery=hulid SPARCL (consirains)
| | | | | I | |
| | | | | | | I
| | | | | | starTimer(} I
| | | | | | | I
				[}	
	I		I I s=chackoulCache(}		
				1 I	
1	1 1 1 .				
				notifyevent)	
		s e e I N s			
					1

| + + f
: : | Loop [timeaut=trua] | query(sQuery)) H
| 1 | T T | = i
| | | | |] Senvs |
| | | | | I et |
| | | | | 1 | I
| | | | | 1 > s=matchedServiconsirains servs)
| | | | | 1 | I
				[} [s!=nullrew(s)		
				natityievent) !		
			€.___.	__w__]	..___	
		t + + + t t				
				I I		

ausaSenica()

| | 1B 2 | unsubscribeithis)! | | |
| 1 === ‘[“] 1 1 | | I
1 1 | T T 1 |
| 1 | | | 1 i Lo
| | | | | | [subServices{ j=DjstopTimer()
| | | | | | | I
| | | | | 1

Fig. 6. Sequence diagram from entering a web service rule to querying GloServ

inexpensive. Boolean constraints can also be expressed by the operators that has
(no) and that is (not) as in “any restaurant that has delivery”, “any restau-
rant that is open 24 hours” and “any cultural exhibition that is free and is not
crowded”.

Boolean constraints can be applied to class properties or types, which de-
pends on the ontology’s structure and is transparent for end-users. An example
of boolean property is the above-mentioned delivery property whose domain is
the restaurant class. Boolean constraints on class types restrict inherited types
as for example “any restaurant that is southamerican” subscribes to restaurants
that are subclasses of the southamericanRestaurant class.

5 Future Work: Event-Based Context-aware Web Service
Composition System

Integrating web service rules into SECE brings out exciting possibilities in the
Semantic Web. This permits end-users to define and personalize context-aware

web service discovery, invocation and composition based on a variety of events.
SECE provides a set of actions for users to build up compositions. Some ac-
tions interact with web services, such as tweet, publish and email; other actions
send protocol-specific requests, such as call (i.e., SIP INVITE); and others are
supportive routines. The set of web services with which SECE communicate is
static and the communication is hard-coded.

Therefore, SECE compositions are static in the sense that, once a compo-
sition is created, it will not change. We are planning to incorporate dynamic
compositions to SECE through automatic web service discovery and compo-
sition. Two new SECE actions will add this functionality: find and plan for
discovery and composition, respectively. An example rule is shown below, in
which the plan and find commands are pseudo-code because they have not been
implemented yet. In this example, whenever a new flight is found, other web
services are discovered (i.e., hostels, car rentals and restaurants) and composed
(i.e., trip planning). Note that the plan action could invoke find to discovery web
services that are necessary for the composition. As the discovered web services
and the communication with them can be different each time the composition is
executed, we say that this composition is dynamic.

Any domestic flight that is cheaper than 200$ and whose date is after June 1, 2011 {
p=plan flight with hostel and car rental;
r=find good restaurants according to $p;
email me “new plan found” “Details: $p $r”;
sms me “New Plan discovered. See emalil inbox for details!”;

With these two new actions, SECE could perform semantic web service dis-
covery and composition that does not need user interaction to be executed; it is
automatically triggered by events. In addition, this would also allow combining
static and dynamic composition. For example, the rule above provides dynamic
composition through the plan and find actions and static composition through
the email and sms actions. As the Semantic Web is not widely adopted yet,
hybrids platforms like SECE are necessary to offer users flexible and powerful
composition tools. Table 1 indicates the types of composition that SECE already
supports (white column) and will support in the future (gray columns). Rows
define the events that trigger the compositions and columns the types of web
service communication in the compositions.

Table 1. Types of SECE composition

Semantic service com-||Hard-coded service||Both kinds of communi-
munication communication cation
‘Web service||Dynamic composition|[Static composition trig-|[|Mixed composition trig-
events triggered by discovered||gered by discovered web||gered by discovered web

web services

services (current contribu-
tion)

services

Other events

Dynamic
triggered by
events

composition
real-world

Static composition trig-
gered by real-world events
(typical SECE composi-
tion)

Mixed composition trig-
gered by real-world events

For dynamic compositions, SECE will interact with web services automat-
ically, by retrieving their models and, according to their WSDL specifications,
constructing HT'TP requests.

6 Conclusions

The Semantic Web is investing a great deal of effort in developing standards
for providing automatic web service discovery and composition. Although many
authors have been interested in this exciting topic in the last decade, complete
solutions do not yet exist. Thus, there is a strong need for general-purpose plat-
forms for automatic web service discovery and composition that also provide
intuitive and user-friendly interfaces that do not require engineering or tech-
nical skills. Besides template-based composition, end users should be able to
orchestrate service composition.

To face all these needs, we present a context-aware, event-based platform for
service discovery and composition by integrating two existing solutions: SECE
and GloServ. SECE is a user-centric, context-aware platform for service com-
position that provides a natural-English-like language for creating event-based
rules. GloServ is a scalable network for web service discovery. We implemented
the communication between GloServ and SECE. We extended SECE with an on-
tology database that stores the web services’ schemes that come from GloServ.
We also developed a SECE sublanguage to subscribe to web services, which
allows subscribing to web service discovery events by creating rules in a user-
friendly language that looks like natural English. This makes SECE suitable
for non-technical users. SECE also allows creating service compositions that
can be triggered by discovered web services and real-world events such as con-
text changes, location, or time. Modeling SECE rules ontologically can provide
front-ends with the means of understanding and learning new SECE rules auto-
matically. Thus, the combination of SECE and GloServ paves the way for future
extensions.

Acknowledgments. Victoria Beltran was supported by the Spanish Govern-
ment through the CICYT project TIC2009-11453 and the FPU grant AP2006-
02846.

References

1. O. Boyaci, V. Beltran, and H. Schulzrinne, “Bridging communications and the
physical world: Sense everything, control everything,” in Proceedings on the IEEE
Globecom (UbiCoNet Workshop), December 2010.

2. K. Arabshian and H. Schulzrinne, “An ontology-based hierarchical peer-to-peer
global service discovery system,” Journal of Ubiquitous Computing and Intelli-
gence, vol. 1, no. 2, p. 133.

3. K. Arabshian, C. Dickmann, and H. Schulzrinne, “Service composition in an
ontology-based global service discovery system,” tech. rep., Columbia University,
New York, NY, September 2007.

4.

5.

10.

11.
12.

13.

14.
15.

16.

17.

18.
19.

20.

21.

22.

23.

J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet telephony
services,” Internet Computing, IEEFE, vol. 3, pp. 63-72, May/Jun 1999.

Xiaotao Wu and Henning Schulzrinne, “Programmable End System Services Us-
ing SIP,” Conference Record of the International Conference on Communications
(ICC), May 2003.

L. Burgy, C. Consel, F. Latry, J. Lawall, N. Palix, and L. Reveillere, “Language
Technology for Internet-Telephony Service Creation,” in Communications, 2006.
ICC ’06. IEEE International Conference on, vol. 4, pp. 1795-1800, June 2006.

F. Latry, J. Mercadal, and C. Consel, “Staging telephony service creation: a lan-
guage approach,” in IPTComm ’07: Proceedings of the 1st international conference
on principles, systems and applications of IP telecommunications, (New York, NY,
USA), pp. 99-110, ACM, 2007.

W. Jouve, N. Palix, C. Consel, and P. Kadionik, “A SIP-Based Programming
Framework for Advanced Telephony Applications,” in IPTComm (H. Schulzrinne,
R. State, and S. Niccolini, eds.), vol. 5310 of Lecture Notes in Computer Science,
pp- 1-20, Springer, 2008.

D. Cassou, B. Bertran, N. Loriant, and C. Consel, “A generative programming
approach to developing pervasive computing systems,” in GPCE ’09: Proceedings
of the eighth international conference on Generative programming and component
engineering, (New York, NY, USA), pp. 137-146, ACM, 2009.

A. K. Dey and G. D. Abowd, “CybreMinder: A Context-Aware System for Sup-
porting Reminders,” in HUC' ’00: Proceedings of the 2nd international symposium
on Handheld and Ubiquitous Computing, (London, UK), pp. 172-186, Springer-
Verlag, 2000.

“task.fm Free SMS and Email Reminders.” http://task.fm.

S. Ponnekanti and A. Fox, “Sword: A developer toolkit for web service composi-
tion,” in Proc. of the Eleventh International World Wide Web Conference, Hon-
olulu, HI, 2002.

J. Soriano, D. Lizcano, J. Hierro, M. Reyes, C. Schroth, and T. Janner, “Enhanc-
ing user-service interaction through a global user-centric approach to SOA,” in
Networking and Services, 2008. ICNS 2008. Fourth International Conference on,
pp. 194203, IEEE, 2008.

“Yahoo pipes.” http://pipes.yahoo.com/pipes/.

R. Kazhamiakin, P. Bertoli, M. Paolucci, M. Pistore, and M. Wagner, “Having Ser-
vices " YourWay!”: Towards User-Centric Composition of Mobile Services,” Lecture
Notes in Computer Science, vol. 5468/2009, pp. 94-106, 2009.

“Mobicents.” http://www.mobicents.org/.

“SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE).” http:
//datatracker.ietf.org/wg/simple/charter/.

“About SIP Express Router.” http://wuw.iptel.org/ser/.

T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, 2007.

J. K. Ousterhout and K. Jones, Tcl and the Tk Toolkit. Upper Saddle River, NJ:
Addison-Wesley, 2nd ed., 2009.

B. Desruisseaux, “Internet Calendaring and Scheduling Core Object Specification
(iCalendar).” RFC 5545 (Proposed Standard), Sept. 2009. Updated by RFC 5546.
W3C, “SPARQL Query Language for RDF.” Website, January 2008. http://wuw.
w3.org/TR/rdf-sparql-query/.

“Jena - A Semantic Web Framework for Java.” Website. http://jena.
sourceforge.net/index.html.

