
Random Indexing for Finding Similar Nodes
within Large RDF graphs

Danica Damljanovic1, Johann Petrak2, Mihai Lupu3, Hamish Cunningham1,
Mats Carlsson4, Gunnar Engstrom4, and Bo Andersson4

1 Department of Computer Science, University of Sheffield, United Kingdom
d.damljanovic@dcs.shef.ac.uk, h.cunningham@dcs.shef.ac.uk

2 Austrian Reseach Institute for Artificial Intelligence, Vienna, Austria
johann.petrak@ofai.at

3 Information Retrieval Facility (IRF), Vienna, Austria
m.lupu@ir-facility.org

4 AstraZeneca, Lund, Sweden
Mats.Carlsson, Gunnar.Engstrom, Bo.H.Andersson@astrazeneca.com

Abstract. In this paper, we propose an approach for searching large
RDF graphs, using advanced vector space models, and in particular, Ran-
dom Indexing (RI). We first generate documents from an RDF Graph,
and then index them using RI in order to generate a semantic index,
which is then used to find similarities between URIs, literals, and RDF
subgraphs. We have experimented with large RDF graphs in the domain
of life sciences and engaged the domain experts in two stages: firstly, to
generate a set of keywords of interest to them, and secondly to judge
on the quality of the output of the Random Indexing method, which
generated a set of similar terms (literals and URIs) for each keyword of
interest.

Key words: random indexing, vectors space models, information re-
trieval, RDF graphs, ontologies

1 Introduction

Recent years have seen a massive increase of highly structured data being made
available in the form of RDF triple representations. Both legacy data and new
data have been made available in RDF triple format and this representation has
also made it worthwhile and feasible to create mappings between RDF data that
originates from different legacy sources, leading to potentially very large RDF
repositories. Initiatives such as Linked Open Data5 are working on creation,
publication and interlinking of huge RDF graphs.

Traditionally, RDF spaces are being searched using an RDF query language
such as SeRQL [2] or SPARQL [15]. These languages allow the formulation of
fine-grained queries by their ability to match whole graphs and to create complex
conditions on the variables to be bound in the query. This level of complexity
5 http://linkeddata.org/

2

and flexibility is very useful in many situations, especially when the query is
created automatically in the context of an application. However, for end-users
who want to explore the knowledge represented in an RDF store, this level
of detail is often more of a hindrance: querying the repository is not possible
without a detailed knowledge of its structure and the names and semantics of
all the properties and classes involved. This is especially the case for large and
unknown data structures which may have thousands of classes and properties,
for example Linked Life Data6 (5 billion statements), or FactForge7 (2 billion
statements).

In this paper we investigate whether advanced Information Retrieval (IR)
methods can bring a new dimension to the task of searching huge RDF graphs.
We propose a complementary approach based on word space model, more con-
cretely Random Indexing (RI) [14], for building a semantic index for a large RDF
graph. Traditionally, a semantic index captures the similarity of terms based on
their contextual distribution in a large document collection, and the similarity
between documents based on the similarities of the terms contained within. By
creating a semantic index for an RDF graph, we are able to determine contextual
similarities between graph nodes (e.g., URIs and literals) and based on these,
between arbitrary subgraphs. These similarities can be used for finding a ranked
list of similar URIs/literals for any given input term (a literal or a URI), which
can then be used for exploring the repository or enriching SPARQL queries.

We evaluate our approach on subsets of the Linked Life Data (LLD) reposi-
tory – a large integrated repository which contains 5 billion RDF statements from
various sources covering the biomedical domain, including UniProt8, PubMed9,
EntrezGene10 and many more11. Our evaluation is based on human judgment
by clinical research scientists (from AstraZeneca pharmaceutical company) who
were involved in two stages: firstly, to generate a set of keywords of interest to
them, and secondly to judge on the quality of the output of the Random Index-
ing method, which generated a set of similar terms (literals and URIs) for each
topic of interest.

2 Related work

A considerable amount of work has been done in the area of using Information
Retrieval methods for the task of selecting and retrieving RDF triples. However,
most of these approaches do not take advantage of the latent semantics included
in an RDF Graph, as their primary intention is finding the RDF files on the
Web relevant to the given keyword and/or a URI. These systems are semantic
search engines such as Swoogle [9] or Sindice ([18]). They collect the Semantic
6 www.linkedlifedata.com
7 http://factforge.net
8 www.uniprot.org/
9 http://www.ncbi.nlm.nih.gov/PubMed/

10 www.ncbi.nlm.nih.gov/sites/entrez?db=gene
11 see the full list at: www.linkedlifedata.com/sources

3

Web resources from the Web and then index the keywords and URIs against
the RDF files containing those keywords and URIs, using the inverted index
scheme. These search engines use traditional weighting mechanisms such as TF-
IDF, and in [11] the authors introduce the ReConRank algorithm, which adapts
the well-known PageRank algorithm to Semantic Web data. This method ranks
the nodes in a topical subgraph that is selected based on keyword matching from
the RDF files. In other words, it ranks the results of a query based on the RDF
links in the results. The subgraph that the algorithm identifies includes both the
subject nodes related to the query, and also the context of the subject nodes
(i.e. the provenances or sources of the subjects), in order to improve the quality
of ranking.

In comparison to these approaches we use the neighbouring nodes as semantic
context for each node in an RDF graph. The nodes and their contexts are used
as virtual documents for Random Indexing.

In [16], the authors describe an approach for generating a virtual document
for each URI reference in an RDF triple store (or, equivalently, each node in an
RDF graph). The virtual document contains the local name and labels of the URI
reference, other associated literals such as those in rdfs:comment, and the names
of neighbouring nodes in the RDF graph. These virtual documents are then used
for ontology matching and also for generating object recommendations for users
of Falcons [3]. In comparison to our approach, their neighbouring operations
involve only one-step neighbours without including properties. Our approach
includes properties, and parts of the TBox, and also can operate on an arbitrarily
large graph of neighbouring nodes.

Finally, to the best of our knowledge, none of the similar approaches investi-
gate the usage of methods that can discover latent semantics, such as Random
Indexing.

3 Semantic Index

Latent Semantic Analysis (LSA) [8] is one of the pioneer methods which has
been used for finding synonyms. The assumption behind this and other statistical
semantics methods is that words which appear in the similar context (with the
same set of other words) are synonyms. Synonyms tend not to co-occur with one
another directly, so indirect inference is required to draw associations between
words which are used to express the same idea [4]. This method has been shown
to approximate human performance in many cognitive tasks such as the Test of
English as a Foreign Language (TOEFL) synonym test, the grading of content-
based essays and the categorisation of groups of concepts (see [4]). However, one
problem with this method is scalability: it starts by generating a term∗document
matrix which grows with the number of terms and the number of documents and
will thus become very large for large corpora. For finding the final LSA model,
Singular Value Decomposition (SVD) and subsequent dimensionality reduction is
commonly used. This technique requires the factorization of the term-document
matrix which is computationally costly and does not scale well. Also, calculating

4

the LSA model is not easily end efficiently doable in an incremental or out-of
memory fashion. The Random Indexing (RI) method [17] circumvents these
problems by avoiding the need of matrix factorization in the first place.

RI can be seen as an approximation to LSA which is shown to be able to
reach similar results (see [14] and [5]). RI can be incrementally updated and also,
the term ∗ document matrix does not have to be loaded in memory at once –
loading one row at the time is enough for computing context vectors. Instead of
starting with the full term-document matrix and then reducing the dimension-
ality, RI starts by creating almost orthogonal random vectors (index vectors) for
each document. This random vector is created by setting a certain number of
randomly selected dimensions to either +1 or -1. Each term is represented by a
vector (term vector) which is a combination of all index vectors of the document
in which it appears. For an object consisting of multiple terms (e.g. a document
or a search query with several terms), the vector of the object is the combination
of the term vectors of its terms.

Random Indexing relies on the Johnson-Lindenstrauss lemma:

Lemma 1. Given 0 < ε < 1, a set X of m points in RN , and a number n >
n0 = O(log(m)

ε2), there exists a mapping f : RN → Rn such that (1− ε)||u− v|| ≤
||f(u)− f(v)|| ≤ (1 + ε)||u− v||, for all u, v ∈ X.

and particularly on the proof provided by Johnson and Lindenstrauss in their
1984 article [13], where they show that if one chooses at random a rank n or-
thogonal projection, then, with positive probability, the projection restricted to
X will satisfy the condition in the Lemma. RI relies on the observation that, in
a high dimensional space, a random set of vectors is always almost orthogonal.

In order to apply RI to an RDF graph we first generate a set of documents
which represent this graph, by generating one virtual document for each URI in
the graph (Section 3.1). Then, we generate a semantic index from the virtual
documents (Section 3.2). This semantic index is then being searched in order to
retrieve similar literals/URIs (Section 3.3).

3.1 Generating virtual documents

The task of deriving a set of documents from a huge RDF graph starts with
generating a representative subgraph for each URI of interest. We shall refer to
such an URI as a representative URI.

A representative subgraph represents the context of a URI i.e. the set of
other URIs and literals directly or indirectly connected to that URI. For a rep-
resentative URI S, the representative subgraph of order N is a set of all paths
of triples (S, P1, O1;O1, P2, O2; · · · ;ON−1, PN , ON). If ON is not a literal we
also include all triples ON , PN+1, LJ where LJ is a literal. In other words, we
apply the Breadth-First-Search starting with the representative node, and ex-
tend this to the Depth Search which is defined by N. In addition, we include
or exclude certain parts of the TBox: direct classes for instances are excluded

5

(PN ! = rdf : type), while other annotation properties such as rdfs : label are in-
cluded. In the experiments reported in this paper, the representative subgraphs
are of order 1 (N = 1).

We create virtual documents by including all paths from representative sub-
graphs where:

– all URIs of nodes or appearing inside literals are included unchanged;
– for literals we remove punctuation and stop words, and then lowercase the

text; we also remove number literals, gene and protein sequences, complex
names, and HTML tags.

3.2 Generating semantic index

There are several parameters which can influence the process of generating se-
mantic index, or vectors using the RI method:

– Seed length Number of +1 and -1 entries in a sparse random vector.
– Dimensionality Dimension of the semantic vector space – predefined num-

ber of dimensions to use for the sparse random vectors.
– Minimum term frequency Minimum frequency of a term to get included

in the index.

Our experiments study how variations of these parameters influence the quality
of the results and how sensitive the method is to that variation.

3.3 Search

Once the semantic index has been created, it can be used to find similarities be-
tween URIs, literals, and RDF subgraphs. We use the cosine function to calculate
the similarity between the input term (literal or URI) vector and the existing
vectors in the generated vector space model. We can perform the following kinds
of searches:

1. finding similarities between two terms: given a keyword, find similar literals
and URIs; this can be used in several ways for example for refinement of
SPARQL queries (see [7]); also, it can be used as an alternative way of
browsing and finding URIs or literals related to a topic of interest (expressed
through a keyword or a set of keywords)

2. finding documents related to a specific term: this task would be useful for
suggesting a set of representative URIs related to a given keyword.

3. finding documents related to a document : this task would be useful for sug-
gesting a set of representative URIs related to a set of URIs.

4. finding terms related to the specific documents: this can be used for describing
a representative URIs through a set of literals and URIs.

While in the context of large RDF graphs such as LLD, we find all of these
searches useful, in the experiments we present next, we focus on term-term search
(Item 1) only. As the LLD dataset covers the life sciences domain, we have
conducted a study with the clinicians from AstraZeneca, who are domain experts
and understand the knowledge available in this large dataset.

6

4 Experiments

Our goal in using the Random Indexing method is to investigate whether it can
offer an alternative way of searching large RDF spaces, by suggesting literals
or URIs which are similar to the topic of interest. We conduct an evaluation
experiment with clinical research scientists from AstraZeneca, with the aim to
assess this.

4.1 Dataset

Linked Life Data is a dataset covering the life sciences domain, and the latest
version 0.6 contains 5,052,047,661 statements in total (for a comparison, one
year ago it contained 4,179,999,703 statements). Advanced IR methods based on
Vector Space Model (VSM) are computationally expensive, and therefore, before
we apply the Random Indexing method on the whole dataset, we evaluate it on
two smaller subsets of LLD.

We have generated the two subsets as follows. For 1528 seed URIs (the URIs
representing all MEDLINE articles from December 2009) we retrieve neighbour-
ing subgraphs (of order 1) recursively until we reach certain predefined limit of
statements, and we refer to these as LLD1 and LLD2. Table 1 shows the sizes
of LLD1 and LLD2.

LLD 1 LLD2
number of statements 595798 4573668
number of virtual documents 64644 473742
number of terms 417753 1713349

Table 1. Sizes of LLD1 and LLD2 datasets

4.2 Evaluation measures

In order to calculate the correctness of the retrieved terms, there are standard
Information Retrieval measures such as precision, recall and Mean Average Pre-
cision (MAP). Precision is defined as the number of relevant documents retrieved
divided by the total number of documents retrieved and is usually calculated for
certain number of retrieved documents (e.g., Precision@10, Precision@20). Re-
call is the number of relevant documents retrieved divided by the total number
of existing relevant documents (which should have been retrieved).

Mean Average Precision (MAP) is by far one of the most popular measures
in IR evaluation because, for each system and set of topics, it provides a sin-
gle value to measure its performance [6]. Average Precision (AP) is computed
for each topic by first calculating precision for each relevant document that is
retrieved and then averaging these values. Mean Average Precision is then the

7

mean of these values for all keywords. Furthermore, by the nature of the averag-
ing process, MAP is more sensitive to ranking than precision at a specific point,
favouring systems which return more relevant documents at the top of the list
than at the bottom, whereas precision does not make this distinction as long as
the results are within the cut-off range.

As our task is to retrieve most relevant literals and URIs first, we used
MAP@10. Recall is extremely difficult to measure due to the number of terms
in our datasets (see Table 1). In addition, our task is to help domain experts
explore large RDF graphs, which is similar to Web search in the sense that there
is a vast amount of terms to be searched through, and also a significant number
which is relevant for each input term. Hence, for these kinds of tasks, users care
more about precision than about recall. Indeed, they care most about the top
ranked results, which is exactly what is captured by MAP.

Relevance of retrieved terms was evaluated by two clinical research scientists.
All scientists looked at all retrieved terms. Relevant were considered only those
terms which both scientists marked as relevant. In order to measure agreement
between scientists on this particular task, we measured the Inter Annotator
Agreement (IAA) between the two clinicians based on the words which both of
them marked as relevant/irrelevant.

IAA has been used mainly in the classification tasks, where two or more
annotators are given a set of instances and are asked to classify those instances
into some pre-defined categories. The two commonly used IAA measures are
observed agreement and Kappa (κ) [12].

Observed agreement is the portion of the instances on which the annota-
tors agree. For our case, with the two annotators and two categories (relevant
and irrelevant), it is defined as

Ao =
a + d

a + b + c + d
(1)

where a refers to the number of terms both annotators agreed as relevant, d refers
to the number of terms both agreed as irrelevant, b refers to the number of terms
annotator 1 marked as relevant, and annotator 2 as irrelevant, c refer to the
number of terms annotator 1 marked as irrelevant, and annotator 2 as relevant.

A certain amount of agreement is expected by chance which is not captured
by the observed agreement. The Kappa measure is a chance-corrected agreement.
Kappa is defined as the observed agreements Ao minus the agreement expected
by chance Ae and is normalized as a number between -1 and 1.

k =
Ao −Ae

1−Ae
(2)

k = 1 means perfect agreement, k = 0 means the agreement is equal to
chance, k = −1 means ‘perfect’ disagreement.

There are two different methods for estimating Ae: in Cohen’s Kappa, each
annotator has a personal distribution, based on his distribution of categories.
In Siegel & Castellans Kappa, there is one distribution for all annotators,

8

derived from the total proportion of categories assigned to all annotators (see
[10] for more details and for the comparison of the two). We used Cohen’s Kappa
in our experiments.

4.3 Experimental setup

We have performed our experiment through the following steps:

1. Extracting topics of interest represented as query terms which are present
in both LLD1 and LLD2. In order to avoid exposing the scientists to learning
SPARQL, we have formed a team of one computer scientist and one clinical
research scientist. The computer scientist was executing the SPARQL query
and browsing through the links and URIs, while the clinical research scien-
tist was only looking at the abstracts which the computer scientist selected.
As a result, we obtained 18 keywords which all appeared in both LLD1 and
LLD2 datasets. We split this set into two halves as shown in Table 2 , and
then perform the following two steps in two iterations: first, Group 1 is used
for training the model, and Group 2 for testing it. In the second iteration,
the two sets are swapped.

Group 1 Group 2
acetylcholinesterase Posttraumatic Stress Disorder
synergistic effect trial

cholinergic signaling bladder cancer
PTSD Adverse events

antagonist trauma
efficacy antioxidant

clinical trial magnesium
cognitive cystectomy

lung 5-HT receptors
Table 2. Topics of interest divided into two groups for training/testing the Random
Indexing method

2. Training the model: we generated RI models for several variations of the
following RI parameters for both LLD1 and LLD2:

– vector dimension: 500, 1000, 1500, 1800, 2500
– seed length: 10, 50, 100, 300, 500, 1000
– term frequency: 1, 2, 5, 8, 10

This resulted in 290 runs (145 per dataset12). We then searched for similar
words for each topic of interest from the training set, and presented them
to clinicians who accessed the relevance. The combinations for parameters
which lead to the best results (measured through MAP) were considered as
the optimal setting for testing the method in the next step.

3. Testing the model: for the models generated using the optimal parameters
retrieved in the previous step, we retrieved 10 similar words for each topic

12 5 runs are missing from this count, corresponding to the situation where the seed
size is 1000, and the vector dimensionality is 500, which is impossible

9

of interest from the testing set and calculated MAP. The correctness of the
retrieved terms was assessed by clinical research scientists to whom we gave
the terms in the form of a survey (see below).

Human assessment The retrieved keywords for each topic of interest in both
training and testing sets were assessed by humans. We merged the results from
all searches into one pool, and gave this list to the scientists in the form of a
survey. When the similar term was a URI, we have extracted the label from LLD
and showed it in brackets. This is to ensure that the scientists can concentrate
on meaning of these rather than looking and searching LLD in order to find the
label. An example task looked similar to this:

Is ’trauma’ related to (delete URIs/words which are not related):

arteriopathy
back-projection
barotraumas
gunshot
http://linkedlifedata.com/resource/umls/id/C0003048 (Animal

Experimentation)
http://linkedlifedata.com/resource/umls/id/C0004601 (Back Injuries)
http://linkedlifedata.com/resource/umls/id/C0005604 (Birth trauma)
............

The most difficult task when designing this experiment was to define the
meaning of relevant. Relevant, in this context, is any word related to the given
keyword. This is a quite broad definition, which has, as it has been reported by
clinical research scientists who were involved in this experiment, posed a number
of difficulties due to many different levels of relevance. One of them stated that it
would not be easy to repeat the same tasks and mark the same words as relevant
if they had to repeat the same task again. We consider those that are not deleted
as relevant. Only those words which have been marked as relevant twice (by two
different clinicians) were eventually used when evaluating our results.

4.4 Results

In this section we first look into the results of training the model and finding
the best parameters with two separate groups independently. Then, we look at
the results of testing the RI method using these best parameters.

Training the model We expect to see variations of MAP, for different values
of dimensionality, seed length, and minimum term frequency parameters. Our
goal is to find the combination of parameters for which MAP is highest, so as to
use those in the testing phase.

Figure 1 shows the distribution of MAP across all cases, and for each group
used for training. It seems that the keywords from Group 1 were more challenging
for the method, as MAP values are much lower on average. However, as we can

12

Fig. 4. The effect of the variation of dimensionality on MAP, across two datasets,
for Group 1 (left) and Group 2 (right) used as training sets. The distribution of MAP
across all categories of dimensionality is the same (independent samples Kruskal-Wallis
test, p=0.676 and p=1.0 for LLD1 and LLD2 respectively, Group 1; p=0.587 and
p=0.996 for LLD1 and LLD2, Group 2).

Fig. 5. The effect of the variation of seed length on MAP, across two datasets, for
Group 1 (left) and Group 2 (right) used as training sets. The distribution of MAP
across all categories of minimum term frequency is the same (independent samples
Kruskal-Wallis test, p=0.931 and 0.997 for LLD1 and LLD2 respectively, Group 1;
p=0.961 and 0.998 for LLD1 and LLD2, Group 2).

The variation of seed length parameter value seems not to cause any signif-
icant changes to MAP across both datasets, and hence, we consider the lowest
value of this parameter as the optimal one, due to the fact that the the computa-
tional resources required to build and search the semantic space are proportional
to the value of seed length. Table 4 outlines optimal parameters: those that we
chose to use in the testing phase.

13

Group 1 Group 2
Dataset LLD1 LLD2 LLD1 LLD2
Min frequency 2 10 1 10
Seed length 10 10 10 10
Dimensionality 500 500 1500 500
MAP 0.55 0.61 0.65 0.61

Table 4. Optimal parameters chosen for Group 1 and Group 2 used as training sets

Finally, the size of the dataset had a significant influence on MAP (Mann-
Whitney U Test, p < 0.0001) for both Group 1 and 2 meaning that the larger
set (LLD2) resulted in producing the higher value of MAP for Group 1, while
for Group 2 the results were better with the smaller dataset (LLD1).

Testing the model In what follows we explore whether the model built
using the optimal parameters just presented can be used to effectively test the
model. In our context, testing the model means evaluating the set of related
terms (literals and URIs) returned by our method for the set of testing keywords
given as input.

We ran the search method using Group 2 as a testing set against the RI model
trained with Group 1, and then Group 1 as a testing set against the RI model
trained with Group 2. Results are shown in Table 5. The RI method results in
as good or better MAP for Group 2 in comparison to MAP for the best trained
model (Group 1 column in Table 4), while for Group 1 the resulting MAP for
LLD2 is as good as that of the best trained model (Group 2 column in Table 4),
while for LLD1 it is lower for 0.15. This is due to the distribution of keywords in
Group 1, due to which MAP for the RI model with optimal parameters is only
0.05 higher (0.55).

In the testing phase, MAP across both groups reached 0.565 and 0.61 for
LLD1, and LLD2 respectively.

Group 2 Group 1
Dataset LLD1 LLD2 LLD1 LLD2
Min frequency 2 10 1 10
Seed length 10 10 10 10
Dimensionality 500 500 1500 500
MAP 0.63 0.61 0.5 0.61

Table 5. Testing the Random Indexing method using Group 2 and Group 1 as testing
sets

Also important to observe is the fact that when the data corpus increases
(e.g. LLD2 vs LLD1) the method becomes very stable, and observed MAP values
in the training process are reproduced in the subsequent test phase. Arguably
this is due to the small difference in MAP across parameters, but it still shows
that RI is a stable method even in this unusual use-case we are dealing with.

Human assessment. In order to assess overall difficulty of the tasks which
we solve using the RI method, we calculated Inter-annotator agreement, and
indeed Observed agreement and Cohen’s Kappa agreement (see Section 4.2).
The observed agreement across all keywords was 0.81, and the Cohen’s Kappa
was 0.61 which indicates that the given task of selecting relevant keywords for a
topic of interest was indeed difficult for domain experts.

14

The code and datasets from the described experiment, including generated
virtual documents and semantic spaces, can be downloaded from the LarKC
Wiki13.

Performance The parameter values affect not only the quality of results
but also the required resources and the indexing time. Increasing the value of
dimensionality and seed length almost exponentially increases the time to gen-
erate the semantic space (from 0.67 minutes for 500 dimensions to 3 minutes
for 2500, LLD1; from 3.78 minutes for 500 to 11.5 minutes for 2500 dimensions,
LLD2). The higher the value for seed length and dimensionality, the higher the
requirements for the computational resources and RAM in particular14. Appli-
cation of RI to the whole LLD dataset poses the scalability issues related to the
size of our corpus. While indexing is a one-off operation (that takes 1̃6 hours
on MDC computer with 256G RAM), the search for ‘lung’ after the space is
generated takes 14 minutes. Therefore, in our related work reported elsewhere
([1]) we looked at the parallelisation of the RI search algorithm in order to make
exploring large RDF graphs using the contextual similarities of the comprising
nodes applicable in real time applications.

5 Conclusion and future work

We described the application of the Random Indexing method for the task of
searching large and unknown RDF graphs. We tested our method on the subsets
of the Linked Life Data, by training it using the variation of parameters, and
then involving domain experts to judge on the relevance of retrieved terms. None
of the parameters had a significant influence on MAP, apart from the size of the
dataset. However, the values of MAP reaching 0.565 and 0.61 for LLD1, and
LLD2 datasets respectively, indicate that the generation of virtual documents as
described in this paper and generating the semantic index using the RI method
has promising results. The reason for the stability of the RI method might have
been the span of the parameters which we used, and hence in our future work
we will expand the variation span and also repeat the runs across the same
parameter variations in order to increase the significance of results.

Acknowledgments We would like to thank creators of SemanticVectors15 li-
brary which is used in the experiments reported in this paper. This research has
been supported by the EU-funded LarKC16 (FP7-215535) project.

References

1. Assel, M., Cheptsov, A., Czink, B., Damljanovic, D., Quesada, J.: MPI Realization
of High Performance Search for Querying Large RDF Graphs using Statistical

13 http://wiki.larkc.eu/LarkcProject/statisticalSemantics
14 The experiments are conducted on the MDC super-computer: 2 IBM x3950M2, 32

Cores (4 quad core Intel Xeon@2.93GHz per node), 256 Gbytes of main memory,
production cluster for Java software and serial code.

15 http://code.google.com/p/semanticvectors/
16 http://www.larkc.eu/

15

Semantics . In: Proceedings of the 1st Workshop on High-Performance Computing
for the Semantic Web, Collocated with the 8th Extended Semantic Web Conference
(ESWC 2011). Heraklion, Greece (June 2011)

2. Broekstra, J., Kampman, A.: Serql: A second generation rdf query language. In:
In Proc. SWAD-Europe Workshop on Semantic Web Storage and Retrieval. pp.
13–14 (2003)

3. Cheng, G., Ge, W., Qu, Y.: Falcons: Searching and Browsing Entities on the Se-
mantic Web. In: Proceedings of WWW2008. pp. 1101–1102 (2008)

4. Cohen, T., Schvaneveldt, R., Widdows, D.: Reflective random indexing and indi-
rect inference: A scalable method for discovery of implicit connections. Journal of
Biomedical Informatics (2009)

5. Cohen, T.: Exploring medline space with random indexing and pathfinder net-
works. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA
Symposium pp. 126–130 (2008)

6. Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in
Practice. Addison Wesley, 1 edn. (February 2009)

7. Damljanovic, D., Petrak, J., Cunningham, H.: Random Indexing for Searching
Large RDF Graphs. In: Poster Session at the Proceedings of the 7th Extended
Semantic Web Conference (ESWC 2010). Lecture Notes in Computer Science,
Springer-Verlag, Heraklion, Greece (June 2010)

8. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by
latent semantic analysis. Journal of the American Society for Information Science
41, 391–407 (1990)

9. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: Pro-
ceedings of the 13th ACM international conference on Information and knowledge
management. pp. 652–659. ACM, New York, NY, USA (2004)

10. Eugenio, B.D., Glass, M.: The kappa statistic: a second look. Computational Lin-
guistics 1(30) (2004), (squib)

11. Hogan, A., Harth, A., Decker, S.: Reconrank: A scalable ranking method for se-
mantic web data with context. In: Second International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2006). Athens, GA, USA (2006)

12. Hripcsak, G., Heitjan, D.: Measuring agreement in medical informatics reliability
studies. Journal of Biomedical Informatics 35, 99–110 (2002)

13. Johnson, W.B., Lindenstrauss, J.: Extensions to lipschiz mapping into hilbert
space. Contemporary Mathematics 26 (1984)

14. Karlgren, J., Sahlgren, M.: From words to understanding. In: Uesaka, Y., Kanerva,
P., Asoh, H. (eds.) Foundations of Real-World Intelligence, pp. 294–308. Stanford:
CSLI Publications (2001)

15. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation - 15 January 2008, W3C (2008)

16. Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching.
In: Proceedings of WWW2006. pp. 23–31 (2006)

17. Sahlgren, M.: An introduction to random indexing. In: Methods and Applications
of Semantic Indexing Workshop at the 7th International Conference on Terminol-
ogy and Knowledge Engineering, TKE 2005. Citeseer (2005)

18. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: Proceedings of the 6th International Semantic Web Conference. Busan, Korea
(2007)

