Updateable Views for an XML Query Language*

Hanna Kozankiewicz!, Jacek Leszczylowski', Kazimierz Subieta!»?

! Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland
2 Polish-Japanese Institute of Information Technology, Warsaw, Poland
{hanka, jacek, subieta}@ipipan.waw.pl

Abstract. We present an approach to updateable XML views, which
is based on the Stack-Based Approach to query languages. Its novelty
consists in introducing procedures overloading generic updating opera-
tions on virtual objects into a view definition. This overloading is implicit
and users update virtual objects like stored objects. Due to procedures
we support full algorithmic power of view definitions, which is essential
for writing sophisticated wrappers and mediators. The approach is also
relevant to general object-oriented data models.

1 Introduction

A view is a virtual image of data stored in a database that is adapted to
user /application requirements. In Web applications views enable one to resolve
incompatibilities among distributed/heterogeneous data resources and to inte-
grate them. Hence the topic raises a lot of interest in the Web and XML com-
munities [1].

In this paper we present a novel approach to updateable views, which is based
on the Stack-Based Approach (SBA). We deal only with virtual views. Our view
mechanism provides a possibility of inclusion information about view updates
intents into a view definition. The information has a form of procedures (writ-
ten in a query language) which dynamically overload generic view (updating)
operations. This feature allows the view definer to construct very powerful views
which can take algorithmically complete control over actions on stored objects
that are induced by updates of virtual objects. The view definer has also all
possibilities to avoid unexpected and/or undesired side-effects during updating
virtual objects (overupdating, underupdating or warping updating intention).

The rest of the paper is structured as follows. The next section contains basic
concepts of the Stack-Based Approach to query languages. Section 3 presents
main issues of our approach to XML updateable views. Section 4 concludes.

2 The Stack-Based Approach
The foundation of the Stack-Based Approach [2] is that query languages can
be treated as a particular case of programming languages and their semantics

* Supported by the European Commission 5th Framework project ICONS, IST-2001-
32429.



should be defined in a similar manner. The approach is abstract and universal
what makes it relevant to a general data model. A basic mechanism of SBA is
an environment stack (ES), which is used for binding names occurring in queries
according to their scopes. ES consists of sections that are sets of binders that
relate names to run-time entities. A new section is pushed (popped) on (from)
ES in accordance with query nesting. A name appearing in a query is bound via
ES to a run-time entity. The search for name binding starts from the ES top
and ends on the first visible section that contains a corresponding binder.

2.1 The Stack Based Query Language

The Stack Based Query Language (SBQL) is a formalized query language in a
spirit of SQL or OQL. It is based on the principle of compositionality. We can
create complex queries through combining them from simpler ones by means of
unary/binary operators. The simplest query is an atomic query, which can be any
name or any literal (e.g. 5, "Hamlet”, book). SBQL queries return ¢_results that
can be combined by query operators, considered as algebraic or non-algebraic.

Algebraic operators are for example: +, max, or. If a query ¢; A g2 contains
algebraic operator then the order of evaluation of queries q; and ¢ is insignifi-
cant. Both these queries are evaluated independently and then their results are
combined into a final results according to semantics of operator A.

Non-algebraic operators are basic for SBQL. If a query ¢; € ¢o is build up of
a non-algebraic operator 6 then, then gs is evaluated in the context determined
by ¢i. This evaluation looks as follows. First, query ¢; is evaluated and it re-
turns a collection g_result. Next, for each element e € g_result ES is augmented
with a new section containing local environment of e, then ¢, is evaluated, and
the section is removed from the stack. Finally, the partial results of these iter-
ations are combined into a final result according to 6. Non-algebraic operators
include selection, dependent join, projection/navigation/path expression (dot),
V, 3, ordering, and transitive closures.

2.2 Functions and Views in SBQL

SBA fully supports functions and procedures. They can be defined with or with-
out parameters, can involve local objects, can have side-effects, and can call
other function within their bodies (including recursive calls). There is also no
restriction on computational complexity of the functions.

In classical approaches views are essentially functions (e.g. [1]) that return
references to (stored) objects. View updates use these references as l-values. This
approach leads to severe limitations of view definition power and to a danger of
violating the user updating intents. In our research we follow a totally different
approach in which the power is unlimited and the user intents are explicitly
defined inside a view definition. Thus our view is a more complex structure than
e.g. an SQL view. It consists of a definition of virtual objects, definitions of all
the required operations on virtual objects, and definitions of all nested views
(e.g. virtual [sub-]attributes of virtual objects).

10



3 Updateable XML Views

In this section we sketch the main concepts of our approach that is described in
detail in [3]. Our view is not defined by a single query, but consists of two parts.
The first part determines some values or references to stored objects that are
the basis for building up virtual objects. The second part (re)defines operations
that can be performed on the virtual objects.

The first part of the definition is a procedure that returns a set of enti-
ties called seeds that are used for making up virtual objects. The second part
includes procedures that (re)define generic operations (update, delete, derefer-
ence, insert) that can be performed on virtual objects identified by seeds. A seed
is a parameter of these operations. Let us analyze an example view definition for
an XML file containing bibliography. XML root element is denoted by the tag
bib, and XML subnodes contain information on books (XML tag book). Each
book node has the subnodes title and author. The example view is as follows:

create view LemBookTitleDef {
virtual objects LemBookTitle {
return (bib.book where author = "Lem”) as b; }
on_retrieve do { return capitalize(b.title); }
on_update new_title do {
if theUserHasUpdatePermission() then b.title = new_title; }
on_delete do { if theUserHasUpdatePermission() then delete b; } }

The view returns titles of Lem’s books in the database. It defines: the deref-
erence operation that returns a capitalized book’s title; the protected operation
of update that changes the title to a new one (operation has the parameter
new_title); and the protected operation of deletion that deletes a given book
from the database. Note that operation of object insertion is undefined, thus it
is disallowed. The view can be called in an example request that fixes a typo in
a title:

for each LemBookTitle as bt do
if bt = ”SOLRIS” then bt := ”Solaris”;

Note that the request implicitly calls two view operations: on_retrieve when it
performs the comparison = (which forces dereference of bt), and on_update when
it performs :=. The example illustrates the important property of views known
as view transparency, which claims no syntactic and pragmatic differences in
operations on virtual and stored objects. In our case the transparency concerns
not only querying but also updating operations. The users formulating requests
need not to distinguish between stored and virtual data applying the same query
syntax to both cases.

3.1 Processing of View Updates

To distinguish virtual objects from stored objects we have introduced the concept
of wirtual identifier — a counterpart of a stored object identifier. Such a virtual

11



identifier is distinguishable from a stored object identifier and contains the seed
of a given virtual object and the identifier of a corresponding view definition.
When a view is invoked in a query it returns a set of virtual identifiers. Next,
when a system tries to perform update operation with a virtual identifier as
an l-value, it recognizes that it deals with the virtual object and hence, it calls
the proper update operation from the view definition. To enable that, a virtual
identifier must contain both a seed (which is a parameter of view updating
procedures passed implicitly via ES) and the identifier of the view definition.

3.2 View Nesting

The presented method allows for view nesting with an unlimited number of
nesting levels. Sub-views are seen as (sub) attributes of virtual objects. This
feature requires an extension of virtual identifier for sub-views that has to contain
information on ancestors (in nesting) of the view because the information can be
useful for the view definer to refer to the ancestors during writing view updating
procedures.

3.3 Parameters and Recurrence

Views can have parameters that (similarly to function’s parameters) can be
arbitrary queries. A method of parameter passing is determined according to
syntax of the view definition: we provide both call-by-value and call-by-reference.
Our view mechanism also supports recurrence as a side effect of SBA and its
stack-oriented semantics.

4 Conclusions

We have presented a new approach to updateable XML views that gives to
a view user the possibility to take full control over what happens with data
accessible through the view. The approach is consistent and implementable. We
have already implemented SBQL with functions for XML native databases based
on the DOM model and now implementation of the presented view mechanism
is under way. We believe that the presented idea creates great possibilities that
have not been even considered by other approaches, thus is worth attention from
the XML research community.

References

1. S.Abiteboul. On Views and XML. Proc. of PODS Conf., 1999, 1-9

2. K.Subieta, Y.Kambayashi, J.Leszczytowski. Procedures in Object-Oriented Query
Languages. VLDB 1995: 182-193

3. H.Kozankiewicz, J.Leszczylowski, J.Plodzier, and K.Subieta. Updateable Object
Views. Institute of Computer Science, Polish Academy of Sciences, Report 950, Oc-
tober 2002

12



	Str: 
	:81: 9
	:91: 10
	:101: 11
	:111: 12



