
Development of Embedded System for storing

and retrieving XML data �

Joonho Kwon1, Dongseop Kwon1, Hyoseop Shin2, Sukho Lee1

1 School of Electrical Engineering and Computer Science
Seoul National University, Seoul, Korea

{bluerain, subby}@db.snu.ac.kr, shlee@cse.snu.ac.kr
2 Software Center, Samsung Electronics, Co., Ltd., Seoul, Korea

hyoseop@samsung.com

Abstract. This paper describes the design and implementation of an
embedded-type XML storage and retrieval system which is built on top
of relational databases. The proposed system stores each node of input
XML documents as a relational tuple by a node numbering scheme. User
queries written in XQuery are translated into a set of simple SQL queries
before execution so that an embedded-type relational engine with limited
resources can handle those queries more efficiently. XML type handling
mechanism of the system enables it to cover various kinds of XML ap-
plications. Futhermore, the system provides an efficient XML indexing
method for processing twig queries.

1 Introduction

In this paper, we design and implement an embedded system, the eXDM sys-
tem, based on RDBMS and XQuery in order to store and retrieve XML data
representing TV programs. Since XML becomes the de facto standard for rep-
resenting, exchanging and accessing data over the Internet, several techniques
have been proposed for storing XML documents into tables and for processing
an XML query after translating it into SQL queries over these tables. The edge
approach[1] and the numbering scheme approach[2][3] have been proposed for
storing XML documents in tables. To retrieve XML documents, several query
languages such as XML-QL, XPath, and XQuery[4] have been proposed. Among
them, XQuery is the first public working draft of XML query language from the
World Wide Web Consortium(W3C). XML document repositories that support
XQuery such as eXceleon and Tamino store XML documents in native XML
database.

2 eXDM system

2.1 Overview of Architecture

eXDM consists of four components : type handler, index handler, data loader,
and XQuery processor.
� This work was supported by the Brain Korea 21 Project.

RDBMS

XML Data
Loader

XML Type
Handler

XML Index
Handler

XQuery
Translator

XML
Publisher

XQuery XML ResultXML
Documents

SQL SQL Result

XQueryProcessor

Fig. 1. eXDM Architecture Overview

The XML data loader parses XML documents and stores the extracted el-
ements, attributes or values into corresponding tables. The XML type handler
provides an ability to specify data types for element and attributes. The XML
index handler manages index information of elements and/or attributes which
is based on regular path expression. The XQuery processor has two roles. The
first role of the XQuery processor is to translate an user query in the XQuery
grammar to several SQL statements. The translated SQL statement is passed
to SQL engine. Then SQL engine executes the SQL statement and sends the
results to XQuery processor. The second role of XQuery processor is to publish
the relational results as XML data. In eXDM, a knowledge administrator famil-
iar with the XML documents can provide type information and create indexes.
Fig.1 shows the overall architecture of eXDM.

2.2 The Scope of the Query Language

In the eXDM system, the simplified syntax of XQuery is used. The eXDM system
supports only four clauses FWRS(FOR, WHERE, RETURN, SORTBY). But
it is enough to construct most of queries which users would want to use. And
the XQuery of eXDM also supports logical operators, arithmetic expressions,
regular path expressions and constructor.

FOR $pi in //ProgramInformation,
$be in //BroadcastEvent

WHERE $be//PublishedTime >= ‘2002-08-21 13:00:00’
AND $pi/@programId = $be/@crid

RETURN $pi//Title/text(), $be//PublishedTime/text()
SOBTBY $pi//Title/text()

Fig. 2. XQuery example

Fig.2 shows a typical XQuery example to request the title and time of pro-
grams that are broadcasted after 1 P.M. on 2002-08-21.

2.3 The Schema of Tables

In order to store XML documents in relational tables, eXDM uses an edge ap-
proach[1] and a numbering scheme[2][3] together. It is possible to store XML
documents in a system without DTD or XML schema as well as to store vari-
ous structures in a system. The proposed numbering scheme quickly determines
the ancestor-descendant relationship between elements in the hierarchy of XML
data.

XML documents can be mapped into the following tables:

NODE (n id, d id, name, v type, v id, start pos, end pos, level)
DOCUMENT (d id, contents)
V ALUEtype (v id, value)

The NODE table stores elements and attributes of XML documents, while
the DOCUMENT table stores original XML documents. The actual values of
elements and attributes are stored in the corresponding V ALUEtype table.

2.4 Query Splitting

As is mentioned above, the XQuery processor translates XQuery into SQL. A
simple approach is to translate an XQuery statement into one SQL statement.
But in this case, the translated SQL has many self-joins. A join is frequently the
most expensive physical operation. In general, the embedded SQL engine has a
limited memory and a computing power. Thus it takes a long time to execute
the SQL statement which has many joins in embedded SQL engine.

So XQuery processor uses the splitting method. XQuery processor translates
a given XQuery statement into several simple SQL statements. A simple SQL
statement means that it has only one join operation. The results of a simple SQL
statement are stored in a temporary table. Thus the intermediate results are
reused by another simple SQL statement. After the final simple SQL statement
is executed, all temporary tables are deleted.

Complex SQL
Statement

(many joins)

Simple SQL Statement

Simple SQL Statement

Simple SQL Statement

Simple SQL Statement

ProgramInformation

Title Genre

Nameresult
condition

FOR $pi in //ProgramInformation
WHERE $pi//Genre/Name = ‘News’
RETURN $pi//Title

indexed
element

Fig. 3. Concept of Splitting Method Fig. 4. Twig Query

2.5 Index

Users can create indexes on elements and/or attributes frequently used in XQuery.
The eXDM system can use this index instead of generating several temporary
tables during the query splitting. For example, the regular path expression in
where clause in Fig 4. is $pi//Genre/Name = ‘News’. If there is no index, this
path expression is translated into four simple SQL statements. Three statements
express ancestor-descendant relationship between elements, and one statement
expresses a condition to be satisfied(Name = ‘News’). If there exists an index on
$pi//Genre/Name that satisfies the condition, only one simple SQL statement
is generated.

Especially, the usual form of the XQuery is a twig shape like Fig 4. The index
structure of the eXDM is also efficient to process these queries.

2.6 Type Handling

In the eXDM system, users provide type information about XML documents. For
example, users can define a ‘PublishedTime’ element as datetime. This allows
comparisons of datetime data and corresponding retrieval options such as “after
1 PM. on 2002-08-21”.With no schema information, elements and attributes are
treated as string.

3 Conclusion and Future Work

We have developed an embedded XML storage and retrieval system(eXDM).
The eXDM system stores XML documents on relational tables using the edge
approache and the numbering scheme. It is possible to process regular path
expression queries because users can use XQuery as a standard query interface.
For efficient execution of SQL translated from XQuery, eXDM uses splitting
methods and provides index mechanism.

In the future work, we can adopt an XML schema as type information and
extend our system to support full specifications of XQuery.

References

1. Daniela Florescu and Donald Kossman, Storing and Querying XML Data using an
RDMBS. IEEE Data Engineering Bulletin, 22(3):27-34, 1999.

2. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, G. Lohman, On Supporting Con-
tainment Queries in Relational Database Management Systems, Proceedings of
SIGMOD, May 2001.

3. Q. Li and Bongki Moon, Indexing and Querying XML Data for Regular Path
Expressions, Proceedings of VLDB, 361-370, September 2001.

4. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon, and M.
Stefanescu. XQuery 1.0: An XML Query Language. W3C Working Draft. Available
from http://www.w3.org/TR/xquery.

	Str:
	:721: 73
	:731: 74
	:741: 75
	:751: 76

