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Abstract. In data warehouses measures are analyzed along different
dimensions. Although the structures of these dimensions change over
time, data warehouse tools currently in use are not able to deal with
these modifications in a sophisticated way. In this paper we present a bi-
temporal extension of the COMET metamodel. This extension enables
us to represent not only the valid time of structural modifications, but
also the transaction time.

1 Introduction and Motivation

Data warehouses provide sophisticated features for aggregating, analyzing, and
comparing data to support decision making in companies.

The most popular architecture for data warehouses are multidimensional
data cubes, where transaction data (called cells, fact data or measures) are
described in terms of master data (also called dimension members). Master data
is hierarchically organized in dimensions, where the facts of the upper levels are
computed from the facts of the lower levels by some consolidation functions.

Available OLAP (On-Line Analytical Processing) systems are therefore able
to deal with changing measures, e. g. , changing profit or turnover. They are,
however, not able to deal with modifications in dimensions, e. g. , if a new branch
or division is established, although time is usually explicitly represented as a
dimension in data warehouses.

In [EKM02] we presented our COMET approach which allows to represent
changes of transaction data and structure data. This has been done by intro-
ducing a model that stores information about the valid time of data elements.
Valid time defines the time, in which a fact is true in the real world [EJS98].

However, as OLAP systems are mainly used as decision support systems it
would sometimes be helpful to know which knowledge (i.e., which data) was
stored in the data warehouse at a given point in time. This would enable us, to
reconstruct the data that led to a particular decision.

Transaction time represents the time in which a fact was logically present in
the database [EJS98]. Hence, it stores the time point, at which a fact was inserted
into the database, and at which it was (logically) deleted from the database.

In this paper, we will present a bi-temporal extension of the COMET meta-
model, i.e., a metamodel that supports valid time and transaction time on both
the schema and the instance level.



2 A Formal Model for Bi-Temporal Multidimensional
Systems

Basically, a multidimensional view on data, e.g. an OLAP cube or a data ware-
house, consists of a set of dimensions. Typical examples of dimensions frequently
found in multidimensional databases are Time, Facts or Products.

The structure of each dimension is defined by a set of categories, e.g., the
dimension Time could consist of the categories Year, Quarter and Month that
are in the hierarchical relation Y ear → Quarter → Month, where for example
Y ear → Quarter means that a quarter rolls-up to a year.

Each category consists of a set of dimension members. Dimension members
define the instances of a data warehouse schema. For instance, January, February
and March are dimension members assigned to the category Month.

We will now give a formal description of a bi-temporal multidimensional
system. The features of this model comprise:

• Bi-Temporal Model: The model supports valid time and transaction time
in order to keep track of the history of modifications on both, the instance
and the schema level of a data warehouse.

• Fact-Constellation Schemas: The model allows to build multi-cube data
warehouses. These cubes may share different dimensions or only parts of
different dimensions. Thus, our model enables the administrator to create
Fact-Constellation schemas [AV98].

• Proportional Aggregation: Furthermore, the model supports correct ag-
gregation even if dimension members are not disjoint. This means that one
dimension member may belong to several “parents”. For instance, the cal-
endar week number 5 (which is a dimension member of the category Weeks)
of 2002 belongs to the months January and February where four days or 4/7
belong to January and three days or 3/7 belong to February.

• Generic Dimensionality: Our model fulfills E.F. Codd’s sixth OLAP rule
of “Generic Dimensionality” [CCS93]. Codd claims that each dimension
must be equivalent in both its structure and operational capabilities. For
instance, we treat the dimension Time, which is usually a part of a data
warehouse, like any other dimension. Furthermore, we represent the facts
of a data warehouse as a dimension Facts. This allows to apply the whole
functionality of our approach even to the dimension Time or Facts.

In the following paragraphs, [V Ts, V Te] is always used to represent the valid
time of an object (e.g., to represent the valid time of a dimension, a category or a
dimension member) where V Ts is the beginning of the valid time, V Te is the end
of the valid time and V Te ≥ V Ts. [TTs, TTe] is used to represent the transaction
time interval of an object where TTs is the beginning of the transaction time,
TTe is the end of the transaction time and TTe ≥ TTs.

The schema of our temporal data warehouse approach is defined by:

i.) A number of dimensions J .



ii.) A set of dimensions D = {D1, ..., DJ} where Di =< ID,DKey, [V Ts, V Te],
[TTs, TTe] >. ID is a unique identifier of the dimension. DKey is a user
defined key (e. g. , the name of the dimension) which is unique within the
data warehouse for each timepoint V Ts ≤ T ≤ V Te.

iii.) A number of categories K.
iv.) A set of categories C = {C1, ..., CK} where Ci =< ID,CKey, [V Ts, V Te],

[TTs, TTe] >. ID is a unique identifier of the category. CKey is a user de-
fined key (e. g. , the name of the category) which is unique within the data
warehouse for each timepoint V Ts ≤ T ≤ V Te.

v.) A set of assignments between dimensions and categories ADC = {A1
DC , ...,

AN
DC}, where Ai

DC =< D.ID,C.ID, [V Ts, V Te], [TTs, TTe] >. D.ID and
C.ID represents the identifier of the corresponding dimension, i.e., of the
corresponding category.

vi.) A set of hierarchical category assignments HC = {HC1, ..., HCO} where
HCi =< ID, C.IDC , C.IDP >. ID is a unique identifier of the hierarchical
category assignment. C.IDC is the identifier of a category, C.IDP is the
category identifier of the parent of C.IDC or ∅ if the category is a top-level
category.

vii.) A number of user defined attributes L.
viii.) A set of user defined attributes (UDAs) U = {U1, ..., UL} where Ui =

< ID, UKey, UType, [V Ts, V Te], [TTs, TTe], IID >. ID is a unique identifier
of the UDA. UKey is a user defined key (e. g. , the name of the UDA) which
is unique within the data warehouse for each timepoint V Ts ≤ T ≤ V Te.
UType defines the data type of the corresponding UDA. IID is the identifier
of a dimension or a category.
This identifier IID defines the set of dimension members for which the cor-
responding user defined attribute is applicable: Each dimension member as-
signed to the corresponding dimension and/or to the corresponding category
may have an assigned value representing the extension of the corresponding
user defined attribute. Hence, this set of user defined attributes defines the
name and type of all user defined attributes within our data warehouse.

ix.) A number of cubes I.
x.) A set of cubes B = {B1, ..., BI} where Bi =< ID, BKey,S, [V Ts, V Te],

[TTs, TTe] >. ID is a unique identifier of the cube (similar to Oid′s in object-
oriented database systems). BKey is a user defined key (e. g. , the name of
the cube) which is unique within the data warehouse for each timepoint
V Ts ≤ T ≤ V Te.
S represents the schema of the cube. The n-tuple S consists of all dimen-
sions and hierarchical category assignments that are a part of this cube.
Therefore S is defined as S = (D, A) where D = {D1.ID, ..., DN .ID} and
A = {HC1.ID, ..., HCM .ID}.

The instances of our temporal data warehouse approach are defined by:

i.) A number of dimension members P .



ii.) A set of dimension members M = {M1, ..., MP } where Mi =< ID, MKey,
UV, CA, [V Ts, V Te], [TTs, TTe] >. ID is a unique identifier of the dimen-
sion member. MKey is a user defined key (e. g. , the name of the dimen-
sion member) which is unique within the data warehouse for each timepoint
V Ts ≤ T ≤ V Te.
The set CA represents the set of categories to which the corresponding di-
mension member is assigned. If a dimension member is assigned to more
than one categories, and if these categories belong to the same cube for at
least one point in time then we call it a shared member.
UV is a set of tuples that consists of all user defined attribute values. It is
defined as UV = {(U.ID1, V1), ..., (U.IDN , VN )} where U.IDi is the identifier
of the corresponding user defined attribute, i.e. its definition, and Vi is the
value, i.e. its extension.

iii.) A set of hierarchical member assignments HM = {HM1, ..., HMO} where
HMi =< ID, M.IDC ,M.IDP >. ID is a unique identifier of the hierar-
chical member assignment. M.IDC is the identifier of a dimension member,
M.IDP is the dimension member identifier of the parent of M.IDC or ∅ if
the dimension member is at the top-level.

iv.) A function cval : (MD1 , ..., MDN ) → value which uniquely assigns a value
to each vector (MD1 , ..., MDN

) where (MD1 , ..., MDN
) ∈ MD1 × ...×MDN

.
The domain of this function is the set of all cell references. The range of this
function are all cell values, i.e., measures of a cube.

3 Conclusion

In this paper, we presented a bi-temporal extension of the COMET metamodel.
This extension supports valid time and transaction time on both the schema and
the instance level. Hence, it allows to represent changes of transaction data and
structure data. Furthermore, it enables us to represent knowledge about which
data was stored in the data warehouse at a given point in time, and thus led to
right or wrong decisions.
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