
Metamodel-Compliance Checking of Requirements
in a Semiformal Representation

Hermann Kaindl1, Stefan Kramer2, Mario Hailing3, and Vahan Harput3

1 Vienna Univ. of Technology, Inst. of Computer Technology
Gusshausstr. 27-29, A-1040 Vienna, Austria

kaindl@ict.tuwien.ac.at
2 Technische Univ. München, Inst. f. Informatik/I12

Boltzmannstr. 3, D-85748 Garching b. München, Germany
3 Siemens AG Österreich, PSE, Geusaugasse 17, A–1030 Vienna, Austria

Abstract. Checking requirements is highly desirable but hard to achieve in prac-
tice, where only word processors are used in most projects. While in this case
reviews are more or less the only means, formal representations allow for a vari-
ety of automated checks. Unfortunately, formal representations of requirements
are rarely available in real-world projects. Semiformal representations are easier
to obtain and still offer some possibilities for automated checks. Based on an
object-oriented hypertext representation, we present an implemented approach
for compliance checks against a metamodel.

1 Introduction and Background

In this paper, we present an approach to metamodel-compliance checking that is based
on a semiformal representation. A given model can be said to be compliant with a
metamodel if all parts prescribed by the metamodel are contained in the model.

We have implemented this approach to metamodel-compliance checking in the tool
RETH (Requirements Engineering Through Hypertext) that supports an object-oriented
hypertext representation of requirements. These representations are semiformal in the
sense that they can be partly processed by machine based on their form. For example,
a hypertext link can be followed, and an attribute can be inherited in a class-subclass
structure. Making use of the formally represented parts, this tool can check compliance
against a metamodel.

RETH’s basic hypertext approach is described in [1], based on which requirements,
goals and domain entities are all modeled as objects in RETH. Classes and instances are
distinguished, and they are described in one hypertext node each in the tool. In this way,
descriptions in natural language of, e.g., requirements statements or glossary entries
are integrated in the object-oriented structure. The hypertext nodes in RETH have also
internal structure through so-called partitions, which can represent object attributes, for
example.

Additionally, RETH denotes a method supported by this tool. The approach to repre-
senting requirements can be found in [2], and a process of scenario-based requirements
engineering in [3]. In the context of this paper, the metamodel defined by this method is
important, since it provides the basis for the metamodel-compliance checks. As given



Compliance

Conditions
Metamodel Model State Warnings

refer toused to derive

relate to

Fig. 1. Conceptual overview of our metamodel-compliance checker.

in [2–4], it defines which objects are to be represented and which relations between ob-
jects. For example, goals and scenarios are to be represented as well as a many-to-many
relationship between them.

The remainder of this paper is organized in the following manner. First, we present
our approach to metamodel-compliance checking. After that, we sketch some empirical
evidence based upon a student project. Finally, we relate our approach to previous work.

2 Our Approach to Metamodel-Compliance Checking

Since our approach focuses on compliance with the RETH metamodel, the checker
compares the concrete requirements information (a given semiformal model in the
RETH tool) with this metamodel. Fig. 1 shows a conceptual overview of this metamodel-
compliance checker. More precisely, it checks certain compliance conditions that can
be derived from this metamodel. For example, the metamodel prescribes that scenar-
ios (more precisely scenario instances) should exist. The derived compliance condition
says that at least one scenario instance should be present in the given model. As a more
interesting example, the metamodel prescribes that scenarios and goals should be in a
many-to-many relation. From this, two compliance conditions can be derived: one says
that for each already existing scenario instance at least one goal instance should exist
to which it is connected according to this relation, the second one is analogous in the
other direction.

The user can invoke checking these compliance conditions at any time, either selec-
tively or all of them together. There are two ways to configure the checker for a given
application:

1. Whenever part of the metamodel is discarded, e.g., by leaving out scenarios, the
checker works with the remaining part only.

2. While focusing the current work on a specific part, e.g., on defining a domain
model, all the unrelated checks can be switched off selectively and temporarily.

Our tool does not enforce strict conformance to the metamodel at all times, it al-
lows a model to be temporarily non-conformant. This is particularly important in a
metamodel as presented above, where e.g., for each scenario at least one goal is to be
represented and vice versa. Since such objects can only be entered one after another,
strict conformance would not be feasible at all times.

The metamodel-compliance checks simply result in warnings if something appears
to be missing. It should be clear that the metamodel-compliance checks involved here
can merely indicate potential problems. The user decides whether such a potential prob-
lem is really a problem in the given context of using RETH. Therefore, our checker



issues warnings to the users in order to make them aware of potential problems they
might either overlook or forget about.

An obvious compliance condition derived from the metamodel is that instances of
functional requirements should be specified. If the checker invokes it and cannot find
a single one, it issues a respective warning. Missing instances of quality requirements,
scenarios and goals are handled analogously. Also the domain model should not be
empty. There will even be a warning if only object instances exist and no single ob-
ject class. In addition, the checker issues a warning, if descriptive text is missing in
certain attributes. The more complicated conditions derived from the relation between
scenarios and goals were sketched above.

3 Empirical Evidence

Now let us sketch empirical evidence from a student project, where the participating
computer-science students had the opportunity to use the RETH tool to specify require-
ments for a Web-based game-playing software system. The goal was to find evidence
whether

1. the RETH checker helps creating models compliant with the RETH metamodel;
2. the RETH checker is easy to use and improves the overall acceptance of the tool.

We had two homogeneous groups of eight students each. One group used the tool
with the RETH checker, one without. We handed out a problem statement, and we
obtained requirements documents from each participant. We then carefully reviewed
each document according to a list of criteria related to the metamodel compliance and
the contents of the documents.

In addition, we asked all participants to fill out a questionnaire containing closed
questions regarding the usefulness and usability of the tool and its features, with an ad-
ditional line for free form comments. In general, we designed the questionnaire accord-
ing to [5, p. 208–212]. In particular, we used a multi-point rating scale, more precisely
a Likert scale.

Regarding the aspects monitored by the RETH checker, its use resulted in models
with higher compliance, at least as compared with no checking by machine at all. In-
terestingly, the checker seems to improve other aspects of metamodel compliance as
well. One possible explanation might be that users pay more attention to other aspects
of metamodel compliance by analogy. In addition, the results from the questionnaires
reflecting the subjective opinions of the users in this student project are in favor of
our approach and its supporting tool. In particular, the progressive assistance was well
accepted by the users.

4 Related Work

In contrast to an abundance of approaches based on formal representations, recently a
more lightweight approach to consistency checking was proposed building on an object-
oriented semiformal representation [6]. It deals with consistency between a scenario
model and a class model.



We found, however, much less work on completeness checking in the literature.
Again, formal representations prevail, primarily used for checking completeness of an
implementation with regard to a specification. While the focus of [6] is on consistency
as stated above, it also deals with a kind of partial incompleteness. Our approach to
metamodel compliance can also be viewed as completeness checking of the structure
of a model, whether it contains all the parts prescribed by the metamodel.

The closest work in the literature deals with standards compliance [7]. Standards
prescribe practices, which not only include certain procedures, but also constraints that
must hold for documents. Such a standard is, however, less rigidly defined than our
metamodel. Even if more formally defined in a tool like DOORS as described in [7],
standards compliance would usually not prescribe all the parts of a model in the same
way as a metamodel.

5 Conclusion

We have presented a novel approach to compliance checking against a metamodel, more
precisely the RETH metamodel. This approach is implemented in the RETH tool for
checking whether a requirements specification in the tool contains the parts that the
method prescribes. While the scope of this work was metamodel compliance of require-
ments, the approach may well be more generally applicable, whenever a metamodel is
specified for what is to be represented in a corresponding tool.

In summary, the contributions of this paper are
– metamodel-compliance checking based on a semiformal representation,
– progressive assistance allowing a model to be temporarily non-conformant, and
– embedding of this approach in a hypertext tool for requirements engineering.

6 Acknowledgments

The Forschungsförderungsfonds für die gewerbliche Wirtschaft (FFF) in Austria sup-
ported part of this work under contract 800489.

References

1. Kaindl, H.: Using hypertext for semiformal representation in requirements engineering prac-
tice. The New Review of Hypermedia and Multimedia 2 (1996) 149–173

2. Kaindl, H.: A practical approach to combining requirements definition and object-oriented
analysis. Annals of Software Engineering 3 (1997) 319–343

3. Kaindl, H.: A design process based on a model combining scenarios with goals and functions.
IEEE Transactions on Systems, Man, and Cybernetics (SMC) Part A 30 (2000) 537–551

4. Ebner, G., Kaindl, H.: Tracing all around in reengineering. IEEE Software (2002) 70–77
5. Dumas, J.S., Redish, J.C.: A practical guide to usability testing. Ablex Publishing Corp.,

Norwood, NJ (1993)
6. Glinz, M.: A lightweight approach to consistency of scenarios and class models. In: Pro-

ceedings of the Fourth International Conference on Requirements Engineering (ICRE2000),
Schaumburg, IL, IEEE (2000) 49–58

7. Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S., Armitage, S., Stevens, R.: Man-
aging standards compliance. IEEE Transactions on Software Engineering 25 (1999) 836–851


	Str: 
	:2001: 201
	:2011: 202
	:2021: 203
	:2031: 204



