
Component Engineering for Large
Database Applications

Bernhard Thalheim

Computer Science Institute, Brandenburg University of Technology at Cottbus,
PostBox 101344, D-03013 Cottbus

thalheim@informatik.tu-cottbus.de

Abstract. Database modeling is still a job of an artisan. Due to this
approach database schemata evolve by growth without any evolution
plan. Finally, they cannot be examined, surveyed, consistently extended
or analyzed. Querying and maintenance become very difficult.
Instead of “development in the small” we propose an approach towards
“ development in the large”. The approach is based on the observation
that large database applications often use an implicit structuring into
connected components. Components are either star or snowflake schemes.
Components may be unwrapped or wrapped, i.e. with associated views.
The composition of components is based on associating visible types,
e.g., types in views of the components. The paper aims in a development
of component engineering.

1 Introduction

1.1 Some Observations

Database applications are often huge. Due to the size of the schema, extension
and change of the application is an error-prone process. The size of the schema
leads also to a high repetition of similar and equal data types.

At the same time, we observe that parts of the schema are independent. They
can be treated in a separate manner based on the component separation. Some
of the types are ‘bridging’ independent components. These bridges are modeled
together with the types associating the components. Other types of a component
can be handled without consideration of the type.

The structuring in large database applications is based on the multi-dimen-
sionality in applications. We observe a number of dimensions in database appli-
cations such as:

– specialization dimension used for separating roles, categorization, and ver-
sions;

– association dimension used for bridging related types;
– usage and log dimension enabling in separating usage restrictions and in

storing history of utilization;
– meta-characterization dimension used to describe source, quality or classifi-

cation information.

1.2 Skeleton Based Codesign Approach

Codesign [Tha00] of database applications aims in consistent development of all
facets of database applications: structuring of the database by schema types and
static integrity constraints, behavior modeling by specification of functionality
and dynamic integrity constraints and interactivity modeling by assigning views
to activities of actors in the corresponding dialogue steps. Codesign, thus, is
based on the specification of the the database schema, functions, views and
dialogue steps. At the same time, various abstraction layers are separated such
as the conceptual layer, requirements acquisition layer and implementation layer.

First, a skeleton of components is developed. This skeleton can be refined
during evolution of the schema. Then, each component is developed step by
step. If this component is associated to another component then its development
must be associated with the development of the other component as long as their
common elements are concerned.

2 Inductive Construction of Schemata Using Components

The specification of database applications may use building blocks and compo-
sition methods for schema composition:

Development of building blocks: There are parts in the database schema which
cannot be partitioned into smaller parts without loosing their meaning. Typ-
ical such parts are kernel types together with their specialization types. Ker-
nel types may be represented by star or snowflake sub-schemata. Building
blocks have their interfaces. The interface types in a component may be
used by types of other components. The values in the interface classes may
be used via referential integrity constraints. Depending on the direction of
referential integrity the view types are input types or output types or both.

Development of composition methods: Composition of sub-schemata to larger sche-
mata may be based on generalizations of operations used within the ER
model itself. Composition is based on views of the components. Typical
composition methods are based on bridge types, nesting of types, lifespan
variation types, log/history types, meta-characterization types, occurrence
types, temporality types, and abstraction association.

Rules for application of composition methods: Constraints for application of com-
position methods allow to keep track on restrictions, special application con-
ditions and on the context of the types to be composed.

3 Star Component Schema

A star schema for a database type C0 is defined by

– the (full) (HERM) schema S = (C0, C1, ..., Cn) covering all types on which
C0 has been defined,

– the subset of strong types C1,, Ck forming a set of keys K1, ...,Ks for C0,
i.e., ∪s

i=1Ki = {C1,, Ck} and Ki → C0 , C0 → Ki for 1 ≤ i ≤ s
and card(C0, Ci) = (1, n) for (1 ≤ i ≤ k) .

– the extension types Ck+1, ..., Cm satisfying the (general) cardinality con-
straint card(C0, Cj) = (0, 1) for ((k + 1) ≤ i ≤ n) .

The extension types may form their own (0, 1) specialization tree (hierarchical
inclusion dependency set). The cardinality constraints for extension types are
partial functional dependencies.

There are various variants for representation of a star schemata:

– Representation based on an entity type with attributes C1, ..., Ck and
Ck+1,, Cl and specializations forming a specialization tree Cl+1, ..., Cn.

– Representation based on a relationship type C0 with components C1, ..., Ck,
with attributes Ck+1,, Cl and specializations forming a specialization tree
Cl+1, ..., Cn.

– Representation by be based on a hybrid form combining the two above.

Star schemata may occur in various variants within the same conceptual schema.
We distinguish the integration and representation variants, versions, history vari-
ants, and lifespan variants.

4 Snowflake Component Schema

Star schemata may be extended to snowflake schemata. Snowflake structuring
of objects can be caused by the internal structure of functional dependencies.

A snowflake schema is a

– star schema S on C0 extended or changed by
• variations S∗ of star schema (with renaming)
• with strong 1-n-composition by association (glue) types AS′

S associating
the star schema with another star schema S ′ either with full composition
restricted by the cardinality constraint card(AS′

S , S) = (1, 1) or with
weak, referencing composition restricted by card(AS′

S , S) = (0, 1) ,
– which structure is potentially C0-acyclic.

A schema S with a ‘central’ type C0 is called potentially C0-acyclic if all paths
p, p′ from the central type to any other type Ck are

– either entirely different on the database, i.e., the exclusion dependency
p[C0, Ck] || p′[C0, Ck] is valid in the schema

– or completely identical, i.e. the pairing inclusion constraints
p[C0, Ck] ⊆ p′[C0, Ck] and p[C0, Ck] ⊇ p′[C0, Ck] are valid.

The exclusion constraints allow to form a tree by renaming the non-identical
types. In this case, the paths carry different meanings. The pairing inclusion
constraints allow to cut the last association in the second path thus obtaining
an equivalent schema or to introduce a mirror type C ′

k for the second path. In
this case, the paths carry identical meaning.

5 Component Schema Composition Operators

A set of general component construction operators has been introduced in [Tha02]:
We derive now six main composition operators which can be used for construct-
ing larger schemata from smaller ones:

Composition through bridge or hinge types � allows to associate two or more sub-
schemata into one schema. Bridges enable in separating units in schemata
from other units. Hinge types are simple gluing types. Hinge types may be
entity, relationship or cluster types.

Composition through contraction or nesting of types ν is used to abstract from
specific properties and to combine several types into one type using an ad-
ditional folder type.

Composition through basing types on other types allows to represent the develop-
ment of real-life things and to store information gained and added through-
out the lifespan of the things.

Composition through adding orthogonal dimensions such as time, quality informa-
tion, and meta-characteristics.

Composition through adding records on utilization of objects and materializing ac-
tions performed within the database.

Composition through adding facilities for versions and occurrences allows to keep
track on the development of real-life things and their corresponding objects.

6 Conclusion and Outlook

Component construction has been widely used in other engineering areas. Database
modeling is still based on handicraft approaches, i.e., each new application is de-
veloped from scratch or uses solutions which are again based on handicraft.
Database systems become now part of middleware solutions. Thus, a plug-in
approach must be developed that allows a stepwise integration into existing in-
frastructure. Component construction supports a plug-in approach.

This paper has introduced a general approach to component construction.
We observe a number of advantages of component construction such as: simpler
sub-schemata, simpler combination, simpler integrity maintenance, modularity
and extensibility. Component construction does not lead, in general, to optimal
schemata defined on the number of types. Handicraft approaches may lead to
such schemata. However, the advantages will play an important role whenever
the application is complex and the database schema becomes large.

References

[Tha00] B. Thalheim, Entity-relationship modeling – Foundations of database tech-
nology. Springer, Berlin, 2000.
See also http://www.informatik.tu-cottbus.de/∼thalheim/HERM.htm

[Tha02] B. Thalheim, Component construction of database schemes. Proc. ER’02,
LNCS 2503, Springer, Berlin, 2002, 20-34.

	Str:
	:2161: 217
	:2171: 218
	:2181: 219
	:2191: 220

