
Aspect-Oriented Extension for Capturing
Requirements in Use-Case Model

Chanwit Kaewkasi1, Wanchai Rivepiboon1

1 Software Engineering Laboratory, Chulalokorn University,
254 Phyathai Road, Patumwan, Bangkok 10330, Thailand

chanwit@customix.net, wahchai.r@chula.ac.th

Abstract. Early Aspects is a concept that applies an aspect-oriented (AO)
paradigm to the requirements engineering. Aspect-Oriented Requirements
Engineering (AORE) can be considered as an important role in the early phase
of aspect-oriented software development (AOSD). Crosscutting concerns
provide modularized concept for tangled representation of the software. There
are several works in the AOSD area that emphasized on the design and
implementation level. In this paper, we develop novel techniques for using AO
concept in the early phase of the use-case driven software development process.
Our approach employs an AO concept to capture both functional, and
nonfunctional requirements. Several notations are introduced to extend the use-
case model of the UML.

1 Introduction

Separation of concerns is a research topic that has been raised in the last few years.
Aspect-oriented paradigm is for handling crosscutting concern throughout the
software development life cycle. This work is basically related to aspect-oriented
requirements engineering (AORE). AORE is an early phase of the software
development process in the aspect-oriented software development process. AORE is
intended to handle tangled representation of the software artifacts at the requirements
level.

In the use-case driven software development process [4], which is service-oriented,
functional requirements can be modeled as use cases of the system-to-be. A use case
can be simply considered as a service. A use case is a sequence of activities that are
performed by a set of objects in the system. Thus, objects work together to serve the
service to their stakeholder. To better reuse services for the new software project, the
customizable services are needed. Generally, we specify properties of the system as a
set of nonfunctional requirements (NFRs). Handling of crosscutting concerns helps
managing the system changes. The system that is separated this concern effectively
can be improved understandability and maintainability through out the cycle of
development.

The use-case driven approach provides several benefits with the functional
requirements capturing, such as hiding the system’s complexities, representing the
functional requirements as a set of services that provides to their actors, etc. [4]. Our

2 Chanwit Kaewkasi1, Wanchai Rivepiboon1

approach modifies the metamodel of the UML. We mainly add a set of new notations
to the use-case package of the UML.

This work moves toward the AOSD as an early-aspect software engineering to deal
with the requirements phase of the process. Our work aims at improving the process
for capturing and representation both functional, and NFRs. This work improves, and
refines their concept of AORE in the use-case model. Our work shows that it is
possible to model requirements in the AO approach using our new notations, and can
be combined with the de facto standard software modeling language, the UML.

The rest of this paper is organized as the following: section 2 discuss about
motivation and related works to out approach. Section 3 presents our new notations,
discusses how the use-case model of the UML is modified. Section 4 concludes and
discusses further works.

2 Motivation

Research in the early phase activity of the software development with AO paradigm
has been increasing. AOSD is a technology based on the concept of aspect-oriented
programming (AOP) [5], and the multi-dimensional separation of concerns [3]. There
are several works involved AOSD in many phases of software development. A
number of AOP languages have been proposed [9].

AORE of component-based software was proposed by Grundy [2]. His work
characterizes different aspects of the system that each component provides to the user
and its related components. Recent works [1], [6], [8] focused on the early phase of
software development with AO paradigm. The early aspect concept presented in [8] is
a general AO model based on viewpoint-oriented requirements engineering. The
model supports separation of crosscutting properties for identification their mapping
and influence in the later phases of software development.

Crosscutting quality attributes handling at the requirements phase of the software
development using UML was proposed in [1]. The work presented weaving use cases
using the traditional notations of the use-case model. The revised set of notation of [1]
was proposed in [6]. The authors introduced a number of stereotypes for using in the
use-case model of the UML.

We have found that the extension to AORE proposed by [1], [6] does not adequate
to handle some kind of aspects. The authors proposed a set of UML stereotypes to
help requirements engineers capturing both functional and nonfunctional
requirements, but their approach did not concern on the simplicity and flexibility to
transform those software artifacts to use in the next phase of the software
development. In this paper, modification to the metamodel of the UML is presented.
This approach is to make support of AO paradigm for the requirements model.

3 Extension to the Use-Case Package

Our approach combines the aspect-oriented paradigm to the use-case model. We add
several extensions to the use-case package in the metamodel of the UML [7]. The

Aspect-Oriented Extension for Capturing Requirements in Use-Case Model 3

use-case package is a subpackage of the behavioral package of the metamodel. The
key elements are the use case and actor notations. To extend its functionality for
capturing NFRs with the concept of the AO, an advice case, a use-case selector, and a
pointcut association, are introduced here.

3.1 Advice Case

An advice case is defined as a specialization of the classifier from the UML
metaclass. It defines a sequence of actions, and has similar characteristics to a use
case; except that it cannot be performed directly by the actor. A concept of an advice
case follows the concept of advice in the AOP [5]. An advice case can be modeled in
with a notation of use case and <<advice case>>. It can also be modeled using a
vertical-half-ellipse shape. Graphical representations of an advice case are displayed
in figure 2.

Login
<<advice case>> Login

UseCase->allServices
<<use-case selector>> UseCase->allServices

Fig. 1. Notations of an advice case and a use-case selector.

3.2 Use-case Selector

In order to perform the associated advice case, the system should know when to
perform the advice case. According to AOP, a pointcut is a set of selected join points
of the system [5]. A pointcut defines what will be crosscut, and when. In our
approach, we use a use-case selector to define what to be crosscut. A use-case
selector contains an OCL expression, and uses it to evaluate which use-case to be
selected.

A use-case selector can be displayed as a use-case notation with attached <<use-
cases selector>> stereotype. It is also represented as a use-case with a little vertical-
half-ellipse attaching at the right corner of it. Figure 2 shows both representations of
graphical notation of a use-cases selector.

3.3 Pointcut Association

A pointcut association links its related use-case selector to an advice case. This kind
of association must be labeled with a stereotype to indicate when the system should
perform appropriate advice case. Figure 4 shows the use of the entering pointcut
association incorporating with the use-case selector and the advice case Login.

4 Chanwit Kaewkasi1, Wanchai Rivepiboon1

LoginUseCase.allServices

<<entering>>

Fig. 2. This shows a working combination of a use-case selector, a pointcut association, and an
advice case. The pointcut association labeled with <<entering>> forces the system to perform
the advice case “Login” before performance of all use cases in the current model.

4 Conclusion and Future Works

We have presented in this paper an approach to integrate the AO paradigm with the
use-case model for capturing requirements in the early phase of software
development. Our approach models requirements into a set of aspects that crosscut
sequence of use cases. We have introduced three AO notations to the use-case model
of the UML, advice case, a set of pre-defined pointcut associations, and a use-case
selector. The methodology to make this AO use-case model into the analysis and
design phase, defining more pointcut associations, defining the well-formness
definition for our notations are to be done. We hopefully make more seamless
integration of our approach through all phases of the unified process.

References

1. Araujo, J., et al. Aspect-Oriented Requirements with UML. in UML 2002. 2002.
2. Grundy, J. Aspect-oriented Requirements Engineering for Component-based Software

Systems. in 4th IEEE International Synposium on Requirements Engineering. 1999.
Limerick, Ireland: IEEE Computer Society Press.

3. IBM, MDSOC: Software Engineering using HyperSpaces.
http://www.research.ibm.com/hyperspace/, IBM Research.

4. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development Process. The
Addison-Wesley Object Technology Series. 1999: Addison-Wesley.

5. Kiczales, G., et al. Aspect-Oriented Programming. in Proceedings European Conference on
Object-Oriented Programming. 1997: Springer-Verlag.

6. Moreira, A., J. Araujo, and I. Brito. Crosscutting Quality Attributes for Requirements
Engineering. in 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2002). 2002. Italy: ACM Press.

7. OMG, The Unified Modeling Language Specification version 1.4. 2001, Object Management
Group. http://www.omg.org/uml.

8. Rashid, A., et al. Early Aspects: a Model for Aspect-Oriented Requirements Engineering. in
IEEE Joint Conference on Requirements Engineering. 2002. Essen, Germany: IEEE
Computer Society Press.

9. Xerox, Aspect/J Homepage. http://www.aspectj.org/, Xerox Parc.

http://www.research.ibm.com/hyperspace/
http://www.omg.org/uml
http://www.aspectj.org/

