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Abstract—When dealing with non-trivial social systems, Multi-
Agent Based Simulation (MABS) makes it possible to model and
simulate social aspects without neglecting articulated motivations,
decisions and behaviours by individuals. In this paper, we
experiment with the simulation of a peculiar sort of social system
– namely, Medieval Battles – by using general-purpose agent
methodologies and technologies – namely, SODA and TuCSoN
– in order to better understand and emphasise the benefits of
MABS in the simulation of social systems.

I. INTRODUCTION

Simulation aims at modelling and reproducing some natural,
ethological, social or conceptual phenomena [1]. The process
of designing a simulation usually starts by identifying the
features of interest of the system to be modelled, taking into
account the desired abstraction level; then, a suitable system
representation is defined, the model is built accordingly, and
the simulation is finally run based on some carefully-selected
input data or application scenarios.

While traditional simulation techniques often model the
system dynamics based on systems of equations, this can
hardly be made with complex systems, like for instance
ecosystems and human communities, where many autonomous
individuals interact continuously. In particular, traditional nu-
merical simulations do not consider actions explicitly, nor
do they model explicitly interactions among individuals: so,
individuals’ actions are not perceived as such, but only in terms
of impact (the effects) they have on the environment. This
prevents the relation between an action and the decisions that
determined it (most likely, based on the current environment
state) to be suitably expressed. Moreover, numeric simulations
are not meant to capture qualitative aspects such as the relation
between a stimulus and the consequent behavior, which are
often more relevant issues in several complex systems than
the quantitative aspect per se.

Multi-Agent Based Simulation (MABS henceforth) promote
a different approach to simulation, where interactive entities
live, behave and interact in an agent society that represents
the system to be modelled, making it possible to capture
both quantitative and qualitative aspects altogether. In this
context, emerging behaviours can be observed as the result
of individual interactions and choices. The consequent rela-

tions emerging between individual behaviour and structural
system properties help formulating/validating theories about
ethological, sociological, psychological systems.

In this paper, we experiment with MABS by taking Me-
dieval Battles as our reference case study. Among the main
reasons for our choice:

• it is a non-numeric domain involving both quantitative
and qualitative aspects;

• the domain features multiple roles and requires a clear
mapping of their relationships;

• the scenario inherently emphasises individual war-
rior/agent autonomy, while calling for a clear definition
of social strategies and tactics;

• there is a widespread focus on interaction issues;
• environment has a prominent role—a particularly inter-

esting issue in MABS;
• the scenario promotes emergent behaviours;
• it is a good testbed from the methodological viewpoint—a

relevant aspect indeed, given the amount of related work
in the field of agent methodologies for simulation;

• it is a good testbed from the infrastructural viewpoint, as
it calls for a powerful and expressive agent coordination
platform to actually implement and run the system.

Accordingly, in the remainder of this paper we first (Section II)
provide some background about medieval battles in general,
and briefly overview the agent methodology (SODA) and
infrastructure (TuCSoN) adopted; then (Section III) we focus
on the battle simulation system, discussing the whole develop-
ment process from the requirement analysis to the design, up to
the working prototype. Finally, some related work is presented
(Section IV), and conclusions are drawn (Section V).

II. BACKGROUND

A. Medieval battles

During the Roman empire, the army was structured accord-
ing to a rigid, hierarchical organisation, rooted on infantry:
discipline, order and organisation provided strong attack and
defense force (e.g. the world famous testudo). In the sub-
sequent centuries, however, structure and discipline became
gradually less relevant, in favor of individual qualities of



soldiers – barbaric armies, indeed, were more like mobs than
structured armies. Battles occurred between groups of soldiers,
with little or no coordination among them, often without a
clear command chain. This aspect became extreme during
crusades, which exalted individual heroism. Soldiers were
typically armed with swords, halberds, lances, pikes, arches,
and crossbows.

The coming of cavalry, from the 5th century, changed the
scenario, confining infantry to a complementary role (bowmen
and similar “specialised” troops), with the only exception
of the siege to a town or castle, where infantry remained
obviously essential. Knights were typically equipped with
sword, armor, shield, and lance: such a heavy equipment and
its maintenance called for both robust horses and auxiliary
personnel – a squire, pageboys and servants, all riding on
horseback, too – and was all at the knight’s expense. This
made knights quickly become sorts of “human tanks”, virtually
impossible to face in an open battlefield: the typical formation
consisted of a single knight line, with squires at their back – or,
alternatively, at their side. Other times, squires were grouped
in small squads, forming a sort of “light cavalry”. However,
specialised troops – pikemen – constituted a real danger for
knights: wisely used, they could lead to the total destruction of
the cavalry. In such cases, bowmen troops were used instead
of cavalry, saving knights for a later time.

Tactics were quite simple: troops layout were mostly stan-
dard, only seldom adapted to the conformation of the ground
or other factors, so victory or defeat typically depended on
the size of the army and, to some extent, individual qualities –
which often turned the battle into a de-structured set of one-to-
one duels. As for cavalry, a typical tactic consisted of attacking
the enemy and then (falsely) retreating, trying to attract it in
pursuit – to counterattack shortly afterwards, exploiting the
consequent disorder.

Summing up, due to the lack of discipline, structure and
order, even simple tactics could make the difference in me-
dieval battles and often be enough to compensate even quite
a large numeric disadvantage. On the other side, however,
the lack of coordination in the command chain, coupled with
personal visibility goals of individual warriors, could easily
vanify the tactic abilities of a commander. So, the final result
of a battle was more an emergent behaviour coming out from
a collection of individual choices and performance, rather than
the expected result of a clearly-planned strategy.

B. The SODA agent-oriented methodology

SODA (Societies in Open and Distributed Agent spaces)
[2], [3] is an agent-oriented methodology for the analysis and
design of agent-based systems, which adopts the Agents &
Artifacts (A&A) meta-model [4], [5] and introduces layering
as the main tool for scaling with the system complexity,
applied throughout the analysis and design process [6].

The SODA abstractions (explained below) are logically
divided into three categories: i) the abstractions for mod-
elling/designing the system active part (task, role, agent, etc.);
ii) the abstractions for the reactive part (function, resource,
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Fig. 1. An overview of the SODA process

artifact, etc.); and iii) the abstractions for interaction and
organisational rules (relation, dependency, interaction, rule,
etc.). As depicted in Fig. 1, the SODA process is organised
in two phases, structured in two sub-phases: the Analysis
phase, which includes the Requirements Analysis and the
Analysis steps, and the Design phase, including the Architec-
tural Design and the Detailed Design steps. Each sub-phase
models (designs) the system exploiting a subset of SODA
abstractions: in particular, each subset always includes at least
one abstraction for each of the above categories – that is, at
least one abstraction for the system active part, one for the
reactive part, and another for interaction and organisational
rules.

C. The TuCSoN agent-oriented infrastructure

TuCSoN (Tuple Centres Spread Over Networks) [7], [8]
is an infrastructure for the coordination of distributed au-
tonomous agents via tuple centres [9]. Agents access tuple
centres associatively, by writing, reading, and consuming
tuples via the TuCSoN coordination primitives. A TuCSoN
tuple centre is a coordination abstraction perceived by agents
as a standard tuple space [10], whose behaviour in response to
events can be defined so as to embed the laws of coordination
via the ReSpecT language [5].

While TuCSoN features other abstractions and properties
that are not of interest here (like the Agent Coordination
Context [11]), what is relevant here is the strict relationship
between the methodology and the software infrastructure used
to design and implement the MABS system [12]: in particular,
SODA and TuCSoN share both the conceptual meta-model
(A&A [13]) and the focus on the interaction issues.

III. BaSi: BATTLE SIMULATION

In this section we first define the intended scenario (Sub-
section III-A), then proceed from the preliminary problem
analysis (Subsection III-B) – independent of the SODA design
process – to the problem analysis (Subsection III-C) and the
system design (Subsection III-D) – both executed following
the SODA process –, up to develop the BaSi prototype
(Subsection III-F).

Due to space constraints, only a minimal but meaningful
subset of SODA tables and a few screenshots are reported, and
only the analysis and design of the simulation sub-system are
discussed: the user-interface sub-system is left aside, except
for a short description on how the two sub-systems can be
integrated.



A. Scenario

Our goal is to realise a simulation system that enables users
to i) define two armies, ii) modify the default properties of the
different kinds of soldiers, iii) start the battle simulation, iv)
observe the battle progress and result. Of course, soldiers have
to manifest autonomous behaviour, and the simulation has to
evolve with no user intervention. The simulation ends when
one of the two army is defeated—i.e., all of its soldiers are
dead.

Defining an army means to specify at least a) the quantity of
soldiers, per type – i.e. the number of knights, bowmen and
pikemen, respectively; b) the army commander; and c) the
army organisation. With respect to this issue, three different
organisations are possible:

• Informal: the army does not feature a rigourous or-
ganisation: the spatial disposition of soldiers depends
on individual decisions, and there is only one general
commander in chief.

• Two-levels: the army is structured in parties that are
typically composed by a uniform kind of soldiers – e.g.
knight party, bowmen party and pikemen party. Each
party is driven by a party head that refers to the army
commander.

• Three-levels: the army adopts an even more structured
organisation, where parties are split in maniples. Each
maniple has its own head, who refers to the party head
(who, in turn, refer to the army commander).

Finally, during the battle, soldiers can also pick up abandoned
objects, such as equipment from died soldiers (both enemy
and friends) like weapons, food, horses, armours, etc.

B. Preliminary analysis

Preliminary requirements analysis suggests that the problem
is decomposed in two main sub-problems: i) managing the
actual simulation (army creation, battle management, etc.);
ii) managing the user-system interaction (capturing the user
commands and graphically rendering the battle). These sub-
problems can be assigned to two sub-systems – the simulation
and the user-interface sub-systems, respectively – to be de-
signed independently from each other, while taking into proper
account the information flow between them.

Quite expectedly, all the core aspects of this paper are
in the first sub-system: in fact, the user-interface sub-system
(despite its potential graphical complexity) is simply con-
cerned with getting initial parameters from the user and
providing graphical results, and therefore does not require
autonomous/intelligent entities; its design can then follow a
standard object-oriented process, and will not be discussed
here.

The simulation sub-system, instead, is well suited for an
agent-oriented approach, as the agent abstractions seem partic-
ularly adequate to capture the key aspects of medieval battles:

• agents’ autonomous and intelligent behaviour can easily
model the soldiers: in turn, this makes it easy to model
the army informal organisation, where each agent is able

to decide its disposition in the battlefield and its actions
during the fight;

• agent societies can well capture the social aspects of the
army, such as its social goals (e.g. enemy destruction) and
the social rules that govern its organisation: in particular,
agent societies can map also the cases where the army
organisation changes during the battle, thanks to agent’s
adaptability;

• the multiagent system (MAS henceforth) environment can
capture both the topological aspect of the battlefield and
the presence of the abandoned objects, which covers the
last key aspect of the simulation sub-system.

As a preliminary step of the design process of the simulation
sub-system, a soldier model, intended as a collection of his
relevant properties, has to be defined. For our purposes, we
assume henceforth the following soldiers’ characterisation:

• Type: the soldier type (knight, bowman or pikeman)
• Army: the belonging army
• Speed: the maximum soldier speed in the battlefield
• Vigour: the maximum tolerable damage (before dying)
• Attack strength: the maximum damage inflicted to an

enemy
• Defence strength: the maximum decrease of the damage

caused by an enemy
• View scope: the maximum distance at which the soldier

can see
• Attack scope: the maximum distance at which the soldier

can attack
• Killing: the number of enemies killed when attacking
• Loading: the maximum load that the soldier can carry
• Equipment: the list of the soldier’s objects (weapons,

food, money, etc.)
Each equipment object corresponds to a bonus/malus incre-
ment in some soldiers’ properties: for instance, the presence
of a horse increases the soldier’s speed and view scope,
which is instead decreased by a heavy armour; food increases
the soldier’s vigour; etc. Of course, each property (including
bonus/malus coefficients) has a default value, that can be
modified by the user before starting the simulation.

C. Analysis

Analysis in SODA consists of two sub-phases: Require-
ments Analysis and Analysis.

Requirements Analysis. Following the choices discussed in
Subsection III-B, here we focus on the simulation sub-system,
as the user-interface sub-system can be considered a part of
the system environment, wrapped by a suitable artifact: so, its
presence appears only in terms of its interactions with the other
SODA entities in the design process. Its observable behaviour
will then constitute one of the requirements of its own (object-
oriented) design process, which is not discussed here.

The simulation system requirements at the core layer are
reported in Fig. 2. This is intentionally a high-level view, aimed
at highlighting the main coarse-grained requirements: so, just
three items – army, simulation, and monitoring – are listed.



Such requirements will then be refined later in the process,
exploiting SODA layering – i.e., its ability to support different
levels of detail.

Several relations exist among such requirements: for in-
stance, there is clearly an order relation between “Army
Definition” and “Simulation”, as between “Simulation” and
“Monitoring”. Detecting such relations at this stage is impor-
tant, as they will impose constraints and interactions in the
following steps.

Requirement Description
Army Definition definition of the armies in terms of

soldiers and their parameters

Simulation management of the simulation

Monitoring monitoring the battle progress and
identification of the army winner

Fig. 2. Requirement table.

Analysis. In this phase, the above requirements are mapped
onto tasks, and are further analysed to identify the environmen-
tal functions and the topological structure of the environment;
dependencies among tasks and functions are also individuated.

Tasks identified in this phase are usually more fine-grained
than requirements: yet, they are still at a relatively high
abstraction level, to be in-zoomed later in the process. Fig. 3
reports the mapping between the requirements and the tasks
they generate in our case.

Requirement Task
Army Definition define knight, define bowman,

define pickman, define party
define maniple, define head,
attack, defence, collaboration

Simulation start, stop,
pause

Monitoring show status, check soldier,
check progress

Fig. 3. Reference Requirement-Task table.

Environmental functions can be classified here basically in
two categories: i) functions belonging to the internal MAS
environment (battlefield management, soldiers’ property man-
agement, etc. – Fig. 4 top), and ii) functions provided by the
user-interface sub-system (Fig. 4 bottom).

Dependencies among tasks and functions exist, and must
be carefully investigated as they determine the interaction
spaces of each entity, the rules that govern interactions, and the
related social aspects (like army organisation management).
In our case, for instance, soldiers’ movements strictly depend
on the orders issued by the army’s (or party’s, or maniple’s)
commander; moreover, even the fights could be modelled as
a dependency involving soldiers of the enemy armies. Further
dependencies are generated by the functions of the user-
interface sub-system, and represent the information exchanged
between the simulation and the user: some occur in the
user → simulation direction (update the soldier’s parameters,
starting/stopping the simulation, etc.), others in the oppo-
site one (everything representing the battlefield state to be

graphically rendered: soldier’s position and energy, position
of abandoned objects, etc.).

Function Description
State Area providing the state of a specific

battlefield area

Update Soldier State updating soldier state

Battlefield State providing battlefield state

Update Battlefield State updating battlefield state

Rendering showing the battlefield state changes

Command obtaining user command

Ext Update Soldierd obtaining user modifications
to soldier parameters

Fig. 4. Function table.

Topological aspects are also extremely relevant in our
scenario, since soldiers can engage a fight only if they are close
enough to each other, and the battle strategy itself depends on
(and is strictly related to) the topology of the enemy army.
So, in this application the role of the environment topology is
twofold: on the one hand, it determines the “physical” structure
of the battlefield, in terms of the “zone” that can be perceived
by each soldier; on the other, it determines the constraints over
the soldiers’ actions and perceptions in terms of the soldiers’
“scopes”. Such scopes can be composed by multiple zones,
depending on each soldier’s characteristics and equipment: for
instance, a knight can perceive larger areas thanks to his higher
position, while bowmen’s attacks can go farther, etc.

D. Design

Design in SODA consists of two sub-phases, too: Architec-
tural Design and Detailed Design.

Architectural Design. In this phase, the system is designed
in terms of roles, resources, actions, operations, interactions,
rules and spaces. These entities derive form the abstractions
outlined in the previous step: roles are responsible for the
achievement of tasks by executing actions, resources provide
the functions by implementing the corresponding operations,
spaces derive from the topology and map one-to-one the
physical structure of the battlefield. Mappings between tasks
and roles, and between functions and resources, instead, are
not usually one-to-one, as a role/resource is able to com-
plete/accomplish several different tasks/functions: for instance,
the resource “Battlefield” could provide both the “Battlefield
State” and “Update Battlefield State” functions in Fig. 4.

The key aspect of the system – interaction – is captured
by the SODA abstract entities interactions (derived from
dependencies), and rules (derived from both dependencies and
topologies): again, such mappings are expressed by suitable
tables. Fig. 5 shows an excerpt of the full Rule table, reporting
some representative rules for each “macro area”: the first block
concerns the battle rules (Attack Rule and Win Rule), the
second is about the internal management of an army (PickUp
Rule and Army Head Rule), the third concerns the order
relations highlighted in the Requirements Analysis phase (Start
Rule and Monitoring Battlefield Rule).



Rule Description
Attack Rule The attack action is possible only if the

enemy is in the scope of the attacker

Win Rule An Army wins the battle only
if the number the enemy army

soldiers reaches zero

PickUp Rule A soldier can pick up an
abandoned object if this last is near to

the soldier

Army Head Rule The army head’s command
is the more priority command

Start Rule The simulation starts only if
the state of Interface Resource is start

Monitoring Battlefield The state of the BattleField Resource
Rule can change only if the simulation is started

Fig. 5. Rule table.

Detailed Design. In this phase, one Detailed Design has to
be chosen from the various potential alternatives compatible
with the Architectural Design constraints. Detailed Design
is expressed in terms of agents, agent societies, artifacts,
aggregates and workspace for the architectural entities, and
of concepts such as use, manifest, speakTo and linkedTo for
interaction types. So, moving from the Architectural Design
to the Detailed Design means to decide a mapping for all
the architectural entities and abstractions onto actual design
entities, deciding which level of detail is the most adequate
for each one. The activity of selecting the most adequate
representation level for each architectural entity is called
carving.

In our case, however, since a very high abstraction level
was adopted for the core layer, and no in-zoom operation
was performed, carving is quite straightforward: most of
the architectural design entities can be mapped 1-1 onto
corresponding Detailed Design entities. So, agents in BaSi
play simply the roles individuated in the previous step, while
resources are mapped onto suitable environmental artifacts—a
kind of artifact [14] which is particularly suited for wrapping
MAS external environments, or realising functions derived
by requirements. (In fact, an environmental artifact is perfect
for wrapping the user-interface sub-system as a black-box,
according to the choices made in the Requirements Analysis.)
Spaces and space connections are also mapped 1-1 onto
workspaces and workspace connections.

The only real carving decision concerns Agent Societies:
taking inspiration from Fig. 3, we opted for just two agent
societies — one “Army Society” grouping all the agents
performing army-related tasks (first line of Fig. 3), and one
“Simulation Society” grouping all the agents performing
management-related tasks (second and third lines of Fig. 3).
So, “Army Society” is composed of agents representing the
army commanders, parties, maniples, knights, bowmen, and
pikemen, while “Simulation Society” includes all the other
agents responsible for the simulation management.

The mapping of interactions takes into account the different
nature of interaction acts: so, agent-agent interactions are

mapped onto speakTo entities, agent-artifact interactions onto
use entities, artifact-agent interactions onto manifest entities,
and artifact-artifact interactions onto linkedTo entities.

Rules, too, are mapped taking into account the different
nature and purpose of each rule. In particular, rules aimed at
controlling the interaction of a single agent within the MAS
are mapped onto the agent’s individual artifact [14]—a kind of
artifact associated to each agent and used as a “proxy” between
the agent and the MAS, to shape and negotiate the set of
admissible agent actions in/onto the MAS; in BaSi, this is the
case, for instance, of the “Attack Rule” and the “PickUp Rule”
(Fig. 5). Instead, rules concerning social and organisational
aspects (such as “Win Rule” and “Army Head Rule” in Fig. 5)
are mapped onto social artifacts [14]—a kind of artifact
specifically devoted to the management of social interactions1

which is typically used in SODA as a coordination medium,
encapsulating the laws that govern an agent society. In BaSi,
the two agent societies defined above (“Army Society” and
“Simulation Society”) require two social artifacts: we call
these “Army Artifact” and “Simulation Artifact”, respectively.
As a further design choice inspired by a conceptual economy
principle, we decide that these artifacts also take care of the
two above-mentioned organisational rules (“Win Rule” and
“Army Head Rule”), which actually concern the same sets of
agents; of course, different choices would be possible, with
pros and cons.

Despite all this complexity, the design presented here is
just a partial view of the actual system (Subsection III-F):
in the full scenario, agents in each army could be organised
according to specific military structures, which could not be
reasonably managed by a single social artifact for performance
and reliability reasons—preventing bottlenecks, avoiding de-
lays in the system responses, etc. So, the “Army Artifact”
should rather be seen as an abstract view of an aggregate of
social artifacts, each enforcing some given kind of rules.

Fig. 6 shows an excerpt of the Artifact-UsageInterface table,
which lists all the operations provided by all artifacts in detail.

Artifact Usage Interface
Army receive headCommand

Artifact send headCommand
(social) add soldier, remove soldier

set strategy, get strategy
get position, set position. . .

Simulation start simulation,
Artifact stop simulation,
(social) pause simulation. . .

Properties set property, get property
Artifact add soldierType, add property

get soldierTypes, get armyTypes. . .

Fig. 6. Artifact-UsageInterface table.

1This often occurs indirectly, since social artifacts technically mediate
interactions between individual, environmental, and possibly other social
artifacts.
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Fig. 7. An overview of the user-interface sub-system

E. Sub-systems composition

According to the general choices made in the Preliminary
Analysis, the BaSi development has been split in one agent-
oriented process for the simulation sub-system (discussed
above), and one more “classical” object-oriented process for
the user-interface sub-system. Although a full discussion of the
latter is outside the scope of the paper, its outcome is necessary
to integrate the two sub-systems together. As shown in Fig. 7,
the user-interface sub-system is made of seven components,
each responsible for a given functionality: VisualEnv is the
graphical renderer that animates and updates the graphical el-
ements in the battlefield, PropertiesManager enables the mod-
ification of the simulation parameters, ArmyManager provides
for army creation, BattlefieldModel stores the battlefield data,
SimulationFaçade takes care of the data exchange with the
simulation sub-system, SimulationController handles the user
commands to activate, pause and deactivate the simulation,
and finally Logger logs all the activities of all components.

The consequent integration, presented in Fig. 8, is straight-
forward, since the user-interface sub-system behaviour and
its interactions with the simulation sub-system were both
carefully designed during the SODA process: qualitatively
speaking, the user-interface sub-system is wrapped by an ad-
hoc User-interface Artifact, which puts that sub-system inside
the MAS. Interactions take care of the information exchange
among the two sub-systems: in particular, linkedTo interac-
tions connect SimulationFaçade to the Simulation Artifact,
so that the user commands coming from the GUI compo-
nents (SimulationController or ArmyManager) are properly
forwarded to Simulation Artifact via SimulationFaçade, and
hance dispatched to the Simulation Society and Army Society,
as required — and vice versa.

F. Prototype

Given the goals of our work, focuses on MAS technologies
for simulation, only a minimal effort was devoted to the
graphical rendering: as shown in Fig. 9, the battlefield and
soldiers are shown with simple icons – squares represent
knights, circles represent bowmen, triangles represent pikemen

Fig. 8. An overview of the composition structure

–, and so are other aspects, like heads and commanders (which
are rendered as edged icons, like the knight of the Red Army
in Fig. 9 – a), soldiers’ energy level (rendered as black lines
over the icons, in percentage terms), and the soldier’s current
energy level (number inside the icon).

Before the simulation can start, the user has to specify
some initial parameters – army names, armies’ organisational
structures (to be chosen among informal, party or maniple),
and battlefield size – and can optionally change the default
values of soldier properties (Fig. 9 - c). If the informal army
organisation has been selected, only one commander can be
indicated; otherwise, party heads and maniple heads can also
be specified for each party or maniple, respectively.

The simulation can be started, paused and stopped using
the appropriate controls (Fig. 9 - b)): at any time, the battle
progress can be monitored. The simulation automatically stops
when an army wins — that is, all of its soldiers are dead.

Technically, the prototype is structured according to the
UML diagram in Fig. 10, and is implemented on top of
the TuCSoN infrastructure, whose tuple centres are used to
build the social artifacts and support/mediate between the
information exchange. The diagram highlights the information
exchange between the two sub-systems, and the key role
played by TuCSoN tuple centre for this purpose and for real-
ising the social artifacts, managing the agents coordination and
enforcing the organisational rules via the ReSpecT reactions.

IV. RELATED WORK

A. Simulation frameworks for social systems

A specific area of agent-oriented computing where simula-
tion finds many applications is that of social systems, where
specific simulation frameworks have been employed.

Sierra et al. present an integrated development environment
for the engineering of MASs as Electronic Institutions (EI)
[15], [16]. This includes SIMDEI, a simulation tool which
allows for the animation and analysis of the specification of the
rules and protocols in an EI. In this approach, once specified
an institution, it should go through a verification process to
verify it. After an initial verification process focusing on
static, structural properties of the e-institution specification,
the next step follows that concerns the expected dynamic
properties of the e-institution at work: this is done by means of
simulation, with the aim of verifying the dynamic properties of



a)

b) c)
Fig. 9. Some screenshot of BaSi: a) army deployment interface, b) main interface during simulation, c) tuning parameters and property interface

the specified institution. Once agents have been implemented,
simulations of the e-institution can be ran using the SIMDEI
simulation tool developed over Repast (Recursive Porous
Agent Simulation Toolkit). The institution designer should
analyse the results of the simulation and return to initial step,
if they differ from the expected ones.

In Pavòn et al. [17], a simulation phase based on the agent-
based simulation toolkit Repast is defined and introduced
for the INGENIAS [18] methodology for the development
of MASs. The main objective is to support modelling and
simulation of social systems. In particular the authors modified
the INGENIAS MAS meta-model in many ways: i) envi-
ronment model, since for social simulation, agents usually
require to consider their location in the environment and the
evolution of time; ii) modelling constant time steps to simulate
the cycle perception-reaction of agents along the time, since
authors have assumed time driven simulations as a reference.
In addition, the authors have created a mapping from the new
INGENIAS to the Repast toolkit, implemented by an IDK
module.

In Röhl and Uhrmacher [19] a modelling and simulation
framework (DynDEVS) based on a discrete-event formalism
for supporting the development process of multi-agent sys-
tems from specification to implementation is proposed. The
framework allows for the incremental refinement of agents
and experimental set-ups while providing rigorous observation
facilities. The exploited simulation framework is JAMES, a
Java-Based Agent Modelling Environment for Discrete Event
Systems Specification (DEVS)-based Simulation, which aims
at exploring the integration of the agents paradigm within
a general modelling and simulation formalism for discrete-
event systems. Devs (Discrete EVent System specification) is
one of the formal approaches to discrete event modelling and
simulation stemming from general systems theory. It provides
a powerful basis for modelling test settings by being able to
encode many other modelling formalisms like statecharts and
petri nets.

Sarjoughian et al. [20] presents a layered architectural
framework to support agent-based system development in a
collaborative, multidisciplinary engineering setting: the en-



Fig. 10. An overview of the prototype structure

vironment is assumed to enable agent-based modelling and
simulation Authors consider requirements for a generic, com-
prehensive modelling and simulation architecture suitable for
MAS, and emphasise the need for separating modelling and
simulation activities, which is argued to have a profound
impact on reusability and portability.

B. Simulation in agent methodologies

Some proposals exist whose goal is to provide general
AOSE methodologies incorporating a simulation phase.

In Fortino et al. [21], [22] an integrated approach is pre-
sented, centred on the instantiation of a software development
process which specifically includes a simulation phase used
to validate a multi-agent system before its actual deployment
and execution. The approach uses process fragments coming
from the Gaia [23] methodology for the analysis and the
design, the Agent UML and the Distilled StateCharts for the
detailed design, the MAO Framework for the neutral- platform
implementation of software agents, and a Java-based discrete-
event simulation framework for the simulation. In particular,
the simulation phase provides both qualitative and quantitative
information about correctness and efficiency, to be exploited
for reformulating, modifying and/or refining some choices of
the previous phases of the development process. An agent-
based system is validated and evaluated by implementing a
simulator program, whose execution provides a history of the
timed events generated and received by the agents; the analysis
of the trace file can be used to validate the correctness of the
agent interactions and behaviours.

The work in Cossentino et al. [24] proposes the Pro-
cess for Agent Specification, Simulation and Implementation
(PASSIM), a simulation-based process for the development

of MASs which incorporates a simulation phase for the
prototyping of the MAS being developed and for functional
and nonfunctional validation. PASSIM was obtained by in-
tegrating – according to a process-driven method engineering
approach – fragments coming from two existing agent-oriented
methodologies: on the one hand, the PASSI methodology [25]
carries out the analysis, design and coding phases, while the
above-mentioned Distilled State Charts (DSC)-based simula-
tion method [21], [22] is used for supporting the simulation
phase. PASSIM is supported by MASSIMO (Multi-Agent
System SIMulator framewOrk) [22], a Java-based discrete-
event simulation framework for MASs which allows for the
validation and evaluation of: the dynamic behaviour of in-
dividual and cooperating agents; the basic mechanisms of
the distributed architectures supporting agents, namely agent
platforms; the functionalities and emergent behaviours of ap-
plications and systems based on agents. The simulation results
can be used to feed back the Simulation Model Definition.

easyABMS [26] is another agent-based methodology for
the modelling and simulation of complex systems, which
seamlessly covers from the system analysis to the system
modelling phase, up to the analysis of the simulation results.
Each phase of the easyABMS (iterative) model-driven process
refines the model produced in the previous phase. While
its work-products are mainly visual (UML) diagrams, the
simulation code is also automatically generated, thanks to the
advanced features of visual modelling and of (semi)automatic
code generation provided by the Repast Simphony Toolkit.

Summing up, the SODA approach turns out to be quite
different from the three above methodologies. In fact, SODA
does not consider simulation as a specific part of the process
design, although we are currently working on an extension for



introducing a specific simulation phase: so, the outcomes of
the SODA process are not currently validated by a simulation
phase as they are in the other cases. Moreover, unlike Repast,
the TuCSoN infrastructure is not specifically designed for sim-
ulation, either: so, our work can be seen as a first experiment
to explore how SODA and TuCSoN can support the develop-
ment of a MABS system, aimed at a better understanding of
the SODA limits in the simulation scenario and plan its future
extension.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present a first application prototype for the
simulation of medieval battles. The main objective of this work
was to investigate the suitability of MABS in the development
of an articulated scenario such as medieval battles. So, we
deliberately left apart aspects that are normally relevant for a
simulation system, such as a rigourous and efficient simulation
engine, the realisation of both a complex graphical interface
and a detailed animation of the graphical elements.

Yet, the experiment turned out to be an interesting testbed
for the SODA methodology, highlighting some benefits as
well as some limitations that we plan to address in the near
feature. In particular, the tabular representation is clearly more
suitable for an automatic tool than for a human designer, due
to the large amount of tables to be filled in at each stage: so,
tools will be developed that support designers in this task in
a consistent and complete way. Another interesting extension
could be the definition – or the adoption – of a language for
specifying SODA rules and interactions in a more precise
and formal way, overcoming the implicit limitations of the
natural language which is currently adopted in the tabular
representation. We also plan to evaluate whether to enrich
SODA with methods for the internal design of agents and
artifacts—which are now uncovered, since SODA currently
does not deal with intra-agent (and more generally with
“internal”) issues.

With respect to the simulation context discussed in this
paper, further work will be devoted to improve the prototype,
improving the simulation engine and adopting a better graphi-
cal rendering engine. More complex and intelligent behaviours
for soldiers could also be added, as well as user functionalities
for defining specific military strategies for each army.
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