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Abstract—Agent-Based Modeling and Simulation (ABMS) has 
emerged as a new and powerful technology for the analysis of 
natural and artificial complex systems. In this paper ABMS is 
exploited for the modeling and performance evaluation of 
Conventional, Clustered and Cooperative Content Distribution 
Network (CDN) architectures. Clustered and Cooperative 
architectures differ from Conventional architectures as surrogate 
servers can loosely (in the Cooperative architectures) or tightly 
(in the Clustered architectures) cooperate to provide the 
requested contents to users. The results obtained from the 
simulation phase show that the Clustered architectures allow for 
significant improvements of the main CDN performance indices 
(average user perceived latency, cache hit ratio, and CDN utility) 
with respect to Conventional and Cooperative architectures. 

Keywords-component; Content Delivery Networks, Surrogate 
Clustering, Agent-based Modeling and Simulation, Performance 
Evaluation. 

I. INTRODUCTION 

The analysis and design of modern distributed systems require 
powerful and flexible methods, tools and techniques, which are 
also based on bottom-up approaches and incorporate the use of 
simulation to support the typical phases of a software 
engineering process [10]. In this context, a suitable support can 
be represented by the possibility of obtaining agent-based 
models of systems, i.e. system models which are built through 
a bottom-up approach in terms of proactive and reactive 
autonomous entities that dynamically interact and cooperate 
with each other [9]. An agent-based model of a system can then 
be simulated, so to observe emergent macro-level phenomena 
hard to catch with other analysis techniques, and can be used to 
validate and evaluate different design choices at architectural 
and behavioral levels [11]. Moreover, the agent-based model of 
the system exploited during the design phase can be used as a 
starting point for an agent-based system implementation [3]. 

In this paper, the Agent-Based Modeling and Simulation 
(ABMS) approach is exploited for modeling and evaluating 
through simulation different Content Distribution Networks 
(CDNs) architectures that represent effective solution for 
improving the performance of content delivery by means of 
coordinated content replication [2]. In particular, five 
distributed architectures (Conventional, Cooperative, 

Master/Slave, Multicast-based, Peer-to-Peer), which are 
enhanced with respect to those presented in [6], have been 
modeled and extensively evaluated. 

The Conventional architecture is based on the basic schema 
of CDN, Master/Slave, Multicast-based, and Peer-to-Peer 
architectures (or Clustered architectures) relies on a new 
schema based on clustering [6], whereas the Cooperative 
architecture depends on non coordinated cooperation among 
neighbor surrogate servers. In particular, the Clustered 
architectures differ from the Conventional architecture as 
surrogate servers, which cache the content originally produced 
and stored in origin servers so to improve performances in 
delivering contents to users, are grouped into clusters of 
neighbor surrogates which can cooperate to provide requested 
contents. Specifically, a surrogate that is not able to provide the 
requested content does not directly ask the origin server for it 
as in the Conventional architecture; the surrogate first checks 
for a surrogate of the same cluster having the content so as to 
forward the unfulfilled user request to it. Differently, in the 
Cooperative architecture the surrogate asks its neighbors for 
the requested content and, upon content attainment, replies to 
the requesting user. Finally, both in Clustered and Cooperative 
architectures, if the surrogate is not able to find the content in 
its cluster or among its neighbors, it contacts the origin server 
as in the Conventional architecture. 

To analyze the performances of the five considered 
architectures with respect to the most important CDN 
performance indices (average perceived user latency [13], 
cache hit ratio [13], and CDN utility [18]), for each 
architecture, an agent-based model has been defined and 
simulated by using the ELDAMeth methodology [5]. In 
particular, the modeling phase is driven by a Statecharts-based 
modeling language and supported by a CASE tool 
(ELDATool) which automatically translates visual 
specifications into platform-independent code; the simulation 
phase is based on an agent-oriented and event-driven 
simulation framework (ELDASim) which executes the code 
produced in the modeling phase in the context of purposely set 
distributed scenarios. 

The results obtained from the performance evaluation phase 
show that the Clustered architectures can provide higher 
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performances, in terms of the considered performance indices, 
than those of Conventional and Cooperative architectures. 

The rest of the paper is organized as follows. Section 2 
introduces the considered distributed architectures for content 
delivery. Section 3 is devoted to the agent-based simulation of 
the presented architectures and, in particular, to the analysis of 
the performance evaluation results. Finally conclusions are 
drawn and directions of future research briefly elucidated. 

II. CONVENTIONAL, COOPERATIVE AND CLUSTERED CDN 

ARCHITECTURES 

In Conventional CDN architectures [14], which are based on 
stand-alone Surrogates, when a Client issues a content request, 
a Redirection System selects the most appropriate Surrogate 
(typically the closest to the Client) to which the request is 
routed. The selected Surrogate serves the request if the 
requested content is available; otherwise it asks the Origin 
Server for the content and, once retrieved, sends it to the 
requesting Client. Although this Conventional architecture 
(hereafter named SimpleArch) is easy to develop and maintain, 
it suffers of two main drawbacks: limited dimension of the 
cache of the surrogates and high response time when not 
cached content must be fetched from the Origin Server. 

To deal with these drawbacks, Surrogates can be grouped 
into loosely-coupled and tightly-coupled clusters according to 
their proximity (e.g. neighboring Surrogates belong to the same 
cluster) [4, 8, 12, 17]. Surrogates of the same cluster (hereafter 
referred as peers) cooperate with each other to provide contents 
when they cannot directly serve content request. This would 
result in a higher hit rate, as the available content is at most the 
total content of all peers and not just the content of a single 
Surrogate, and in a shorter response time, as distance between 
peers is much shorter than the distance between Surrogates and 
their related Origin server. Indeed, a request is forwarded to the 
Origin Server only if none of the peers can provide the 
requested content. 

In the following, four different distributed architectures for 
surrogate clustering are presented. In particular, the three 
tightly-coupled Clustered architectures, Master/Slave 
(M/SArch), Multicast-based (MCArch), and Peer-to-Peer 
(P2PArch), are described in Sections II.A-C, respectively; in 
Section II.D the loosely-coupled Cooperative architecture 
(CoopArch) is defined. 

A. Master/Slave Architecture 

In the M/SArch architecture [6], a master/slave approach is 
exploited which is based on a master peer to manage the cluster 
Content Location Hash Table (CLHT) whereas the other peers 
only manage a CLHT of their own content. When a request 
arrives, the selected surrogate looks up its CLHT and then, if 
the content is not found, forwards the request to the master peer 
that, in turn, forwards it either to the peer (which could also be 
the master itself) with that content or to the origin server. It is 
worth noting that every time a peer chooses to evict a content, 
it notifies the master that consequently updates the global 
CLHT. In this way consistency of the cluster is guaranteed by 
the master even though it could become a bottleneck. 

Four variants of M/SArch (M/SArch _1, M/SArch_2, and 
M/SArch_3, M/SArch_4) have been defined on the basis of 
different schemas related to content found/content not found in 
the cluster scenarios. Specifically, two schemas for the content 
found in the cluster scenario are considered: in the first, which 
is exploited in M/SArch_1 and M/SArch_2, the master peer 
forwards the request directly to the surrogate which has the 
content; in the second, which is exploited in M/SArch_3 and 
M/SArch_4, the master peer notifies the address of the 
surrogate which has the content to the selected surrogate 
which, in turn, forwards the request to it. Two schemas for the 
content not found in the cluster scenario are also introduced; in 
the first, which is exploited in M/SArch_1 and M/SArch_3, the 
master peer replies to the selected surrogate which, in turns, 
downloads the content from the origin to serve the client; in the 
second, which is exploited in M/SArch_2 and M/SArch_4, the 
master peer contacts the origin which sends the missing content 
to the selected surrogate. 

It is worth noting that the four variants of M/SArch consider 
the architectures that averagely involve the lowest number of 
exchanged messages (M/SArch_2), the highest number of 
exchanged messages (M/SArch_3), and a number of exchanged 
messages between the highest and lowest ones (M/SArch_1, 
M/SArch_4). 

B. Multicast-based Architecture 

In the MCArch architecture [6], each peer surrogate manages a 
CLHT in which stores the content location information of all 
peer surrogates. A missing content in the selected peer is 
handled as follows: if the CLHT has an entry for that content, 
the request is forwarded to the peer that has the requested 
content and will then serve the client request; otherwise, the 
request is forwarded to the origin server and then handled as in 
the Conventional architecture. Every update of the CLHT is 
multicast from the peer that updated its content to all the others 
that consequently update their CLHT without an ACID 
(Atomicity, Consistency, Isolation, e Durability) coordination 
mechanism. This implies that the consistency of the CLHT is 
not guaranteed and then a peer could forward a request to 
another peer that may not have the requested content; 
moreover, duplicated copies of the same content could be 
present in a cluster. 

C. Peer-to-peer Architecture 

In the P2PArch architecture [6], each peer has an SLT 
(Surrogate Location Table) which contains the location 
information of all the peers and their respective contents. In 
particular, for each peer surrogate an SLT has an entry 
formalized by the pair <SId, CZ>, where CZ (Content Zone) is 
the space of the identifiers of the contents potentially stored in 
the peer identified by SId. According to the peer-to-peer model, 
a content request issued by a client is served by the selected 
surrogate as follows: (i) if the CId of the requested content 
belongs to its CZ, the content is looked up in the CLHT and 
then, if the content is present, it is sent to the client; otherwise, 
the content is retrieved from the origin, sent to the client and 
finally stored; (ii) if the CId of the requested content does not 
belong to its CZ, the request is forwarded to the peer 
responsible for Cid and then, if the requested content is present, 



it sent it to the requesting client; otherwise, the content is 
fetched from the origin before sending it to the requesting 
client. 

As in the M/SArch architecture, the P2PArch provides 
consistency of the content in the cluster. Moreover it 
overcomes the main drawback of M/SArch and MCArch as a 
peer does not need to maintain content information belonging 
to the other peer surrogates. 

D. Cooperative Architecture 

In the CoopArch architecture, which is based on the 
cooperative architecture proposed in [19], each peer has a 
given number of Neighbor surrogates and manages a CLHT in 
which stores the content location information of its Neighbors. 
When a peer is not able to provide the requested content but the 
CLHT has an entry for it, the content is asked to the associated 
Neighbor otherwise it is asked to the Origin Server. Upon the 
reception, the content is stored in the peer cache (removing 
another content if necessary) and sent to the user; as a 
consequence a content can be replicated on different 
surrogates. The CLHT of the peer is then updated and this 
information is sent to all the Neighbor surrogates of the peer so 
that they can consequently update their CLHT. 

III.  PERFORMANCE EVALUATION THROUGH AGENT-BASED 

MODELING AND SIMULATION  

The distributed architectures presented in Section II have been 
modeled as Multi-Agent Systems (MASs) by exploiting the 
ELDAMeth methodology and related tools that allow a visual 
and Statecharts-based modeling of the agent behaviors and the 
semi-automatic translation of the visual specifications into 
code which can be executed by an agent-oriented and event-
driven simulation framework [5]. Specifically, the aim of the 
simulation was to analyze the efficiency of the proposed 
distributed architectures in terms of the following three indices 
which mainly characterize the performances of content 
delivery networks: 

• Average user perceived latency (AUPL) [13], which is 
defined as the average time ranging from the 
transmission of the content request by a client (treq) 
and the reception of the content (tserv): 
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where N represents the number of surrogates and 

ireqn the number of requests issued to the surrogate i. 

• Cache hit ratio (CHR) [13], which is defined as the 
percentage of content requests successfully served by 
the CDN without fetching content from the Origin 
Server: 
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where N represents the number of surrogates, req the 
amount of bytes requested to a surrogate and locserv 
the amount of bytes served by a surrogate without 
fetching content from the origin server. 

• Utility ( UT) [18], which is defined in terms of the byte 
amount that the surrogates of the CDN send to the 
requesting clients and receive from the origin server 
and/or other surrogates. Specifically, in the case of  
Non Clustered (NC) architectures, i.e. SimpleArch and 
CoopArch, UT is evaluated as follows: 
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where N represents the number of surrogates in the 
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bytes sent to clients (upi, upload to clients) and 
received (dwi, download from the origin server and/or 
other surrogates) by the surrogate i. 
Conversely, in a Clustered (C) CDN (M/SArch, 
MCArch and P2PArch), as surrogates can download 
contents only by the Origin Server and the cluster can 
be therefore seen as a unique surrogate with a cache 
equals to the sum of the caches of the peer surrogates 
(see Section II), UT is calculated as: 
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respectively obtained by summing up the amount of 
bytes uploaded from and download by each surrogates 
of the cluster. 

In the next subsections, after briefly discussing the agent-based 
modeling of the CDN architectures (Section III.A), simulation 
parameters are introduced (Section III.B) and the analysis of 
the obtained simulation results (Section III.C) is presented with 
reference to different and significant simulation settings. 

A. Agent-based modeling 

In order to evaluate the defined performance indices (AUPL., 
CHR and UT), agent-based models of the SimpleArch, 
CoopArch, M/SArch, MCArch and P2PArch architectures (see 
Section II), have been defined according to the reference 
schema reported in Figure 1 which shows four type of Agents 
representing the basic components of every CDN architecture: 
Client Agent, Redirection System Agent, Surrogate Agent and 
Origin Server Agent. Specifically, when a Client Agent request 



is generated, it is forwarded to a Surrogate Agent randomly 
selected by the Redirection System (RS) Agent; then, such 
request is handled according to the different considered 
architectures. The reference schema was defined to evaluate a 
single cluster scenario so that the considered Surrogate Agents 
adhere to either a Clustered or Non Clustered (i.e. 
Conventional or Cooperative) architecture. A single cluster 
scenario allows a straightforward comparison of the 
considered architectures and a generalization of the obtained 
results to a CDN composed of different clusters. 
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NO : number of objects contained in the origin server
C%: percentage of objects that are stored in a surrogate
TCS: average latency time between clients and surrogates
TSS: average latency time among surrogates
TSO: average latency time between surrogates and orig in server
NS: number of surrogates
λC: average rate of client requests  

Figure 1. The reference CDN agent-based model. 

According to the ELDAMeth methodology [5] the behaviors 
of the above mentioned Agents are modeled as hierarchical 
state machines driven by ECA (Event-Condition-Action) 
rules; moreover, agent interactions are enabled by multiple 
coordination spaces based on different coordination models 
(e.g. message passing, tuples, publish/subscribe). As an 
example, the Statecharts-based model of the behavior of the 
Surrogate Agent in the CoopArch architecture is reported in 
Figure 2. 

 

Figure 2. The Statecharts-based behavior of the Surrogate Agent in the 
CoopArch architecture. 

B. Simulation parameters 

The considered simulation parameters are organized in 
architecture-dependent and architecture-independent 
parameters. 

The architecture-independent parameters are: 

• The number of objects that are contained in the Origin 
Server (NO). NO is set to 100 and the objects are only 
considered to be static. 

• The number of Surrogates (NS), which is set in the 
range [2..10] to consider clusters of surrogates of 
different dimensions (small, medium, and large). 

• The percentage of objects that are stored in a surrogate 
with respect to the objects stored in the origin server 
(C%). C% is varied from 1% to 1/NS with a step of 
1% for Clustered architecture as content cannot be 
replicated and from 1% to 80% with a step of 1% for 
SimpleArch and CoopArch. 

• The average latency times among architecture 
components: (i) between clients and surrogates (TCS), 
(ii) between surrogates and origin server (TSO), and 
(iii) among surrogates (TSS). As clients are very close 
to surrogates, surrogates of the same cluster are close 
to each other, and the origin is usually far away from 
surrogates and clients, the following relationship 
among the average latency times are established: 
TSO=3*TSS=9*TCS. In the simulation runs the average 
latency times are set as follows: TSO=90ms, 
TSS=30ms, TCS=10ms. The instantaneous values of 
latency times among architecture components are 
calculated accordingto the following link delay model 
[7] by setting δm equals to TCS, TSO and TSS depending 
of the link endpoint components: 

    )δK,δN(KδKδ mvmvmfi +=   (5) 

0K,K1KK vfvf ≥=+  

where δm is the mean delay and δi is the instantaneous 
delay for a given message. δi is the sum of a fixed part 
and a variable part. Constrains guarantee that the mean 
of δi is equal to δm. The variable part of δi is generated 
by a normal random variable whose mean and 
variance are set to Kvδm. The distribution of the 
normal variable is truncated to -Kfδm in order to assure 
that δi cannot assume negative values. To limit the 
delay variability Kf is set to 0.7. 

• The policy for content eviction in surrogates (EP) can 
be of the following types:  
o Random: the object to be evicted is randomly 

chosen. 
o Last access: the evicted object is the one that has 

not been requested for the longest time. 
o Rank: the evicted object is the less requested 

one. 

• Average rate of client requests (λC) which are issued 
according to an exponential probability density 
function. λC is set as {0.1, 0.01, 0.001}. 

• The type of distribution of the content popularity 
(CDP), which can be uniform (i.e. all the NO objects 



have the same popularity) or Zipf (i.e. the NO objects 
are requested considering the object popularity 
distributed according to a Zipf probability density 
function). In particular, popularity of most popular and 
less popular objects is defined according to a variant 
of the algorithm proposed in [16] which is focused on 
static Web objects. 

With reference to CoopArch there is only a specific parameter 
which is the number of neighbors NN of each surrogate and is 
set in the range [1..NS-1]. 

With reference to the Clustered architectures (M/SArch, 
MCArch and P2PArch) the following specific parameters are 
defined:  

• The type of distance (DST) between the surrogate 
originally contacted by the client and the surrogate 
that actually serves the client request, can be: 
o Euclidean, the distance is evaluated as the square 

root of the sum of the squares of the following 
distances: (i) the distance between the client and 
the surrogate originally contacted by the client 
and (ii) the distance between the originally 
contacted surrogate and the surrogate that 
actually served the client request. 

o Manhattan, the distance is evaluated as the sum 
of the distances introduced in the Euclidean case. 

o Homogeneous, the distance is set equal to the 
distance between the client and the surrogate 
originally contacted. 

• The average latency time (TCAS) between the surrogate 
originally contacted by the client and the surrogate 
that actually served the client request. The value of 
TCAS depends on the considered type of distance (DST), 

thus it is set to: 2
SS

2
CS TT + when DST=Euclidean, 

(TCS+TSS) when DST=Manhattan, and TCS when 
DST=Homogeneous. In the simulation runs as 
TCS=10ms and TSS=30ms, TCAS is equals to 31.62ms, 
40ms and 30ms in the Euclidean, Manhattan, and 
Homogeneous case respectively. The instantaneous 
values are calculated according to the defined link 
delay model (see Eq. 5) by taking δm equals to TCAS. 

C. Simulation Results 

In this Section, two sets of simulation results are presented and 
discussed. The first set is related to a two-surrogate cluster 
scenario; whereas the second one is related to specific choices 
for the content request distribution (CPD=Zipf) and the 
eviction policy (EP=Rank). Both scenarios refer to a 
Manhattan distance type among surrogates as this setting 
represents more realistic scenarios. 
 

1) Two-surrogate cluster analysis 
This analysis allowed evaluating the AUPL, CHR and UT 

performance indices of all the considered architectures (see 
Section II) in case the cluster consists of two surrogates 
(NS=2). In particular, simulations are executed by setting 

λC=0.01, CPD={uniform, Zipf}, DST=Manhattan and by 
varying EP. With reference to the C% parameter, although the 
C% parameters is varied in the range [1%..1/NS] (step 1%) for 
the Clustered architectures as their surrogates do not store 
replicated contents, C% is varied till 80% for Non Clustered 
architectures to evaluate performances in case of larger cache 
dimensions. 

Due to space limitations only a subset of the simulation 
results are reported. In particular, the results for the UT, 
performance index with CDP=Zipf and the three considered 
Eviction Policies (Random, Last Access, Rank) are reported in 
Figure 3a-c, whereas the results for CHR and AUPL with 
CDP=Zipf and EP={Rank} are reported in Figure 4a and 4b 
respectively. 
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(a) EP=Random 
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(b) EP=Last access 
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(c) EP=Rank 

Figure 3. UT for two surrogates, Zipf content request distribution, distance of 
the Manhattan type and Random (a), Last Access (b) and Rank (c) eviction 

policy. 

The analysis of all the obtained simulation results led to 
the following important considerations: 

• With CDP=uniform the Clustered architectures 
(M/SArch, MCArch and P2PArch) outperform the 
SimpleArch and CoopArch for the CHR and UT 
performance indices as the C% increases. With respect 
to the AUPL the architecture with higher performance 



is MCArch if 10%<=C%<=1/NS(=50%); only if C% is 
very small (<=2%) the SimpleArch can achieve better 
performance. Moreover, CHR and UT performance 
indices are not influenced by the adopted eviction 
policy whereas AUPL registers only small variations. 

• With CDP=Zipf the Clustered architectures have 
almost the same performances with respect to CHR 
and UT and outperform the SimpleArch and 
CoopArch. However, while in the uniform case 
SimpleArch and CoopArch show similar performances 
in this case CoopArch performs better than 
SimpleArch. With respect to AUPL in the range 
[10%..50%] of C%, MCArch is the architecture that 
performs better; in case of small dimensioned 
cache(<2%) or large dimensioned cache (>75%) 
SimpleArch is the best performing architecture. 
However, the percentage of objects that are stored in a 
surrogate with respect to the objects stored in the 
origin server should not exceed given thresholds 
which are usually far lower than 75%. 
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(a) CHR 
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(b) AUPL 

Figure 4. CHR (a) and AUPL(b) for two surrogates, Zipf content request 
distribution, distance of the Manhattan type and Rank eviction policy. 

Other considerations which can be derived from the obtained 
results are related to the relationships between the content 
request distribution and the eviction policy; in particular, with 
a uniform content request distribution, the eviction policy does 
not affect the performance, whereas, in the case of a Zipf 
content request distribution the use of the Random eviction 
policy gives the best results for CHR and the Rank eviction 
policy provides better performance for UT. Finally, among the 
M/SArch architectures, the M/SArch_2 is the one performing 
better. 

2) Analysis of a cluster with variable number of 
surrogates 

In this analysis the AUPL, CHR and UT performances 
indices have been evaluated by considering a Zipf content 
request distribution, a distance of the Manhattan type, a Rank 
eviction policy and by varying the number of surrogate NS in 
{2, 3, 5, 10}. As among the M/SArch architectures the 
M/SArch_2 performs better, it has been selected as the 
representative Master/Slave architecture. 
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(a) two surrogates 
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(b) three surrogates 
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(c) five surrogates 
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(d) ten surrogates 

Figure 5. UT with Zipf content request distribution, distance of the Manhattan 
type, Rank eviction policy, and two (a), three (b), five (c), and ten (d) 

surrogates. 

Due to space limitations only a subset of the simulation 
results are reported. In particular, the results for the UT, 
performance index with NS in {2, 3, 5, 10} are reported in 



Figure 5a-d, whereas the results for CHR and AUPL with 
NS=10 are reported in Figure 6a and 6b respectively. 
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Figure 6. CHR (a) and AUPL (b) with Zipf content request distribution, 
distance of the Manhattan type, Rank eviction policy, and 10 surrogates. 

On the basis of the analysis of all the obtained simulation 
results the following considerations can be done: 

• CHR and UT of the Clustered architectures are better 
than those of the SimpleArch and CoopArch by 
increasing NS. Moreover, differences in the CHR and 
UT performance indices between Clustered 
architectures and Non Clustered architectures notably 
augment by increasing NS. 

• Differences in the AUPL performance index between 
Clustered architectures and Non Clustered 
architectures tend to decrease by increasing NS with 
reference to a C% in the range [1..1/NS]. 

It is worth noting that the performance indices of the Non 
Clustered architectures may significantly improve by 
increasing C%. In particular, with respect to AUPL (see 
Figure 6b), the Non Clustered architectures can perform better 
than the Clustered architectures in case C% is greater than a 
given value: C%=68% for NS=2, C%=52% for NS=3, 
C%=52% for NS=5 and C%=40% for NS=10. However, cache 
size of a surrogate with respect to contents from a same origin 
server should not exceed given thresholds which are usually 
far lower than the aforementioned values. Finally, among the 
Clustered architectures MCArch performs slightly better than 
P2PArch which in turns performs better than M/SArch_2. 

IV.  CONCLUSIONS 

In this paper the Agent-Based Modeling and Simulation 
(ABMS) approach has been exploited in the evaluation of 
different CDN architectures: Conventional, Cooperative and 
Clustered. Such architectures have been modeled as Multi-
Agent Systems and their performances analyzed and compared 
on the basis of the most important quantitative performance 
indices for CDNs (agent user perceived latency, cache hit ratio 
and utility) in significant scenarios. The obtained simulation 
results confirm that the Clustered architectures outperform the 
Conventional and Cooperative architectures so providing 
useful information for the setting of the different architecture 
parameters. Moreover, the experimentation phase has shown 
the flexibility and effectiveness of the ABMS approach based 
on the ELDAMeth methodology for the modeling and analysis 
through simulation of artificial complex systems. Future 
research efforts are geared to develop the Clustered 
architectures atop large-scale distributed platforms such as 
PlanetLab [15] and MetaCDN [1] to evaluate their 
performances in complex and real scenarios. 
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