
A UML-Based Notation for Representing MAS

Organizations

Massimo Cossentino∗, Carmelo Lodato∗, Salvatore Lopes∗, Patrizia Ribino∗, Valeria Seidita†, Antonio Chella†

∗Istituto di Reti e Calcolo ad Alte Prestazioni,

Consiglio Nazionale delle Ricerche,

Palermo, Italy.

Email: {cossentino, ino, toty, ribino}@pa.icar.cnr.it

†Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica

Università degli Studi di Palermo

Email: {seidita, chella}@dinfo.unipa.it

Abstract—A notation for representing agents’ organizations to
be implemented using Moise+ and Jason is proposed. For this
purpose a UML profile was defined for representing the elements
of Moise+ organizational model such as role, mission and group.
The proposed notation will be fully illustrated and applied to the
classical example provided by the J-Moise+ team.

I. INTRODUCTION

In the context of highly complex, distributed and open

systems, engaged and working in dynamic environments are

widely employed. Such system should include the capabil-

ity of continuously reacting, with a re-organization process,

to changes occurring in the environment. Because of their

intrinsic nature, agents have been recognized to be a good

way for solving complex problems both at the design and the

implementation levels [1] [2].

Organizations [3] play a relevant role in multi-agent systems

design; they can be seen as the set of constraints ruling the

agent’s behavior in multi-agent systems (MAS from now on).

As regards the agent organization implementation, a robust

approach coming from Hubner et al. [4] proposes an orga-

nizational model (Moise+) able to support the re-organizing

process of MAS. Moise+ describes the organization in a MAS

by employing three main views: the structural, the functional

and normative specifications. In this model an organization

is established a priori (created at design-time) and the agents

ought to follow it. The Moise+ organizational model considers

the structural and functional dimensions as almost independent

while the normative dimension is used to establish a link

between them.

The Moise+ organizational model is complemented with

the possibilities of quickly and easily programming MAS by

means of J-Moise+ [5], a Jason extension allowing developers

to use Jason for programming agents and their organizations

[6].

This offers a powerful tool to MAS developers, nevertheless

it is not still adequately supported by a well defined method-

ological approach. Some researchers in the past developed

methodologies for MASs where some aspects of organization

were modeled. In one of the most known in literature [7] the

concepts of environment, roles, interactions and organizational

rules are taken into account as organizational abstractions.

Another example has been proposed in [8] where holarchy

represents the organization structure of the MAS made of

holons [9] hence the main element to be developed for building

the MAS organization.

The work illustrated in this paper regards the creation of

a specific notation for representing the organizational model

proposed by Moise+. The advantages of having a graphical

notation for representing organizations are evident: first of

all, graphical notations are more readable and understandable

at a glance than any coding language, secondly it is usually

easier to explain a graphical notation to stakeholders involved

in the designer (that are not designer) than read the application

code with them. The possibility of involving stakeholders like

system users enables the adoption of agile or extreme develop-

ment approaches and improves the flexibility of conventional

ones.

The remainder of the paper is organized as follows. In

section II the Moise+ organizational model, J-Moise+ and

Jason are introduced. In section III we explain the proposed

notation by using three kinds of diagram in order to define

graphically the structural, functional and normative specifica-

tion of a Moise+ organization. In this section an instance of the

notation in use by using the Moise+ tutorial [10] example for

generating the three specification diagrams is also provided.

Section IV offers a comparison with others MAS modeling

proposals. Finally some discussions and conclusions are drawn

in section V.

II. BACKGROUND

A. Moise+

Moise+ [11][4] is an organizational model for MAS looking

at organization from three different perspectives: structural,

functional and normative. From the structural viewpoint, an

organization can be seen as a set of Roles linked by Relations

and clustered into Groups. Analyzing an organization from the

functional perspective allows designers to define the global

objective, and also the plans and the way for reaching this

goal by means of a Social Scheme. In this scheme the func-

tionalities of the organization are represented as Goals grouped

into Missions. Finally, modeling the normative aspect of the

organization allows to assign a mission to a Role by means

of Permission or Obligation norms. Norms can be seen as the

backbone connecting the functional and structural aspects of

an organization.

While the Moise+ implementation is based on two key

elements: the Organizational Specification (OS) that is the

union of structural, functional and normative specification and

the Organizational Entity (OE) that is the instantiation of OS

on a set of agents.

B. Jason

The development of cognitive agents can be based on

different approaches [12]. Jason approach is based on the

BDI (Belief-Desire-Intentions) architecture characterized by

the implementation of agent’s beliefs, desires and intentions.

The AgentSpeak [13] is an abstract agent language founded

on BDI model.

Jason [6] is a Java-based interpreter for an extended version

of the AgentSpeak language. An AgentSpeak agent is defined

by means of a set of plans that the agent is able to execute in

certain situations. An AgentSpeak plan is defined as follows:

+triggering − event : context < −body

The Triggering Event describes the situations in which a

plan may be applicable for execution. The context can be used

to specify the condition to make the plan applicable even if an

event has triggered that plan. The body can be considered the

consequent of the event linked to the context. Within the body

commonly are defined the actions that agent must perform to

fulfill its own goals.

C. J-Moise+

J-Moise+ [5] is an implementation of the Moise+ organiza-

tional model. J-Moise+ is based on Jason and consists of both

an OrgBox Api and a special agent called OrgManager. Agents

use the OrgBox Api to access to the organizational layer.

While the OrgManager stores the current state and maintains

the consistency of the Organizational Entity during its life-

cycle. J-Moise+ basically offers a set of actions to change the

state of the organization and produces some events related to

organizational changes to which the agent can react.

III. THE PROPOSED NOTATION

A detailed description of UML is out the scope of this paper,

we here define only the constructs used to model organizations

with Moise+. In the following subsections, we describe three

kinds of diagram applied to the classical example (”Writing

Paper”) reported in the Moise+ Tutorial [10].

A. Organizational Diagram

The Moise+ structural specification defines the available

roles, groups, and relations between these within the MAS

organization. Using the normative specification we can con-

strain the agents behavior by specifying what missions an

agent ought to follow and what missions an agent is allowed

to follow when playing certain roles.

We use a UML class diagram (named Organizational

Diagram OD) for representing the structural and normative

specification. The Organizational Diagram focuses on Moise+

elements such as Group, Roles, Missions and different kinds

of relationships.

The development methodology of an organization with

Moise+ is out of the scope of this paper, but in order to

understand this diagram we can say that the building of this

diagram is subdivided in two phases. During the first phase

all elements concerning the Moise+ structural specification

are established, while the second phase starts at the end of

the definition of the schema structural diagram and it aims

to define the norms the agents should obey when they adopt

a role. Figure 1 illustrates the graphical representation of

organizational diagram elements.

Groups - A group is represented by means of a package

with little men icon. It may contain several structural elements

(Roles) and other grouping elements (sub-groups). The root

group represents the entire organization.

Roles - A role is an UML class depicted as a little man. Its

properties are represented in the form of class attributes. Roles

can be logically related to one another using associations. An

abstract role, instead, is identified using an italic font.

Relationships - Model elements are related each others with

dependencies, associations and generalizations. A dependency

is a generic relationship, indicating that an element depends in

some way on another. A generalization specifies a relationship

between roles in which specialized roles inherit features of the

general role. An association describes a link between elements

of the Moise+ model. We used UML stereotypes in order to

attribute a semantic of the association with Moise+ domain-

specific concepts.

In particular Moise+ organizational links, defining the way

in which social exchanges between agent roles occur, are

represented by means of associations between roles labeled

with an Authority, Acquaintance or Communication stereotype.

Fig. 1. The Defined Notation Elements

Fig. 2. The Writing Paper Example - OD

Each propriety of a link can be expressed by UML association

constraints.

Moise+ compatibility links, instead, are defined by means

of associations between roles labeled with the Compatibility

stereotype. Two roles connected by a bidirectional compatibil-

ity link define the possibility of an agent to adopt both roles

at the same time. Each propriety of a link can be expressed

by UML association constraints.

Figure 2 shows the Organizational Diagram for the Writing

Paper organization. In this example, a set of agents aims to

write a paper. For this purpose, the Moise+ authors define an

organization with one group (wpgroup) and two roles (Writer

and Editor). These roles are an extension (represented by

means of UML generalization in the OD) of the abstract

role Author. An agent can play several roles only if they

are compatible. As exemplified in figure 2, an agent playing

the writer role can play the role editor at the same time and

vice-versa because they are linked by an UML compatibility

association.

In the Moise+ model, a role is usually linked by means of

norms (Obligation or Permission) to one or more missions

defined in a particular scheme.

One of the Writer’s mission (see Figure 2) is mbib (i.e.

getting references for the paper). The norm linking the mission

to the role is an Obligation, that is the agent playing the

Writer role must commit to this mission. This is shown in the

Organizational Diagram through the stereotype obligation. The

Editor, instead, may commit to the mission mManager because

the link is a Permission norm. The association between roles is

stereotyped in order to represent organizational links such as

Acquaintance, Compatibility, Communication and Authority.

B. The Scheme Structural Diagram

The Moise+ Functional Specification deals with the con-

cepts of agents’ missions and their global plans. Plan repre-

sents the set of goals to be pursued. Plans and missions com-

pose (or are assembled into) the social scheme. We use two

different views (or models) for representing the elements the

functional specification is composed of: the Scheme Structural

Diagram (SSD) and the Scheme Functional Diagram (SFD).

The Scheme Structural Diagram allows to model the social

schemes of the organization through a UML class diagram.

The elements of this diagram are:

Goal is represented by a class element reporting the name,

the stereotype and the attribute field; each of them corresponds

to a specific feature of the Moise+ concept of goal: the class

name addresses the goal id. The stereotype represents the

two types of goal namely achievement and maintenance. The

default type for every goal in Moise+ is achievement but in

the SSD the goal type has to be stated in any case. As regard

the attribute compartment, it basically contains the ttf attribute

value prescribing the time requested for fulfilling the goal.

Mission is also represented through a class stereotyped as

mission. Here the attributes’ compartment contains values for

the minimum and the maximum commitments to the mission.

The Social Scheme is modeled by means of a package

where classes (i.e. missions) are grouped in order to represent

the social organization of goals and missions. There can be

more than one package in a single SSD thus representing the

existence of different schemes in the same organization. The

package’s name corresponds to the social scheme id.

As regard relationships among elements, in this diagram

we only use two kinds of relationship: the aggregation and

the dependency; the latter is used for representing how two

different schemes depend on each other, the former is used for

relating missions and goals. With respect to Moise rationale,

goals are aggregated into missions that can be distributed/

committed to agents.

Fig. 3. The Writing Paper Example - SSD

Figure 3 shows a portion of the SSD for the write paper

example1.

In the Scheme Structural Diagram, a Social Scheme is

modeled by means of a package containing classes (i.e. mis-

sions and goals). Within a package the structural composition

of goals and missions is defined. For instance, the SSD for

writing paper example is composed by two Social Schemes,

writePaperSch and monitoringSch. The portion of writePaper-

Sch scheme reported in figure 3 shows how the mManager

mission is a composition of five goals: wp, wtitle, concl, wabs,

wsectitles that respectively aim to write the paper, the title, the

conclusion, the abstract and the title of each section. While the

illustrated portion of monitoringSch scheme shows ms mission

formed by only Sanctioning goal. In the SSD is also possible

to underline the dependences between different social schema.

As 3 shown, the social scheme writePaperSch is related to

the monitoringSch scheme through a “monitoring” dependency

relationship.

C. The Scheme Functional Diagram

The Scheme Functional Diagram represents the behavioural

view of the Moise+ functional specification, it is realized by

means of an UML activity diagram and it aims at representing,

through a set of associated activities, how a goal can be

decomposed in sub-goals. Each activity represents the work

1Because of space concerns only portions of dia-
grams are reported. Complete diagrams can be found in
http://www.pa.icar.cnr.it/cossentino/moisenotation/

Fig. 4. The Writing Paper Example - writePaperSch SFD

done by agent to fulfill the goal. The elements of this diagrams

are:

The Goal is then represented by an activity where the

name is the goal’s id and the stereotype represents the type

of the goal (achievement or maintenance - see the previous

subsection) The Moise+ model allows to decompose goal in

sub-goals by means of a plan operator. There are three different

kinds of plan operator: sequence, parallelism and choice, the

first means that a goal gi (having two sub-goals gi,i and gi,i+j

) can be achieved only if the close sequence of gi,i and

gi,i+j). All of them can be easily represented by means of

the UML activity diagram syntax, for instance the parallelism

is represented through the fork and the choice through the

decision diamond. Sequence is represented by a straight arrow

line.

As said before, in this paper our concern is about the nota-

tion/models to be used for representing MAS organizations. If

we would use them during a design process phase we should

consider that we can draw more than one SFD, one for each

package (i.e. social scheme) of the SSD.

Figure 4 and figure 5 show the Scheme Functional Diagrams

(SFD) built for the wp and monitoring goals of the Writing

Paper organization which are the root goals of writePaperSch

Fig. 5. The Writing Paper Example - MonitorinSch SFD

and monitoringSch (defined in the previous section) corre-

spondingly. The SFD of the writePaperSch (see figure 4)

explains how to achieve the root goal of the scheme. In detail,

the fulfillment of the wp goal (i.e. write a paper) depends on

the achievement of the fdv (first draft version) and sv (submit

version) goal. The sv goal is reachable only after that the fdv

is satisfied. In turn, fdv is achieved executing the atomic goals

wtitle, wabs and wsectitles sequentially.

It is important to highlight there are three different types of

goal execution: sequential, parallel and choice. If two goals are

related with a sequential relationship then the goal target can

be reached only after that the source goal is reached. If two

goals are related with a parallel relationship then both goals

can be reached simultaneously. Finally, a choice relationship

indicates that it is possible to choose the goal to achieve.

Besides it is important to note that (see 4 and figure 5) the

root goal is represented with a box with the goal icon at the

top left corner instead of with an activity, this is due to the

features of the tool we use for drawing activity diagrams. The

concept of goal does not depend on the graphical box they are

represented but are related to the specific icon.

IV. RELATED WORKS

A proposal for the introduction of groups in MAS modeling

has been presented by J. Odell et al. in [14]. The proposed

metamodel is based on three main concepts: Agent, Agent

Role (Classifier, Assignment) and Group. The peculiarity of

this approach is in the presence of the agentified group in

opposition to the Non-agentified one. This does not represent

an explicit attention for the presence of non-agent-oriented

entities in the application. Conversely, non-agentified groups

are composed of agents just like the others, but they are not

addressable as an agent entity (i.e. the group does not exhibit

the usual properties of an agent). Within a group, agents

interact according to the roles they play.

As regards the comparison of this work with the notation

we presented in this paper, the authors of [14] present very

limited examples of notation. Mainly, a group is represented

in a form that resembles the UML class without the operation

and attribute compartments. Purposefully, the author avoid to

propose notations for agents, roles and the other elements of

their proposed metamodel.

Remaining in the context of AUML-related researches, it is

worth to remind the long work done by the FIPA Modeling

Technical Committee and its members at the beginning of

years 2000. In this context several proposals arose. Among

the others, Parunak and Odell presented in [15] some ideas

for the representation of social structures and relationships.

They introduced swimlanes in class diagrams in order to

partition the diagram in zones representing groups. Within

each organization the diagram may depict roles and the agents

playing them. Another proposed diagram was concerned with

the description of the dynamic behavior of agents/roles in

terms of their interactions. Essentially it is an extension of the

UML 1.0 sequence diagram containing some notation elements

that have been introduced in following versions of UML.

A more extended notation has been proposed by L. Padgham

et al in [16]. This notation has been conceived with the aim

of supporting most of the existing AOSE methodologies.

An interesting point of this work is that the authors defined

a notation leaving a large margin for the definition of the

semantics that is behind that. In this way, the notation may

be easily ported to support different approaches. More in

details, it has been applied to O-MASE, PASSI, Prometheus

and Tropos (partially). The notation includes graphical icons

for representing almost all the elements of an agent-oriented

design, organizations included (agent, role, position, goal, . . .).

From this point of view, the notation presented in [16] is

more complete than the notation we propose in this paper.

However, the authors in [16] present several diagrams, none

of them behavioral. This is a relevant difference with the work

presented in this paper. In fact, our notation also includes the

Scheme Functional diagram that is a behavioral representation

of the system.

INGENIAS [17][18] is a framework for developing MASs

offering to designers the possibility of following the workflow

of the methodology also with the aid of the tool (INGENIAS

Development Kit IDK). The tool supports a specific notation

for representing the abstractions on which INGENIAS allows

to develop MASs.

INGENIAS is suitable for modelling and developing MASs

with the following main abstractions: agent, task, role, organi-

zation, and goal. Modelling with INGENIAS implies basically

using the Unified Software Development Process (USPD) [19];

each phase/iteration aims at developing different models or

viewpoints on specific aspects of the MAS under development.

For the sake of the work proposed here we are interested in

considering the Organizational Viewpoint.

The Organizational viewpoint describes the environment

where agents live and interact each other by means of re-

sources and tasks in order to pursue goals. Modelling the

Organization is done by dividing the MAS into groups and

workflows where all the involved entities are related by ag-

gregation and inheritance relationships; roughly speaking, in

INGENIAS, groups give the mean to identify subsystems

interacting through workflows.

Each element of the Organization viewpoint has a precise

notational counterpart, for instance the goal is represented by

a circle and the group in a box with two kinds of head. This

allows to model how the organization is divided in groups

(each group again can be decomposed in groups) made by

agents that play roles. From a modelling point of view it is

important to note that the goal is associated to the organization

and that in INGENIAS the concept of agent is central and is

related to the concept of role whereas in MOISE+ the central

element group and the role. This logical difference can be

found in the two notations and in the related diagrams we

can draw; anyway both of them allow representing the whole

portion of metamodel including organizational concept but

INGENIAS does not provides means for representing norms.

Tropos [20] is an agent-oriented software engineering

methodology mainly based on the notion of goal.

The Tropos methodology is articulated in four different

phases from the requirements analysis to the agent system

implementation. The requirements analysis covers two phases:

the Early Requirements Analysis phase, concerning with the

studying of the problem, produces an organizational model and

the Late Requirements Analysis phase where the system-to-be

is described. The agent system implementation is performed

through the Architectural Design phase, where the system

architecture is defined, and the Detailed Design phase where

all system components are specified. During the first two

phases an actor and a goal diagram are produced.

An Actor Diagram is a graphical representation of the appli-

cation domain stakeholders, their objectives and dependences.

A Goal Diagram is a refinement of the previous diagram un-

derlining the goals of a single actor. These two diagrams show

essentially five concepts: Actors, Goals, Resources, Tasks and

Dependences. The Actors are the intentional entities such as

agents (software or human), roles (abstract representation of

behaviors within some specialized domain) or position (set of

roles typically played by an agent). Goals are the objectives

of an actor, divided into hard goals and soft goals. Tasks

are the way to achieve a goal. Resources are means used by

agent in order to reach their goals. Finally, Dependences are

relationships between actors.

The notation used in the Tropos diagrams in order to rep-

resent the above elements is very simple. An actor is depicted

by means of a circle, its goals are ovals and its softgoals are

clouds shape. The used resources and tasks are represented

as rectangles and hexagons respectively. The dependences

between actors are arrows with a specific content. This content

represents the dependum (i.e. goal, task or resource) that is the

element through which two actors depend each other.

Tropos does not support natively the concept of organiza-

tion. Its authors have proposed organizational patterns [21] in

order to facilitate the construction of organizational models.

These patterns are defined from real world organizational

settings, such as Joint Venture, Pyramid, Flat Structure and

many others [22], and formalized using the Tropos notation.

V. DISCUSSIONS AND CONCLUSIONS

In the field of agency, the complexity of current systems and

applications led to an increasing number of agents employed

in the multi agent system that must expose autonomous

and organizing capabilities also for substituting and making

decisions on the behalf of user.

One important topic in these kind of systems is how to

manage the agents by creating organizations in the same way

the human, and more generally, the biological systems do.

The design and the implementation of organization in MASs

is related to this topic. Our work concerns the creation of a

design process for developing MASs organized in hierarchical

structures, such as holons, that can be implemented with J-

Moise+. In this paper we present the first step of this ongoing

work: the UML-based notation to be used for representing

organizational elements in the design process work products.

We created a notation enabling us to model organization

through three different artefacts where all the elements of

Moise+ organizational model are represented. One of the most

important results is that we eliminated the difficulty related to

the use of the predicative form for representing goal, norms,

etc. Moreover we obtained the capability of converting the

work product, the diagram, in a xmi file and then through

an easy transformation in a xml file thus directly obtaining

Moise+ code or better, if necessary, any other kind of code.

ACKNOWLEDGMENT

This work has been partially supported by the EU project

FP7-Humanobs and the IMPULSO project funded by the

Italian Ministry for Economic Development.

Authors would like to thank Paolo Giorgini for his useful

comments and suggestions.

REFERENCES

[1] M. Wooldridge and N. Jennings, “Intelligent Agents: Theory and Prac-
tice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152,
1995.

[2] M. J. Wooldridge, Introduction to Multiagent Systems. John Wiley &
Sons, Inc. New York, NY, USA, 2001.

[3] V. Dignum and F. Dignum, “Modelling agent societies: co-ordination
frameworks and institutions,” Progress in Artificial Intelligence, pp. 7–
21, 2001.

[4] J. F. Hübner, J. S. Sichman, and O. Boissier, “Developing organised
multiagent systems using the MOISE+ model: programming issues at
the system and agent levels,” International Journal of Agent-Oriented

Software Engineering, vol. 1, no. 3, pp. 370–395, 2007.
[5] J. F. Hübner, “J-moise+ programming organizational agents with moise+

and jason (2007).”
[6] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge, Programming multi-

agent systems in AgentSpeak using Jason. Wiley-Interscience, 2007.
[7] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing multi-

agent systems: The Gaia methodology,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 12, no. 3, pp. 317–370,
Jul. 2003.

[8] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam,
“ASPECS: an agent-oriented software process for engineering complex
systems,” Autonomous Agents and Multi-Agent Systems, vol. 20, no. 2,
pp. 260–304, 2010.

[9] K. Fischer, M. Schillo, and J. Siekmann, “Holonic multiagent systems:
A foundation for the organisation of multiagent systems,” Holonic and

Multi-Agent Systems for Manufacturing, pp. 1083–1084, 2004.
[10] J. F. Hübner, J. S. Sichman, and O. Boissier, “Moise tutorial. (for

moise 0.7).” [Online]. Available: moise.sourceforge.net/doc/tutorial.pdf

[11] ——, “Moise+: towards a structural, functional, and deontic model
for mas organization,” in Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part 1.
ACM, 2002, p. 502.

[12] F. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent

systems with JADE. Wiley, 2007.
[13] A. Rao, “AgentSpeak (L): BDI agents speak out in a logical computable

language,” Agents Breaking Away, pp. 42–55, 1996.
[14] J. Odell, M. Nodine, and R. Levy, “A metamodel for agents, roles, and

groups,” Agent-Oriented Software Engineering V, pp. 78–92, 2005.
[15] H. Van Dyke Parunak and J. Odell, “Representing social structures in

uml,” Agent-Oriented Software Engineering II, pp. 1–16, 2002.
[16] L. Padgham, M. Winikoff, S. DeLoach, and M. Cossentino, “A unified

graphical notation for aose,” Agent-Oriented Software Engineering IX,
pp. 116–130, 2009.

[17] J. Pavòn, J. J. Gòmez-Sanz, and R. Fuentes, “The INGENIAS method-
ology and tools,” in Agent Oriented Methodologies. Idea Group
Publishing, 2005, ch. IX, pp. 236–276.

[18] INGENIAS, “Home page,”
http://grasia.fdi.ucm.es/ingenias/metamodel/.

[19] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software develop-

ment process. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1999.

[20] P. Giorgini, M. Kolp, J. Mylopoulos, and J. Castro, “Tropos: A
requirements-driven methodology for agent-oriented software,” in Agent

Oriented Methodologies, ch. II, pp. 20–45.
[21] M. Kolp, P. Giorgini, and J. Mylopoulos, “Organizational patterns for

early requirements analysis,” in Advanced Information Systems Engi-

neering. Springer, 2010, pp. 1030–1030.
[22] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos, “Information sys-

tems as social structures,” in Proceedings of the international conference

on Formal Ontology in Information Systems-Volume 2001. ACM, 2001,
pp. 10–21.

