
1

A Cellular Automata Model for Pedestrian
and Group Dynamics

Stefania Bandini∗†, Federico Rubagotti∗, Giuseppe Vizzari∗†, Kenichiro Shimura†‡
∗Complex Systems and Artificial Intelligence (CSAI) research center

Department of Computer Science, Systems and Communication (DISCo)
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Abstract—The simulation of pedestrian dynamics is a consolidated area
of application for cellular automata based models: successful case studies
can be found in the literature and off-the-shelf simulators are commonly
employed by end-users, decision makers and consultancy companies.
These models, however, generally consider individuals, their interactions
with the environment and among themselves, but they generally neglect
(or treat in a simplistic way) aspects like (i) the impact of cultural
heterogeneity among individuals and (ii) the effects of the presence
of groups and particular relationships among pedestrians. This work
describes an innovative cellular automata based model encapsulating in
the pedestrian’s behavioural model effects representing both proxemics
and a simplified account of influences related to the presence of groups
in the crowd. The model is tested in a simple scenario to evaluate the
implications of some modeling choices and the presence of groups in the
simulated scenario. Results are discussed and compared to experimental
observations and to data available in the literature.

I. INTRODUCTION

Crowds of pedestrians are complex entities: they are characterized
by a peculiar mix of competition for the space shared by pedestrians
and the collaboration due to the (not necessarily explicit but generally
shared) social norms, and the overall system behavour depends on
individual choices, which in turn depend on the past actions of
other individuals and on the current perceived state of the system.
Phenomena that can be observed in crowded spaces are the results
of self-organization and they can be safely defined as emergent
properties, and this is a further indicator of the intrinsic complexity
of a crowd.

Nevertheless, the relevance of human behaviour, and especially
of the movements of pedestrians, in built environment in normal
and extraordinary situations, and its implications for the activities of
architects, designers and urban planners are apparent (see, e.g., [1]
and [2]), especially considering dramatic episodes such as terrorist
attacks, riots and fires, but also due to the growing issues in facing
the organization and management of public events (ceremonies,
races, carnivals, concerts, parties/social gatherings, and so on) and
in designing naturally crowded places (e.g. stations, arenas, airports).
Computational models for the simulation of crowds are thus grow-
ingly investigated in the scientific context, and these efforts led to
the realization of commercial off-the-shelf simulators often adopted
by firms and decision makers1. Even if research on this topic is still
quite lively and far from a complete understanding of the complex

1see, e.g., Legion Ltd. (http://www.legion.com), Crowd Dynamics Ltd.
(http://www.crowddynamics.com/), Savannah Simulations AG (http://www.
savannah-simulations.ch).

phenomena related to crowds of pedestrians in the environment,
models and simulators have shown their usefulness in supporting
architectural designers and urban planners in their decisions by
creating the possibility to envision the behaviour/movement of crowds
of pedestrians in specific designs/environments, to elaborate what-
if scenarios and evaluate their decisions with reference to specific
metrics and criteria.

Cellular Automata [3] have been widely adopted as a conceptual
and computational instrument for the simulation of complex systems
(see, e.g., [4]); in this specific context several CA based models (see,
e.g., [5], [6]) have been adopted as an alternative to particle-based
approaches [7], and they also influenced new approaches based on
autonomous situated agents (see, e.g., [8], [9], [10]). The main aim
of this work is to present a CA based model for pedestrian and
crowd dynamics for a multidisciplinary investigation of the complex
dynamics that characterize aggregations of pedestrians and crowds.
This work is set in the context of the Crystals project2, a joint re-
search effort between the Complex Systems and Artificial Intelligence
research center of the University of Milano–Bicocca, the Centre of
Research Excellence in Hajj and Omrah and the Research Center
for Advanced Science and Technology of the University of Tokyo.
The main focus of the project is on the adoption of CA and agent
based approaches to pedestrian and crowd modeling to investigate
meaningful relationships between the contributions of anthropology,
cultural characteristics and existing results on the research on crowd
dynamics, and how the presence of heterogeneous groups influence
emergent dynamics in the context of the Hajj and Omrah. The last
point is in fact an open topic in the context of pedestrian modeling
and simulation approaches: the implications of particular relationships
among pedestrians in a crowd are generally not considered or treated
in a very simplistic way by current approaches. In the specific context
of the Hajj, the yearly pilgrimage to Mecca that involves over 2
millions of people coming from over 150 countries, the presence
of groups (possibly characterized by an internal structure) and the
cultural differences among pedestrians represent two fundamental
features of the reference scenario. Studying implications of these
basic features is the main aim of the Crystals project.

The paper breaks down as follows: the following section introduces
the CA based pedestrian and crowd model considering the possibility
of pedestrians to be organized in groups, while Sect. III summarizes
the results of the application of this model in a simple simulation
scenario. Conclusions and future developments will end the paper.

2http://www.csai.disco.unimib.it/CSAI/CRYSTALS/
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Fig. 1. The separation of the environment into three layers in a L-shaped
corridor configuration.

II. GA-PED MODEL

We now introduce some principles considered during the definition
of our model. We decided to simulate the interactions between
pedestrians in an environment that is discrete both in space and
in time. We introduced a two-dimensional cellular automata (CA)
structure with local interactions, a discrete-time dynamical system to
model the movements of pedestrians inside a structured environment.
We chose a discrete approach in order to achieve an efficient
implementation for fast computer simulation, while maintaining a
sufficient expressiveness in the definition of the rules for pedestrian
movement. Moreover, the model employs floor fields (see, e.g., [11])
to support pedestrian navigation in the environment. In particular,
each relevant final or intermediate target for a pedestrian is associated
to a floor field, a sort of gradient indicating the most direct way
towards the associated point of interest.

Our system is represented by the triple: Sys = 〈Env ,Ped ,Rules〉.
The first element to be introduced is the environment: it contains
different objects (e.g. walls, obstacles, etc.) and pedestrians. Without
the environment it is not possible to define and generate pedestrians.
Pedestrians have a position inside the environment, they can observe
their neighborhood looking for the best path to reach the targets
specified in a schedule. Every pedestrian is endowed of an internal
state, that is a memory used to save the schedule, feelings, past actions
and the characterization of the pedestrians.

Now we introduce our model in detail, starting from the represen-
tation of space and environment. Then we focus the attention on the
modeling of pedestrian, finishing with details on the update rules.

A. Space and Environment

The representation of the space in our model is mutuated from
the Cellular Automata theory. The space is splitted into squared
cells with fixed width, obtaining a two-dimensional grid. Namely,
in our model the space is discretized into small cells which may be
empty or occupied by exactly one pedestrian. At each discrete time
step it is possible to analise the state of the system by observing
the state of each cell (and, consequently, the position of each
pedestrian into the environment). In our model the environment is
defined as Env = 〈Space,Fields,Generators〉 where the Space
is a physical, bounded bi-dimensional area where pedestrians and
objects are located; the size of the space is defined as a pair of
values(xsize, ysize) and it is specified by the user. In our model
we consider only rectangular-shaped scenarios (but it is possible to
shape the scenario defining non-walkable areas). The space in our
model is modeled using a three-layer structure: Space = 〈l1 , l2 , l3 〉
where each layer represents details related to a particular aspect of the
environment. As represented in Figure 1, each layer is a rectangular
matrix sharing the same size of the other two. The first layer contains
all the details about each cell are saved in the first layer (l1). A cell
may be a generating spot (i.e. a cell that can generate new pedestrians

according to the simulation parameter), and can be walkable or not. A
cell is thus characterized by a cellID, an unique key for each cell, it
can be associated to a generator if the cell can generate pedestrians,
it can be walkable or not (e.g. the cell contains a wall). The second
layer, denoted as l2, contains information about the values of the floor
fields into each cell. Values are saved as pairs (floorID, value).
Data saved into the second layer concerns targets and the best path
to follow to reach them. The third layer l3 is made up of cells that
may be empty or occupied by one pedestrian. This layer stores the
position of each pedestrian. The aim of this partitioning is to branch
three different domains of information into three different views in
order to keep our model cleaner and easier to understand.

1) Generators and Targets: Information about generators and
targets are saved into the first and second layer. A target is a location
in the environment that the pedestrians may desire to reach, due to
its position or to the presence of a particular object. Examples of
targets in a train station are ticket machines, platforms, exits, lounges
and so on. A traveller may have a complex schedule composed of
different targets like: (a) I have to buy a ticket, then (b) I want to
drink a coffee and (c) reach platform number 10 to board the train
to Berlin. This plan can be translated in the following schedule: (i)
ticket machine, (ii) lounge, (iii) platform 10. From now on the words
schedule and itinerary are used interchangeably as they both define
the same concept. We will describe how pedestrians will be able to
move towards the target later on.

Generators are cells that, at any iteration, may generate new
pedestrians according to predetermined rules. Generating spots are
groups of generator cells located in the same area and driven by the
same set of rules of generation. In our model a generating spots is
defined as follows:

spot = 〈spotID ,maxPed , positions, groups, itineraries, frequency〉

where spotID is an identifier for the generator; maxPed is the
maximum amount of pedestrians that the spot can generate during
the entire simulation; positions indicate the cells belonging to that
generating spot (a spot may in fact contain different cells); groups
being the set of group types that can be generated, each associated
with a frequency of generation; itineraries that can be assigned to
each pedestrian, considering the fact that group members share the
same schedule but that different groups may have different schedules,
each associated with a frequency; frequency is a value between 0
and 100, specifying the frequency of pedestrian generation (0 means
never generate pedestrians, 100 means always generate pedestrians).

Information about generators are stored in the first layer, on the
contrary, targets are represented in the second layer, specified with
floor field values. Every target has a position and it is associated to
a floor field that guides pedestrians to it.

2) Floor Fields: As stated previously, the floor field can be thought
of as a grid of cells underlying the primary grid of the environment.
Each target has a floor field and the values are saved into the l2 of the
environment. A floor field contains information suggesting the shotest
path to reach the destination. Floor field values are distributed in every
cell of the environment. In our model each cell contains information
about every target defined in the model. Given the cell at position
(x, y), the corresponding floor field values are saved into l2. The
content of l2(cx,y) is a list of pairs with the following structure:
(floorID, value). Values of a floor field are integers between 0 and
256. Given a target, if a cell has a floor field value 0 for that particular
destination, means that no indications to reach the target is available.
On the contrary, if the value of the cell is 256 means that the target
has been accomplished (because the target is in that cell). If a cell
has value 0 for a particular destination, this means that no data is
available for reaching the target.
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We can distinguish between two classes of floor fields: static and
dynamic. The static floor field does not evolve with time and it is not
influenced by the presence of pedestrians. The dynamic floor field
is modified by the presence of pedestrians and it is updated using
two procedures called diffusion and decay. In our model we have
only static floor fields, specifying the shortest path to destinations
and targets. Interactions between pedestrians that in other models
are described by the use of dynamic floor fields, in our model are
modeled through a perception model based on the idea of observation
fan, which will be introduced in Section II-C. An example of floor
field is presented in Figure 1.b. A greyscale is used to visually show
its values: darker cells have higher floor field values, target is in red.
Cells near the target have higher values. Floor field values influence
the transition probabilities of a pedestrian, as a person usually will
try to follow the shortest path to the target.

B. Time and Update Type

Our model is a discrete-time dynamical system, and update rules
are applied to all pedestrians following an update method called
shuffled sequential update [12]. At each iteration, pedestrians are
updated following a random sequence. This choice was made in
order to implement our method of collision avoidance based on cell
reservation. In the shuffled sequential update, a pedestrian, when
choosing the destination cell, has to check if this cell that has been
reserved by another pedestrian within the same time step. If not, the
pedestrian will reserve that cell, moving at the end of the iteration.
If the cell is already reserved, an alternative destination cell can be
chosen.

Each iteration corresponds to an amount of time directly propor-
tional to the size of the cells of the environment and to the reaction
time: given a squared cell of 40×40cm2, the corresponding timescale
is approximately of 0.3sec of real time, obtained by transposing the
empirically observed value of average velocity of a pedestrian, that is
1.3m/s to the maximal walking speed of one cell per time step [13].

C. Pedestrians

We now focus the attention on the modeling of pedestrians: first we
introduce the representation of the pedestrians. They are modeled as
the state of cells in a bidimensional grid. Each pedestrian is provided
with some attributes describing details like group membership, ID,
schedules, gender, age. Then we introduce the perception model: each
pedestrian is endowed with a set of observation fans that determines
how they see and evaluate the environment. Attributes, internal
state and environment influence the behavior of our pedestrians:
movement decisions are modeled using a Finite State Automata and
a set of rules. In detail, a pedestrian can move in one of the cells
belonging to its Moore neighborhood, to any possible movement
is associated a revenue value, called likability, representing the
desirability of moving into that position. While in the previous section
we introduced the notion and structure of simulation turn, we will
now show how a single pedestrian act is performed. In the following
sections we introduce how pedestrians decide their movements, for
now we introduce the two main tasks they perform: they observe the
environment and the internal state to obtain the spatial awareness;
they evaluate the likability of the possible movements and they choose
the solution that maximizes the benefits.

1) Pedestrian Characterization: We decided to reduce the charac-
terization of our pedestrians to a small set of essential attributes and
in particular

pedestrian = 〈pedID , groupID , schedule〉

with pedID being an identifier for each pedestrian, groupID
(possibly null, in case of individual) the group the pedestrian belongs
to and schedule a list of goals to be accomplished by the pedestrian
(one of the above introduced itineraries).

2) Perception model: In our model every pedestrian has the
capability to observe the environment around him, looking for other
pedestrians, walls and objects. Perception capabilities are modeled
with the idea of observation fan. An observation fan can be thought
as the formalization of physical capabilities: it determines how far
a pedestrian can see and how much importance has to be given to
the presence of obstacles and other pedestrians. An observation fan
is similar to the idea of neighborhood of a cell in the CA theory as
it defines the shape of the observable area, and how to evaluate the
observed things according to their distance from the pedestrian. An
observation fan is defined as follows:

ζ = 〈type, xsize, ysize,weight , xoffset , yoffset〉

where:
• type identifies the direction of the fan: it can be 1 for diagonal

directions and 2 for straight directions (the fan has different
shapes and is usually asymmetric);

• sizes and offsets are defined as shown in figure 2. Sizes (xsize
and ysize) define the maximum distance to which the pedestrian
can see. The shape of the fan is influenced by both the direction
and the sizes. The offsets are used to define if the pedestrian
can see backward and the size of the lateral view (only type 2,
see Fig 2.c);

• weight is a matrix of values wx,y ∈ R+ defined in the interval
[0, 1]. These values determine the relationship between the thing
that has been observed and the distance (e.g. the distance of a
wall influences differently the movement of a pedestrian).

For each class of groups is possible to define multiple observation
fans; each fan can be applied when evaluating walls, pedestrians
belonging to the same group, to other groups or, lastly, to particular
groups. For instance, this feature is useful when modeling situations
like football matches: it is possible to define two classes of groups,
one made of supporters of the first team and the other of supporters
of the second team. Groups belonging to the first class will interact
differently if dealing with other groups belonging to the first class
or belonging to the second one.

3) Behavior and Transition Rules: In this section we introduce the
evaluation phases and the transition rules that model the pedestrian
behavior. First, we introduce our concept of pedestrians modeled as
Deterministic Finite Automata. Then we focus the attention on the
behavior of the pedestrians in our model. It is determined by different
aspects, like the minimization of the time necessary to reach the
destination, the need to keep a significative distance from strangers
while preserving the cohesion of the group and avoiding obstacles.
The decision of a movement is taken after an evaluation of the
environment and the internal state, choosing the best tradeoff of the
aspects previously introduced.

a) Pedestrian states and transitions: The behavior of a pedes-
trian is represented as a flow made of four stages: sleep, context
evaluation, movement evaluation, movement.

When a new iteration is started, each pedestrian is in a sleeping
state. This state is the only possible in this stage, and the pedestrian
does nothing but waits for a trigger signal from the system. The
system wakes up each pedestrian once a iteration and, then, the
pedestrian passes to a new state of context evaluation. In this stage,
the pedestrian tries to collect all the information necessary to obtain
spatial awareness. When the pedestrian has collected enough data
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Fig. 2. Example of the shape of an observation fan for a diagonal direction (in this case south-east) and for a straight direction (in this case south): (a
and c) in light cyan the cells that are observable by the pedestrian and are used for the evaluation, in green the observable backward area; (b and d) the
weight matrix applied for the evaluation, in this case objects or pedestrians near the pedestrian have more weight that farther ones (e.g. this fan is useful for
evaluating walls).

about the environment around him, it reaches a new state. In this
state behavioral rules are applied using the previously gathered data
and a movement decision is taken. When the new position is notified
to the system, the pedestrian returns to the initial state and waits for
the new iteration.

In our model pedestrian active behavior is limited to only two
phases: in the second stage pedestrians collect all the information nec-
essary to recognize the features of the environment around him and
recall some data from their internal state about last actions and desired
targets. A first set of rules determine the new state of the pedestrian.
The new state, belonging to the stage of movement evaluation, depicts
current circumstances the pedestrian is experiencing: e.g. the situation
may be normal, the pedestrian may be stuck in a jam, it may be
compressed in a dense crowd or lost in an unknown environment
(i.e. no valid floor field values lead to the desired destination). This
state of awareness is necessary to the choice of the movement as
different circumstances may lead to different choices: a pedestrian
stuck in a jam may try to go in the opposite direction searching for
an alternative path, a lost pedestrian may start a random walk or
looking for other floor fields.

We represent pedestrian behavior with a deterministic finite au-
tomaton (DFA)3. Our automaton M is a 4-tuple (Q,E, δ, q0), where:

• Q a list of states;
• E a list of events;
• δ : Q× E → Q a transition function;
• q0 ∈ Q an initial state.

The set of states Q is partitioned into four subsets:

1) Sleeping: only one state (sleeping);
2) ContextEvaluation: only one state, the pedestrian is collect-

ing data to achieve spatial awareness;
3) MovementEvaluation: the pedestrian is aware of its situa-

tion and it is evaluating all the possible alternatives;
4) Movement: nine states belong to this subset, one for each

direction;

Also the events belonging to E are partitioned into four subsets,
as every event can be associated to only one pair of states.

4) Pedestrian movements: We now focus the attention on the
modeling of how our pedestrians evaluate the possible movements
and how they choose the best movement.

a) Direction and speed of movement: At each time step,
pedestrians can change their position along nine directions (keeping

3We are not modeling all the features of a deterministic finite automaton:
we are not recognizing languages and we do not have accepting states.

the current position is considered a valid option), into the cells
belonging to their Moore neighborhood of range r = 1. Each possible
movement has a value called likability that determines how much the
move is good in the terms of the criteria previously introduced.

In order to keep our model simple and reduce complexity, we do
not consider multiple speed. At each iteration a pedestrian can move
only in the cells belonging to the Moore neighborhood, reaching a
speed value of 1 or can maintain the position (in this case speed is
0)4.

b) Functions and notation: In order to fully comprehend the
pedestrian behavior introduced in the following paragraphs, it is
necessary to premise the notational conventions and the functions
we have introduced in our modelization:

• cx,y defines the cell with (valid) coordinates (x, y);
• Floors is the set of the targets instantiated during the simu-

lation. Each target has a floor field and they share the same
floorID (i.e. with t ∈ Floors we define both the target and the
associated floor field);

• Groups the set containing the groupID of the groups instanti-
ated during the simulation dynamics;

• Classes is the set containing all the group classes declared
when defining the scenario;

• Directions is the set of the possible direc-
tions. Are nine, defined using cardinal directions:
{N,NE,E, SE, S, SW,W,NW,C}.

Given x ∈ [0, xsize− 1] and y ∈ [0, ysize− 1], we define some
functions useful to determine the characteristics and the status of the
cell cx,y:

• cell walkability: this function determines if the cell cx,y is
walkable or not (e.g. if there is a wall). If the cell is walkable the
function returns the value 1, otherwise it returns 0. It is defined
as follows:

l1(cx,y) = [0, xsize− 1]× [0, ysize− 1]→ {0, 1} :
0 if the cell is not walkable,1 otherwise; (1)

• floor field value: this function determines the value of the floor
field t in the cell cx,y . If the cell contains the target associated
to the target t, the function returns the value 256. If there is
no floor field available for the target t the function returns the
value 0. If a valid floor field is present the function return its

4Our pedestrians can move only to the cells with distance 1 according to
the Tchebychev distance.
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value, which is defined in the interval [1, 255]:

l2(cx,y , t) = [0, xsize−1]×[0, ysize−1]×t ∈ Floors→ [0, 256] :

0 if the floor field for t is not available, 256 if
the cell is the target, the floor field value for t otherwise; (2)

• presence of pedestrians belonging to a particular group this
function determines if in the cell cx,y contains a pedestrian
belonging to a particular group g specified as input. If a
pedestrian belonging to that group is contained in the cell, the
function returns 1, otherwise it returns 0:

l3(cx,y, g) = [0, xsize−1]×[0, ysize−1]×g ∈ groups→ [0, 1] :

0 if the cell does not contain a pedestrian

belonging to the group g, 1 otherwise. (3)

c) Observation fan: We define ζx,y,d as the set of cells that
are observable according to the characteristics of the observation fan
ζ, used by a pedestrian located in the cell at coordinates (x, y) and
looking in the direction d.

The overall likability of a possible solution can be thought as
the desirability of one of the neighboring cells. The more a cell is
desirable, the higher is the probability that a pedestrian will choose to
move into that position. In our model the likability is determined by
the evaluation of the environment and it is defined as a composition
of a sequence of characteristics:

likability = goal driven component + group cohesion -
proxemic repulsion - geometrical repulsion + stochastic contribution

Formally, given a pedestrian belonging to the group class g ∈
Groups, in the state q ∈ Q and reaching a goal t ∈ Floors, the
likability of a neighbouring cell cx,y is defined as li(cx,y) and is
obtained evaluating the maximum benefit the pedestrian can achieve
moving into this cell (following the direction d ∈ Directions) using
the observation fan ζ for the evaluation.
• goal driven component: it is the pedestrian wish to quickly

reach its destination and is represented with the floor field. Our
model follows the least effort theory: pedestrians will move on
the shortest path to the target which needs the least effort. This
component is defined as l2(cx,y, t): it is the value of the floor
field in the cell at coordinates (x, y) for the target t;

• group cohesion: it is the whish to keep the group cohese,
minimizing the distances between the members of the group.
It is defined as the pedestrians belonging to the same group
in the observation fan ζ, evaluated according to the associated
weight matrix:

ζ(group, d, (x, y), g) =

ci,j∈ζx,y,d∑
wζi,j · l3(ci,j , g) (4)

• geometrical repulsion: it represents the presence of walls and
obstacles. Usually a pedestrian wishes to avoid the contact with
these object and the movement is consequently influenced by
their position. This influence is defined as the presence of walls
(located in layer l1) inside the observation fan ζ, according to
the weight matrix for walls specified in the same observation
fan:

ζ(walls, d, (x, y)) =

ci,j∈ζx,y,d∑
wζi,j · l1(ci,j) (5)

• proxemic repulsion: it is the repulsion due to presence of
pedestrians, alone or belonging to other groups (e.g. strangers).
A pedestrian whishes to maintain a safe distance from these
pedestrians and this desire is defined as the sum of these people

Fig. 3. Representation of the corridor scenario: environment geometry,
generators and floor fields.

in the observation fan ζ, according to the weight matrix for the
group of these pedestrians:

ζ(strangers, d, (x, y), g) =

ci,j∈ζx,y,d∑
wζi,j · (1− l3(ci,j , g)); (6)

• stochasticity: similarly to some traffic simulation models (e.g.
[14]), in order to introduce more realism and to obtain a
non deterministic model, we define ε ∈ [0, 1] as a a random
value that is different for each likability values and introduces
stochasticity in the decision of the next movement.

Formally, these four influences compose the likability of a move-
ment as follows:

li(cx,y, d, g, t) = jwζ(walls, d, (x, y)) + jffield(t, (x, y))−
jgζ(group, d, (x, y), g)− jnζ(strangers, d, (x, y), g) + ε. (7)

Group cohesion and floor field are positive components because
they positively influence a decision as a pedestrian wishes to reach
the destination quickly, keeping the group cohese at the same time.
On the contrary, the presence of obstacles and other pedestrians
has a negative impact as a pedestrian usually tends to avoid this
contingency.

The formula 7 summarizes the evaluation of the aspects that
characterize the likeness of a solution. A pedestrian for each possible
movement opens an observation fan and examines the environment in
the corresponding directions, evaluating elements that may make that
movement opportune (e.g. the presence of other pedestrians belonging
to the same group or an high floor field value and data that may
discourage as the presence of walls or pedestrians belonging to other
groups).

III. SIMULATION SCENARIO

The simulated scenario consists in a rectangular corridor, 5m wide
and 10m long. We assume that the boundaries are open and that walls
are present in the north and south borders. The width of the cells is
40cm and the sizes of the corridor are represented with 14 cells
and 25 cells respectively. Pedestrians are generated at the east and
west borders and their goal is to reach the opposite exit. Floor fields,
environment geometry and generators are graphically represented in
Figure 3.

We investigated the capability of our model to fit the fundamental
diagram proposed in the literature for characterizing pedestrian simu-
lations [15] and other traffic related phenomena. This kind of diagram
shows how the average velocity of pedestrians varies according to the
density of the simulated environment. Since the flow of pedestrians
is directly proportional to their velocity, this diagram is sometimes
presented in an equivalent form that shows the variation of flow
according to the density. In general, we expect to have a decrease
in the velocity when density grows; the flow, instead, initially grows,
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Fig. 4. Fundamental diagram for the rectangular corridor with groups of
size 3. The density is specified as frequency of generation. The ratio between
members of groups and alone pedestrians is 40/60.

since it is also directly proportional to the density, until a certain
threshold value is reached, then it decreases.

As shown in Figure 4 our model correctly represents the nature
of pedestrian dynamics: if the frequency of generation is low, con-
sequently the flow is low. Increasing the frequency leads to a higher
throughput until a critical density has been reached. If the system
density is increased beyond that value, the flow begins to decrease
significantly as the friction between pedestrians make movements
more difficult. Observing the same figure we can state that, before
the critical density has been reached, the flow is fluid, similar to
the laminar flow that can be see in the models of traffic simulation.
After the value of critical density has been reached, the simulations
underline a greater variability in the fundamental diagram. In fact, at
higher density the possibility of events that may disrupt the flow are
more frequent causing a sensible variation of the throughput.

This result is a first element of validation of the model; in addition,
the model has been validated against data (related to a specific
experimental setting, i.e., a specific density value) acquired in an
experimental observation [16]. Additional experimental observations
would be useful to further evaluate the capability of the model to
generate quantitatively valid simulations.

We also performed additional qualitative observations of the dy-
namics generated by the model and we can state that it is capable to
generate the following phenomena:
• lane formation at high densities;
• the higher is the number and the size of the groups into the

environment, the lower will be the total flow, due to the higher
degree of friction between different groups.

A. Large group vs small group counterflow

We were interest in studying the dynamics of friction and avoid-
ance that are verified when two groups with different size, traveling
in opposite directions, are facing each others in a rectangular shaped
corridor. We simulated the 5m× 10m corridor with one large group
traveling from the left (west) to the right (east), opposed to one small
group traveling in the opposite direction. The aim of this particular set
up was to investigate the differences in the dispersion of the smaller
group with respect of the size of the large group and the overall
time necessary to walk through the corridor. From now on we call
the small group as the challenging group and the large group as the
opponent group.

We considered opponent group of five different sizes: 10, 20, 30,
40 and 50. Challenging groups were defined with only two sizes: 3
and 5. The results are consistent with the observable phenomena as

Fig. 5. Images representing the state of the simulation taken at different
time steps. The opponent group is composed of 50 pedestrians, while the
challenging group size is 5.

the model can simulate all the three possible cases that can be spotted
in the real world:
• the challenging group remains compact and moves around the

opponent group;
• one or more members of the challenging group moves around the

larger group in the other side with respect to the other members
of the group;

• one or more members of the challenging group remain stuck
in the middle of the opponent group and then the small group
temporarily breaks up.

It is also interesting to point out that in our model, if a split is
verified in the challenging group, when their members overcome the
opponent group, they aim to form again a compact configuration.
The actual size of the simulation scenario is however too small to
detect this reforming of the group5. In Figure 5 are presented some
images representing the state of the simulation at different time steps.
As stated before, it is possible to observe the range of different
circumstance that our model is able to simulate: for example, in 5, in
the simulation #1 the challenging groups can overcome the opponent
one simply by moving around it, the same situation is represented
in simulation #2 and #4 but the challenging group experiences more
friction generated by the opponents. In the same figure, the simulation
#3 and #5 show a challenging group that splits in two and their
members moving around the opponent group on both the two sides.

Finally, we investigated the relationships between the time neces-
sary to the members of the challenging group to reach the opposite
end of the corridor in relation with the size of the opponent group.
As expected, and in tune with the previous observations, the larger
the size of the opponent group, the higher time necessary to the
members of the challenging group to reach their destination is. The
difference of size in the challenging group only slightly influences
the performances: it is easier to remain stuck in the opponent group
but the difference between three and five pedestrians is insufficient
to obtain significant differences.

IV. CONCLUSIONS AND FUTURE DEVELOPMENTS

The paper presented a CA based pedestrian model considering
groups as a fundamental element influencing the overall system

5We carried out additional simulations in larger environments and we
qualitatively observed the group re-union.
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dynamics. An original model considering a simple notion of group
(i.e. a set of pedestrians sharing the destination of their movement
and the tendency to stay close to each other) has been presented and
applied to a simple scenario, gathering results that are in tune with the
existing literature on this topic. Validation against real data is being
conducted and preliminary results show a promising correspondence
between simulated and observed data. Future works are aimed at a
concrete application of the model in the context of the Crystals project
and further extensions of the notion of group and related dynamics.
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