
Using ATL to support Model-Driven Development of

RubyTL Model Transformations

Álvaro Jiménez, David Granada, Verónica Bollati, Juan M. Vara

Kybele Research Group,

Department of Computing Languages and Systems, Rey Juan Carlos University,

C/ Tulipán s/n, 28933, Móstoles, Madrid (Spain).

{alvaro.jimenez, david.granada, veronica.bollati, juanmanuel.vara}@urjc.es

Abstract. Model transformations are the main artefact in any Model-Driven

Engineering proposal. However, being software artefacts more effort should be

dedicated to apply model-driven principles in the development of model

transformations. In this context, this work presents some tooling to ease the

model-driven development of RubyTL model transformations. In particular, we

present a metamodel for RubyTL, a model transformation to move from high-

level to RubyTL transformation models and finally a TCS injector/extractor to

move from RubyTL models to RubyTL source-code and back.

Keywords: Atlas Transformation Language (ATL), Model-Driven Engineering

(MDE), Model Transformations, Transformation Models, Textual Concrete

Syntax (TCS), RubyTL.

1 Introduction

With the advent of Model-Driven Engineering (MDE) [3] the role of models has

changed drastically since they became the main artefact along the development

process. In such context, model transformations are typically the link between the

different steps of the process. In the context of Model-Driven Software Development

(MDSD) [16] such transformations aim at lowering the abstraction level of the target

models until they can be (almost) serialized into working code. In other fields, such as

model compare, transformations are used to generate difference models [13]. Despite

the processing task for which transformations are developed, there is no doubt of their

key role in any MDE proposal.

As a response, a number of languages and tools to develop model transformations

have arisen during the last years (see [7] or [18] for detailed reviews). They differ in

many aspects [7], such as the preferred approach (declarative, imperative, graph-

based, etc.), tooling support (complete IDEs, command-line tools, etc.), underlying

metamodelling framework (EMF, MDR, built-in, etc.) and so on. This diversity

brings additional complexity to the development of model transformations.

In order to: a) address the inherent complexity of model transformations

development and b) alleviate the problem of the diversity of available languages for

model transformation, we advocate in favour of applying MDE principles to the

development of model transformations. In particular, we adopt the idea collected in

[4]. Handling model transformations as transformation models we can process them

as any other model, i.e. we can generate them, transform them, merge them, simulate

their execution or perform any other model processing task. Unfortunately, there are

not many languages that have adopted such approach, apart from ATL [9].

Besides, it might bring interoperability to the scope of existing model

transformation languages: if we can inject a model transformation coded with the FOO

language into a model, then we can map such model into another one conforming to

the metamodel of the BAR language. Next, we can extract such model into the

corresponding BAR working-code.

Moreover, if we are able to define a high-level metamodel for a set of model

transformation languages, we should be able to use it as a pivot metamodel to bridge

such languages.

In this line, the main contributions of this work are: a) the specification of an EMF

metamodel for RubyTL [14], a hybrid model transformation language; b) the

development of an ATL transformation to map high level specifications of model

transformations into RubyTL models and c) the development of an injector/extractor

for RubyTL using TCS [8]

The rest of this paper is structured as follows. Section 2 presents the proposed

development process which includes an ATL transformation defined to obtain

RubyTL models from high abstraction level transformation models. In order to

achieve this goal, also, we present a metamodel according to RubyTL language.

Finally, we describe the mechanism to translate transformation models into code, and

code into transformation models. Section 3 uses a case study to illustrate the tool

developed to support the proposal. Finally, in Section 4, we conclude by summarizing

the contributions and outlining future works.

2 Model-driven development of RubyTL transformations

This work has been addressed in the context of MeTaGeM, a methodological and

technical framework for model-driven development of model transformations [5]. In

particular, the tasks addressed here constitute part of the proof of concept provided for

MeTaGeM. This way, Fig. 1 provides an overview of the process proposed for the

development of RubyTL transformations.

At the PSM-level (Platform Specific Model) we define a high-level transformation

model that conforms to a high-level transformation metamodel (see [5] for a detailed

insight). We refer to this metamodel as platform-specific metamodel since it is

intended to abstract the main concepts handled by model transformation languages

adopting a hybrid approach, such as ATL or RubyTL. New metamodels can be

defined for graph-based, pure imperative or pure declarative model transformation

languages.

Next, an ATL model transformation consumes the previous model and generates a

PDM (Platform Dependent Model) transformation model that conforms to the

metamodel of the targeted transformation language, in this case, the RubyTL

36 MtATL 2011

metamodel. Finally, the low-level transformation model is serialized into RubyTL

source code by means of the TCS injector/extractor.
P

SM High-Level Transformation
Model

P
D

M RubyTL Transformation
Model

C
o

d
e

RubyTL
Transformation Code

RubyTL Transformation
Meta-model

High-Level Transformation
Meta-Model

c2

c2

c2: Conforms to

Fig. 1 – Model-driven development of RubyTL transformations

2.1 A metamodel for RubyTL

Although some partial specifications can be found in existing literature [14, 15], so far

there is no complete metamodel for RubyTL. Therefore, in order to be able to

generate and process RubyTL transformation models we have had to first specify and

implement such metamodel. To do so, we have analysed previous works around

RubyTL and we have count with the help of their developers. Fig. 2 shows the new

metamodel, for more details see [5].

CEUR Workshop Proceedings 37

Fig. 2 – RubyTL metamodel specification

2.2 From high-level transformation models to RubyTL transformation

models

This section focuses on the development of the model transformation that allows

synthesizing high-level transformation models into RubyTL transformation models.

With regard to the development of model transformations, in [12] it is stated that

“the mapping description may be in natural language, an algorithm in an action

language, or a model in a mapping language”. Accordingly, in previous works [17]

we sketched a generic process to address the development of model-to-model

transformations:

o First, the mappings between models are defined using natural language.

o Next, those mappings are structured by collecting them in a set of rules,

expressed again in natural language.

o Then, these mapping rules are formalized using graph grammars.

o Finally, the resulting graph transformation rules are implemented using one of

the existing model transformation approaches. In particular we decided for

using ATL from the very beginning. Nowadays such decision has proven to be

right since ATL is considered the de-facto standard for model transformations.

Indeed, we have compared it with other engines such as QVTo [6] and we

have concluded that it remains the most convenient in terms of available

documentation, tooling support and cases of success.

According to this process, Table 1 collects the mapping rules to move from high-

level transformation models to RubyTL transformation models. It is worth mentioning

that these rules are the result of a continuous refining process that might continue

during the next months.

38 MtATL 2011

Table 1 – Mapping rules: from High-Level to RubyTL transformation models

According to the above-described process, next step was the formalization of the

mapping rules using graph grammars [1]. Again, the complete set of graph

transformation rules can be found in [5].

To provide with an example, Fig. 3 shows the graph transformation rule to map

Rule elements from the PSM to TopRule elements in the PDM: whenever a Rule

element, whose IsMain property is set to true, is found on the PSM (), a TopRule

element is added on the PDM (’). The properties From and To of the new TopRule

element are initialized with references to the FromElement and ToElement elements

High-Level Transformation Meta-model RubyTL Meta-model

Module Transformation

InMetaModel MetaModel (Input)

OutMetaModel MetaModel (Output)

Rule

isMain = true and in = 1

Rule

TopRule

isMain = true and in > 1 TopRule (use of allObjects

method in Rule.filter)

isMain = false and

typeAttribute <>

#unique and in = 1

CopyRule

isMain = false and

typeAttribute <>

#unique and in > 1

CopyRule (use of allObjects

method in Rule.filter)

isMain = false and

typeAttribute =

#unique and in = 1

NormalRule

isMain = false and

typeAttribute =

#unique and in > 1

NormalRule (use of

allObjects method in

Rule.filter)

in = 0 Static Method of Ruby

SourceElementRule FromElement

TargetElementRule ToElement

ElementIncluded

- LeftPattern

- RightPattern

Binding

- ExpGet (Left side)

- ExpGet (Right side)

Operation

- Operation.body +

Return.datatype

Decorator

- Decorator.body +

dataType.toString()

CEUR Workshop Proceedings 39

of the PDM. These are created from the source elements SourceElementRule and

TargetElementRule respectively (’ and ’).

Fig. 3 – Graph Transformation Approach: Rule Rule2MatchedRule

2.3 Implementation

Based on the rules shown in Table 1 and the formalization of them using graph

grammar, we have implemented it using ATL language [9]. As an example, Fig. 4

shows the ATL rule that implements the transformation between the Module

elements of the high-level transformation metamodel and Transformation elements

of the RubyTL metamodel. In Transformation element are defined the name

property, the references: sourceMetamodels and targetMetamodels, which

indicate, respectively, the source and the target metamodels involved in the model

transformation; rules, which represent the transformation rules of the module; and

decorators, which represent the functions that can be defined.

rule Module {

from

mm_hybrid : MM_Hybrid!Module

to

rubytl : RubyTL!Transformation (

name <- mm_hybrid.name_module,

sourceMetamodels <- mm_hybrid.inMM,

targetMetamodels <- mm_hybrid.outMM,

rules <- mm_hybrid."rule",

decorators <- mm_hybrid.operations)

}

Fig. 4 - ATL transformation rule: Module

The Rule meta-class in RubyTL is defined as abstract, and it is specialized by:

TopRule, NormalRule and CopyRule. Therefore, it is necessary to define three

different kinds of rules, establishing a guard condition in each one. This guard

condition evaluates the isMain property and the return value of the helper

getSizeIP(), which verifies the number of SourceElementRule elements

dependent of the element Rule.

For example, Fig. 5 shows the one of these ATL rules, the rule which map the

Rule element at PSM model to the TopRule element at PDM model. The

40 MtATL 2011

createRule2TopRuleMulti rule states that for every Rule found in the source

model, a TopRule, a Filter and Mapping elements are created in the target model;

when the isMain property, of the Rule, is True and the return value of the helper

getSizeIP() is greater than one, that is the Rule element has more than one

SourceElementRule. A set of direct bindings initialize some attributes of the Rule,

such as the name, which indicate the name of the rule; from, which indicate the

source element; to, which indicate the target element; comment, where it is possible

to define a comment.

Moreover, it is necessary to define the following elements: mapping, which

combines the properties of the target element; and filter, which performs a

verification of the existence of all elements of type SourceElementRule. In order to

obtain this verification, we define a helper getFilterMultiIN().

rule createRule2TopRuleMulti{

from

mm_hybrid_rule : MM_Hybrid!Rule (mm_hybrid_rule.getSizeIP()>1

and mm_hybrid_rule.isMain=true)

to

rubytl : RubyTL!TopRule (

name <- mm_hybrid_rule.name_rule,

"from" <- mm_hybrid_rule."in".asSequence().first(),

"to" <- mm_hybrid_rule.out.asSequence(),

comment <- mm_hybrid_rule.getComment(),

filter <- afilter,

mapping <- amapping),

afilter : RubyTL!Filter(

expression <- mm_hybrid_rule.getFilterMultiIN()),

amapping : RubyTL!Mapping (

bindings <- mm_hybrid_rule.out.asSequence()->collect(i | i.included))

}

Fig. 5 – ATL transformation rule: createRule2TopRuleMulti

Fig. 6 shows an ATL transformation rule that generates Binding elements (PDM),

from ElementIncluded elements (PSM). This rule establishes the relationship

between a source element (right-hand side) and a target element (left-hand side) at

PDM level.

As Fig. 6 shown the source element is generated by the helper defineBinding()

(Fig. 7) that defines the source element by means a set of conditions and calls to

others helpers. These conditions verify if in the source defined at PSM level, there are

calls to other rules, operations, references or is defined a constant value.

CEUR Workshop Proceedings 41

rule Bindings {

from

elemInc : MM_Hybrid!ElementIncluded

to

rubytl : RubyTL!Binding (

--Right side of formula, that has the value – issues

source <- elemInc.defineBinding(),

--Left side of formula, that will receive the value

target <- atargetvalue),

atargetvalue : RubyTL!ExpGet(

--property of target

property <-

elemInc.left.targetElement.asSequence().first().name_element,

source <- asourcename),

asourcename : RubyTL!ExpVariable(

variable <- avariabletrg),

avariabletrg : RubyTL!ToElement (

name <-

elemInc.refImmediateComposite().name_element.toLower()+'_out')

}
Fig. 6 – ATL Transformation rule: Bindings

The target element of the Bindings rule is defined by setting property and

value attributes, which are defined with the generation of the ExpGet, ToElement

and ExpVariable elements, as shown in Fig. 6.

-- Helper -> To call the correct lazy rule to define the Binding

helper context MM_Hybrid!ElementIncluded def:defineBinding():ATL!OclExpression=

if (self.right."rule".asSequence().first().oclIsUndefined()

and self.right.operation.asSequence().first().oclIsUndefined()

and self.right.sourceElement.asSequence().first().oclIsUndefined()

and self.right.reference.oclIsUndefined()) then

thisModule.getConcreteBinding(self)

else

if (not self.right.reference.oclIsUndefined()) then

if self.right.reference.oclIsTypeOf(MM_Hybrid!SourceElementRule)

then

thisModule.getComplexBinding(self)

else

thisModule.getSimpleBinding(self)

endif

else

thisModule.getComplexBinding(self)

endif

endif;
Fig. 7 – ATL Transformation helper: defineBinding

2.4 Code Generation

The next step was to serialize the RubyTL transformation models generated into

working-code. To that end, we have opted for the Textual concrete Syntax (TCS) [8].

TCS provides with a DSL for the specification of the correspondence between the

metamodel and its textual representation. From that, an ANTLR grammar together

with a parser for this grammar is generated. Such parser (also known as injector) takes

as input a textual program of the DSL and generates a model conforming to the DSL

42 MtATL 2011

metamodel. In addition, TCS also generates an extractor that provides with model-to-

text capabilities.

In order to illustrate this task, Fig. 8 shows a simple example. In particular, the

Transformation template specification. This template defines the concrete syntax

for Transformation, sourceMetamodel and targetMetamodel model

elements from RubyTL models (Fig. 8 (a)). The serialization of these elements

serve to compose the header of a RubyTL transformation, that include the name of the

transformation and the name of the source and target metamodels (Fig. 8 (b)).

Also, if the transformation contains decorators or rules, this template invokes

the execution of the respective templates.

template Transformation main context

: "transformation" name{as = stringSymbol}<newline>

"input" sourceMetamodels <newline>

"output" targetMetamodels

(isDefined(decorators)?<newline><newline>)

decorators{separator=<newline><newline>}

(isDefined(rules)?<newline><newline>)

rules {separator=<newline><newline>};

(a)

(b)

(c)

Fig. 8 – Generating code and models with TCS

2.5 Current Limitations

The code generated by the current version of the prototype developed is not fully

executable in all cases. There are some scenarios in which the developer needs to

manually refine the generated code, adding or modifying some code excerpts in order

for the transformation to execute correctly.

In this sense, one of the main issues we have found is that RubyTL does not allow

to define multiple input patterns in a rule. For instance, Fig. 9(a) shows an example of

a desirable rule containing a multiple input pattern in RubyTL. Since the language

does not support this construction, to simulate it we should proceed as follows (see

Fig. 9(b)):

 First, creating a guard which performs a cartesian product between all the source

elements.

 Next, adding the many function to the target pattern.

 Finally, merging each pair of objects that resulted from the cartesian product.

CEUR Workshop Proceedings 43

(a)

(b)# Solution. Using Cartesian product

rule 'RuleTest' do

 from InMM::Src1

 to many(OutMM::Trg1)

 mapping do | src1, trg_set |

 trg_set.values = InMM::Src2.all_objects.map

 do |src2|

 trg1 = OutMM::Trg1.new

 trg1.name = src1.name_element

 trg1.type = src2.type_element

 trg1 #trg_set.values = trg1

 end

 end

end

Desirable implementation - Not Allowed

rule 'RuleTest' do

 from InMM::Src1, InMM::Src2

 to OutMM::Trg1

 mapping do | src1, src2, trg1 |

 trg1.name = src1.name_element

 trg1.type = src2.type_element

 end

end

Fig. 9 – Multiple input patterns limitation

Besides, the rule shown in Fig. 9(b) uses some constructions, such as many or

new, provided by the host language, i.e. Ruby. Such constructions have not been

collected in the presented metamodel for RubyTL. Hence, to address this issue we

should extend the metamodel to support the modelling of some Ruby elements.

Another issue is related with the TCS injector/extractor. The concrete syntax of

RubyTL hampers the binding of variables and elements from the transformation at the

time of injecting it to a model. For instance, according to the RubyTL metamodel

shown in Fig. 2, the src1 variable should produce a variable object, whose

classname property should be Src1 and its metamodel reference should point to the

InMM object. However, due to the concrete syntax of RubyTL, we have not been able

of establishing such binding when generating the RubyTL model. Probably we might

address this issue modifying the RubyTL metamodel, but we are still considering

some other solutions.

Finally, the current prototype was developed atop of older Eclipse and ATL

versions because the current versions were not stable when it was developed. Hence,

update tasks will be also addressed in the near future.

44 MtATL 2011

3 Case study

This section presents a simple case study in order to validate our proposal. To that

end, we use the traditional scenario of mapping object models to relational models

[13]. Fig. 10 provides an overview of the source and target metamodels.

Fig. 10 – Class and Table metamodels

In order to develop a transformation between these metamodels using our proposal,

the user must first create a high-level transformation model. Next, the ATL

transformation presented in the previous section maps such model into a RubyTL

transformation model. As an example, Fig. 11 focuses on the class2table rule.

This rule enables to transform a class and its attributes into a table and its respective

columns.

Fig. 11 – From high-level to RubyTL transformation model - class2table

Finally, such model is serialized into the RubyTL source code. To illustrate this

step, Fig. 12 focuses in the mapping of TopRule objects into source code.

CEUR Workshop Proceedings 45

Fig. 12 – From RubyTL model to RubyTL code - class2table

The complete case study is available to view and download at the MeTAGeM Web

site1.

Finally, we would like to note that, though this work have used a simple case study

to illustrate the prototype developed, we have used it to address more complex

scenarios which are also available at the MeTAGeM Web site. For example, in [5] we

have developed the UML2ORDB4ORA transformation that allows generating ORDB

models from conceptual data models expressed by means of UML class diagrams

[19].

4 Conclusion and further work

Model transformations play a cornerstone role in any MDE proposal. However,

despite the impact of MDE and the relevance of model transformations, there has not

been too many works oriented to apply MDE principles to the development of model

transformations so far. Indeed, their inherent complexity and the existence of a wide

set of model transformation languages make the development of transformations an

ideal scenario to apply MDE techniques. This way, we should be able to: a) bring

simplicity to the development process b) shorten the distance between different model

transformation languages. In the end, a transformation is another software product and

thus, subject to the application of MDE techniques to its development.

In order to put this idea into practice, in this work we have introduced the

specification of a metamodel for RubyTL, a model transformation language that

shares many similarities with ATL. Besides, we have developed a model

transformation to map high-level transformation models into RubyTL transformation

models. Likewise, we have developed a TCS injector/extractor to move forward and

backward from the RubyTL model to RubyTL source-code. Finally, we have shown

1 http://metagem.wordpress.com/

46 MtATL 2011

http://metagem.wordpress.com/

how this tooling is used in a classical case study (providing with pointers to more

elaborated ones that can be downloaded from the Web).

This work provides with a number of directions for future work. The most

immediate is to apply the same proposal to support other model transformation

languages, such as EpsilonTL [10]. Besides, as long as there are available metamodels

for other transformation languages we should be able to develop mappings between

them. This way, we should be able to migrate any transformation (semi)-

automatically. Besides, as long as we specify high-level transformation metamodels,

they could be used as pivot metamodels to move between different model

transformation engines. For instance, in this work we use a metamodel for hybrid

languages that collects the main abstractions shared by the most adopted hybrid

model transformation languages. The same approach can be applied to bridge graph-

based or imperative languages. We could even bridge those high-level metamodels to

support interoperability not only between languages following the same paradigm, but

also between those following different paradigms.

More concrete future works are planned regarding the prototype presented in this

work. In particular, to update the prototype to current versions of Eclipse and ATL; to

improve the first draft of the RubyTL metamodel and finally, testing other existing

tools for injection and extraction, such as Gra2MoL and Acceleo2.

Acknowledgments. This work is partially funded by the MODEL CAOS project,

financed by the Spanish Ministry of Science and Technology (Ref. TIN2008-03582),

Agreement Technologies (CONSOLIDER CSD2007-0022) and Technical Support Staff

Subprogram (MICCINN-PTA-2009), which is partially financed by the Spanish

Ministry of Science and Innovation.

References

1. Baresi, L. and Heckel, R. 2002. Tutorial Introduction to Graph Transformation: A Software

Engineering Perspective. In Proceedings of the First international Conference on Graph

Transformation). LNCS 2505. Springer-Verlag, London, pp. 402-429, 2002.

2. Bézivin, J., Rumpe, B., Schürr, A., & Tratt, L. (2005). Mandatory Example Specification.

CFP of the Model Transformations in Practice Workshop at MoDELS 2005, Montego Bay,

Jamaica.

3. Bézivin, J.: In search of a Basic Principle for Model Driven Engineering.

Novatica/Upgrade, V (2), 21-24 (2004).

4. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model

Transformations? Transformation Models!. 9th International Conference on Model Driven

Engineering Languages and Systems, MoDELS 2006, (2006).

5. Bollati, V.: MeTAGeM: Entorno de Desarrollo de Transformaciones de Modelos Dirigido

por Modelos. Ph. D. Thesis. Rey Juan Carlos University (2011).

6. Bollati, V. A., Sánchez, V., Vela, B., Marcos, E.: Análisis de QVT Operational Mappings:

un caso de estudio. VI Taller sobre Desarrollo de Software Dirigido por Modelos, MDA y

Aplicaciones, DSDM (2009).

2 www.acceleo.org/

CEUR Workshop Proceedings 47

http://www.acceleo.org/

7. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. Proceedings

of OOPSLA’03, workshop on Generative Techniques in the Context of MDA (2003).

8. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete

syntaxes in model engineering. Generative Programming and Component Engineering, 5th

International Conference, GPCE (2006).

9. Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A model transformation

tool. Science of Computer Programming, 72(1-2), 31-39.

10. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation Language. Proceedings of

1st International Conference on Model Transformation, Zurich, Switzerland (2008).

11. Mens, T. and Van Gorp, P. 2006. A Taxonomy of Model Transformation. Electron. Notes

Theor. Comput. Sci. 152 (March 2006), 125-142.

12. OMG. MDA Guide Version 1.0. Document number omg/2003-05-01. Ed.: Miller, J. and

Mukerji, J. Retrieved from: http://www.omg.com/mda, 2003.

13. Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D., Garcés, K., Paige, R., and

Polack, F. A Comparison of Model Migration Tools. In Proceedings of the 13th

International Conference on Model Driven Engineering Languages and Systems: Part I

(MODELS'10), Springer-Verlag, Berlin, Heidelberg, 61-75.

14. Sánchez, J., García, J., Menarguez, M.: RubyTL: A Practical, Extensible Transformation

Language. European Conference on Model Driven Architecture - Foundations and

Applications, ECMDA-FA (2006).

15. Sánchez, J., García, J., Sánchez, E. V., Estévez, A.: RubyTL a ATC: un caso real de

transformación de transformaciones. IV Taller sobre Desarrollo de Software Dirigido por

Modelos, DSDM (2007).

16. Stahl, T., Volter, M., & Czarnecki, K. (2006). Model-Driven Software Development:

Technology, Engineering, Management: John Wiley & Sons.

17. Vara, J. M., Vela, B., Cavero, J. M., & Marcos, E. (2007). Model Transformation for

Object-Relational Database development. SAC '07: Proceedings of the 2007 ACM

symposium on Applied computing, 1012-1019.

18. Vara, J. M.: M2DAT: A Technical Solution for Model-Driven Development of Web

Information Systems. Ph. D. Thesis. Rey Juan Carlos University (2009).

http://hdl.handle.net/10115/5145.

19. Vara, J. M., Vela, B., Bollati, V., Marcos, E.: Supporting Model-Driven Development of

Object-Relational Database Schemas: A Case Study. Proceedings of International

Conference on Model Transformation, ICMT (2009).

48 MtATL 2011

http://www.omg.com/mda

	Introduction
	Model-driven development of RubyTL transformations
	A metamodel for RubyTL
	From high-level transformation models to RubyTL transformation models
	Implementation
	Code Generation
	Current Limitations

	Case study
	Conclusion and further work
	References

