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Abstract. Adoption of the Model-Driven Architecture approach is increasing 

each day. As any other software development project, a MDA-based project is 

constantly evolving given that software requirements change along their 

lifecycle. Thus, changes in MDA transformations are also frequent. These 

changes are hard and error-prone tasks when manually accomplished. We 

propose a static analyzer for inspecting the source code of ATL 

transformations. It provides an API comprising methods to extract and handle 

diverse elements from ATL transformations. Therefore, the proposed static 

analyzer can be useful during several development tasks of MDA-based 

projects, such as maintenance and debugging, since it enables developers to 

save effort and development time by automatically identifying dependences and 

relations from transformation elements.  
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1   Introduction and Motivation 

Within software engineering field new trends related to software development process 

are emerging and showing their benefits, such as greater automation and higher 

productivity. The Object Management Group (OMG) [16] has proposed an approach 

that works in this direction: the Model-Driven Architecture (MDA) [12]. The main 

goal of this approach is to shift the focus from code to models in the software 

development process. MDA allows the automatic generation of output models from 

input models by means of transformation definitions, which are transformation rules 

describing how input models can be transformed into output models. These 

transformation definitions are expressed through a transformation language, such as 

ATLAS Transformation Language (ATL) [3], and they are automatically performed 

by transformation engines. 

Software development projects are constantly evolving given that software 

requirements change along the whole project lifecycle. Similarly, MDA-based 

projects evolve along their lifecycle and require changes in their transformations. 

However, to perform changes in large transformations is a hard task given that 

developers have to manually look for dependencies and relations of the 

transformation element being changed, which is a waste of effort and development 

time. For instance, to exclude a given rule named R1 it is necessary to know if it is 



invoked by another rule along the whole transformation chain. Indeed, manually 

performing this task is error-prone because it depends on the developers skills.  

An approach that can be adopted to accomplish the problems previously cited is 

the static analysis. It examines either the source code or the bytecode of a program 

without executing it [15]. Then, all information about any transformation can be 

captured and handled as necessary, mainly to identify elements that can be impacted 

with any change in a transformation. The static analysis can be adopted for different 

purposes within software engineering, such as for locating any particular code path 

that might lead to potential runtime errors or for analyzing the change impact of 

software. Automated tools can assist developers in carrying out static analysis. Within 

software engineering there are a number of static analysis tools (static analyzers) for 

inspecting diverse programming languages, such as FindBugs [9] for Java code and 

MOPS (MOdelchecking Programs for Security properties) [14] for C code.  

On the other hand, in the MDA context there are no static analysis tools that allow 

the inspection of ATL transformations. Just one work [19] proposes a static analysis 

approach in this context. However, it is focused on detection of common errors in 

model transformations specified just in VIATRA2 VTCL (Viatra Textual Command 

Language) [4] by inspecting their source codes. VIATRA2 is a framework for model 

to model (M2M) transformations that uses a high level language (VTCL) combining 

elements of model transformations and abstract state machines. However, [19] neither 

handles M2M transformations specified in ATL language nor provides an API with 

methods for helping developers to manipulate transformation elements in a 

customized way, mainly for maintenance tasks. 

In this work, we propose a static analyzer for M2M transformations specified in 

ATL. It provides an API containing a number of methods that can be used to 

manipulate elements enclosed by an ATL transformation, such as rules, helpers, 

models and metamodels. The static analyzer is very useful to help developers to 

accomplish several development tasks in transformations, such as maintenance and 

debugging, given that: (i) developers will save effort and development time by 

automatically finding out the dependencies and relations of the element being 

changed in a transformation; (ii) it is not error-prone; (iii) it can analyze even very 

long transformations without additional effort; and (iv) its API is very easy to 

understand. 

This paper is organized as follows. In Section 2, we introduce some concepts about 

MDA and Static Analysis. In Section 3, we explain details about our static analyzer 

implementation and give an overview about our approach. In Section 4, we present 

two examples illustrating how the proposed static analyzer can be applied to obtain 

information about an ATL transformation. In Section 5, we give an overview 

concerning related works on static analyzers within software engineering field and 

within MDA context. Finally, Section 6 summarizes our conclusions and gives some 

pointers to future work. 
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2   Background 

2.1   MDA and ATL Transformations  

MDA is an approach proposed by the OMG whose main objective is to provide an 

entire infrastructure for the software development in which the specification of a 

system is separated from its implementation details. The key of MDA is the 

importance attributed to the models during the software development process [12]. In 

this approach, the effort and time spent during the tests and implementation tasks of 

the software development lifecycle are shifted to modeling, metamodeling and 

transformations tasks. 

Metamodels are pivotal elements in the MDA framework. Among other roles, they 

are used to define languages abstract syntax, such as process and modeling languages. 

For instance, UML class diagrams allow modelers to design classes, attributes, 

associations and other elements because they are defined by the UML metamodel. 

The automatic generation of output models from input models happens by means 

of a transformation definition: a set of transformation rules that describe how input 

models can be transformed into output models. Transformation definitions are 

expressed through a transformation language, such as Query/View/Transformation 

(QVT) [17] and ATL. Finally, a tool called transformation engine is used to execute 

the transformation definitions. 

Nowadays, ATL is a very popular transformation language employed to specify 

M2M transformations. By using this language, we can define three kinds of units [3]:  

(i) An ATL library. It enables developers to specify helpers and attributes that can be 

imported from different kinds of ATL units, including libraries themselves. Helpers 

and attributes are, respectively, methods and constants defined within any ATL unit;  

(ii) An ATL query. It enables developers to specify a query on a number of source 

models. It can be composed by a single query element, helpers and attributes;  

(iii) An ATL transformation module. It enables developers to specify the way to 

produce a set of target models from a set of source models. It can be composed by 

helpers, attributes and rules.  

ATL supports three kinds of rules: matched rules, called rules and lazy rules. The 

matched rules are declarative rules that constitute the core of an ATL transformation 

given that they enable developers to specify for which kinds of source elements target 

elements must be generated and the way the generated target elements have to be 

initialized. The called rules are imperative rules that can generate target model 

elements. However, as opposed to matched rules, they do not match any source model 

element and they have to be called by a matched rule or another called rule. The lazy 

rules are like matched rules. However, as opposed to matched rules, they have to be 

called by another rule. 
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2.2   Static Analysis 

Static analysis is a mechanism that aims at inspecting either the source code or the 

bytecode of programs without executing it [15]. It is applied to various fields of 

computer science including software engineering, in which a number of well-known 

static analysis tools have been proposed, such as FindBugs and Checkstyle [5] for 

Java code, as well as MOPS and UNO [11] for C code.  

In the static analysis context, there are two techniques for inspecting a program 

[13]: (i) by means of its source code or (ii) by means of its bytecode. A source-level 

analysis generally provides a great facility for handling the program structure, such as 

loops, since it contains more information and it abstracts machine details. However, it 

can be time-consuming since it involves lexical and syntactic analysis of the source 

code and several verifications on the structure of the code. On the other hand, a 

bytecode-level analysis is more faithful, given that it inspects the code that is actually 

executed. In addition, it is independent from source syntax, name resolution, type 

checking, template/generics instantiation, etc. Then, it avoids redundant work with 

compiler tasks already done.  However, the structure of a bytecode can be hard to 

understand, then becoming hard to inspect it. 

Within software engineering field the static analysis tools are widely used to help 

developers to locate any particular code path that might lead to potential runtime 

errors. These runtime errors are generally errors which a compiler cannot find out, 

such as variables that were used without initialization, variables that were not used 

anywhere and logical inconsistencies. It is important to emphasize that static analysis 

tools are susceptible to detect some errors that are not real errors (false-positives). In 

these cases it is necessary to have a human analysis in order to judge if the error is a 

false-positive. 

Furthermore, the information obtained from a static analysis tool can also be 

applied to other purposes within software engineering, such as: (i) to verify software’s 

properties used in safety-critical computer systems and to locate potentially 

vulnerable code; (ii) to detect weaknesses in the source code at the exact location; (iii) 

to verify if the source code conforms to coding guidelines and standards; (iv) to prove 

properties about a given program, for instance, its behavior matches with  its 

specification; and (v) to analyze the change impact of a software. For instance, 

suppose that a software developer needs to make some changes in his project. Then, it 

would be interesting if he/she applied a change impact analysis technique to figure out 

how the change can affect his project. 

For exemplifying one of the applications of the static analysis mechanism we 

present at Source Code 1 a main Java method that hides a bug. Lines 5-6 instantiate a 

map whose key is the name of a person (String) and the value is a person 

(Person). At lines 7-8, we put just an element into this map. Line 9 obtains a person 

from the map by the key “Bob”. Before printing the name of the city of the obtained 

person (line 11), we have verified if this person was not null (line 10). At line 13, we 

obtained the full name of the person and printed it. This method has no compilation 

error, but when it is executed it generates a NullPointerException because line 13 tries 

to obtain the full name of a person that has a null value. As it is a simple example, it is 

very easy to identify the line that generates the exception. However, it is very hard to 

find errors like that into large source codes. FindBugs is a static analysis tool that 
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proposes to detect this kind of error, among several others, without executing the 

program. 

 
Source Code 1: A main Java method containing one bug. 
 
1  import java.util.HashMap; 

2   

3  public class Main { 

4      public static void main(String[] args) { 

5          HashMap<String, Person> namesMap =  

6              new HashMap<String, Person>(); 

7         namesMap.put("Paul", new Person( 

8             "Paul McDonald", "Los Angeles")); 

9         Person person = namesMap.get("Bob"); 

10         if (person != null) { 
11             System.out.print(person.getCity()); 
12         } 
13         System.out.print(person.getFullName()); 
14      } 
15  } 
 

We have applied FindBugs to the main Java method presented at Source Code 1. 

Then, it detected the exact code line that generated the NullPointerException (line 13) 

and reported the bug message and description presented as follows.  

 

Bug: Possible null pointer dereference of person. 

Description: 

There is a branch of statement that, if executed, guarantees that a 

null value will be dereferenced, which would generate a 

NullPointerException when the code is executed. Of course, the 

problem might be that the branch or statement is infeasible and 

that the null pointer exception can’t ever be executed; deciding 

that is beyond the ability of FindBugs. 

3   ATL Static Analyzer 

The ATL static analyzer proposed in this work for M2M transformations provides an 

API comprising methods to manipulate the ATL transformation elements. It has been 

implemented using the Java programming language. The API has been made 

available under the General Public License (GPL) and it is available at [2]. An 

overview of its implementation is illustrated in Fig. 1. As we can observe, the static 

analyzer receives as input an ATL transformation module file and invokes a method 

from the ATL API [1] to parse this transformation. This parse results in an EObject 

[8] element, which comprises all information about the transformation. Then, our 

static analyzer extracts this information from the EObject element in order to 

instantiate the Java classes related to the ATL transformation being analyzed (input 

ATL transformation). These Java classes must be instantiated as Java objects to keep 
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information about the input ATL transformation, given that they follow the same 

features and relationships defined by the ATL metamodel [10]. 

 
 

Fig. 1. Overview of our ATL static analyzer.  

In this work, we have developed our static analyzer by inspecting the source code 

of an ATL transformation, given that we have invoked the parse(InputStream 

in)method available in the ATL API. This method receives as parameter an input 

stream concerning the source code of a transformation. Then, it parses the input 

stream into an EObject element, which can be exploited to retrieve information such 

as helpers, rules and so on. Notice that we have invoked the parse(InputStream 

in)method manually just to obtain the EObject element comprising information 

about the transformation, but this method is automatically invoked by the ATL 

Virtual Machine during the compilation process, then generating the bytecode (.asm). 

The static analyzer was implemented according to the ATL 2.0 metamodel in order 

to define the same features and relationships existent in an ATL unit. An excerpt of 

the ATL metamodel is illustrated in Fig. 2. As we can observe, the ATL language 

enables developers to define three kinds of ATL Unit: a transformation Module, a 

Query or a Library. Fig. 2 shows that a Module can be composed by zero or 

more elements of the type ModuleElement. These elements are a Helper or a 

Rule. A Helper is the definition of methods or attributes within an ATL unit. On 

the other hand, a Rule specifies how to generate target model elements. It can be 

either declarative (MatchedRule) or imperative (CalledRule). A 

LazyMatchedRule is a kind of MatchedRule. 
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Fig. 2. Excerpt of the ATL metamodel.  

In order to implement the ATL static analyzer according to the ATL metamodel, 

we had to create a Java class for each ATL metaclass of the ATL metamodel. For 

instance, according to the Fig. 2 previously illustrated, we had to create (i) an abstract 

Java class named Rule comprising a name property for the Rule ATL metaclass 

and (ii) two concrete Java classes named MatchedRule and CalledRule 

comprising their respective properties. 

After the Java classes and their respective properties have been created, we 

instantiated them with information about the input ATL transformation. For obtaining 

these information we had to invoke the parse(InputStream in) method 

available at “org.eclipse.m2m.atl.engine.parser.AtlParser” class 

of the ATL API. This method parses a given input stream (ATL transformation) and 

returns an EObject element comprising information about the given input stream. In 

order to illustrate how the transformation was parsed, Source Code 2 shows an 

excerpt of the loadMetaElements()method available at Transformation 

Java class of the proposed ATL static analyzer. Lines 2-4 show some classes that 

must be imported. Lines 10-11 get an input stream from the path of the input ATL 

transformation. This path is informed by the user during the instantiation of the 

Transformation Java class. Then, at lines 12-13 the transformation is parsed and 

returned as an EObject. 
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Source Code 2: Excerpt of the loadMetaElements() method source code. 
 

1  package org.atlanalyzer.main; 

2  import org.eclipse.emf.ecore.EObject; 

3  import org.eclipse.m2m.atl. 

4      engine.parser.AtlParser; 

5  ... 

6   

7  public class Transformation { 

8      public void loadMetaElements() throws  

9      ATLCoreException, IOException { 

10          InputStream in = new BufferedInputStream(new  
11            FileInputStream(this.getPath().toString())); 
12         EObject modelObj =  
13           AtlParser.getDefault().parse(in); 
14         ... 
15         in.close(); 
16      } 
17  } 

 

Since all information about the ATL transformation being analyzed has been 

instantiated as Java objects, the proposed static analyzer provides methods to 

manipulate a number of ATL transformation elements, such as rules, helpers, models 

and metamodels. For instance, we can obtain all matched rules of a transformation by 

invoking the method getMatchedRules(). Table 1 shows some of the methods 

provided by the static analyzer and a brief description of them. 

Table 1.  Some methods provided by the proposed ATL static analyzer.  

Method signature Description 

public Rule getRule(String ruleName) Obtains a specific rule (matched or 

called) by the informed ruleName; 

public Set<MatchedRule> getMatchedRules() Obtains a set of all matched rules of a 

transformation; 

public Set<CalledRule> getCalledRules() Obtains a set of all called rules of a 

transformation; 

public Set<Helper> getHelpers() Obtains a set of all helpers of a 

transformation; 

public Helper getHelper(String helperName) Obtains a specific helper according to a 

informed name; 

public Set<Rule> getInvokerRules() Obtains a set containing all rules that 

invoke a specific helper; 

public Set<OclModel> getInputMetamodels() Obtains a set containing the metamodel 

of each input model of a transformation; 

public Set<OclModel> getOutputMetamodels() Obtains a set containing the metamodel 

of each output model of a transformation; 

public Set<MatchedRule> getChildren() Obtains a set containing all the matched 

rules that extend a specific matched rule. 
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4   Examples of Application 

This section presents two concrete examples with the aim at illustrating the 

application of the ATL static analyzer proposed in this work.  

In the first example, the ATL static analyzer was applied to obtain a set of matched 

rules that extend a specific matched rule in an ATL transformation module. Source 

Code 3 shows an excerpt of the transformation available at the ATL User Guide [3], 

which is a KM3-copier: every model element from the source model is copied to the 

target model. 

 
Source Code 3: Excerpt of the Copy ATL transformation example. 
 
1  module Copy; 

2  create OUT : MM from IN : MM; 
3  rule CopyDataType extends CopyClassifier { 
4      from s : MM!DataType 

5      to t : MM!DataType 
6  } 
7  rule CopyEnumeration extends CopyClassifier { 
8      from s : MM!Enumeration 
9      to t : MM!Enumeration (literals <- s.literals) 
10  } 

11  abstract rule CopyModelElement extends  
12  CopyLocatedElement { 
13      from s : MM!ModelElement 

14      to t : MM!ModelElement (name <- s.name) 
15  } 
16  abstract rule CopyLocatedElement { 

17      from s : MM!LocatedElement 
18         to t : MM!LocatedElement (location <- s.location) 
19  } 

20  rule CopyPackage extends CopyModelElement { 
21      from s : MM!Package 
22      to t : MM!Package (contents <- s.contents) 

23  } 
24  rule CopyClass extends CopyClassifier { 
25      from s : MM!Class 

26      to t : MM!Class ( 
27          isAbstract <- s.isAbstract, 
28          supertypes <- s.supertypes, 

29                structuralFeatures <- s.structuralFeatures, 
30          operations <- s.operations) 
31  } 
32   rule CopyClassifier extends CopyModelElement { 
33      from s : MM!Classifier 
34      to t : MM!Classifier 

35  } 

 

Suppose that in the Copy ATL transformation module it is not necessary to copy 

classifiers anymore, thus we have to exclude the CopyClassifier matched rule 

(lines 32-35). However, there are some matched rules in the Copy transformation that 
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extend this rule. Then, we have to know these matched rules before to exclude 

CopyClassifier in order to eliminate the dependencies. 

The application of the proposed ATL static analyzer to the Copy ATL 

transformation is illustrated at Source Code 4, which shows a main Java method. 

First, we had to instantiate an ATL transformation specifying its path (lines 10-11). At 

line 12, the method loadMetaElements() was invoked to instantiate the Java 

classes with the information obtained from the transformation. Then, the module was 

obtained from the transformation (line 13). At lines 14-15, the matched rule that will 

be excluded was obtained from the module. Finally, all matched rules that extend 

CopyClassifier were obtained at lines 16-17. 

 
Source Code 4: Example 1 of the application of the proposed static analyzer. 
 
1  package org.atlanalyzer.main; 

2  import org.atlanalyzer.metaelements.atl.Module; 

3  import org.atlanalyzer.metaelements. 

4      atl.MatchedRule; 

5  ... 

6   

7  public class Main { 

8      public static void main(String[] args)  

9      throws ATLCoreException, IOException { 

10          Transformation transf =  
11              new Transformation("atl/copy.atl"); 
12          transf.loadMetaElements(); 
13          Module module = transf.getModule(); 
14          MatchedRule rule = (MatchedRule)module. 
15              getRule("CopyClassifier"); 
16          Set<MatchedRule> children =  
17           (Set<MatchedRule>)rule.getChildren(); 
18      } 
19  } 

 

In the second example, the ATL analyzer was applied to detect all rules (both 

matched rules and called rules) that invoke a specific helper. Then, if it is necessary to 

change or delete a specific helper defined in a transformation it is important to know 

the rules that reference this helper. Source Code 5 shows an excerpt of the Class to 

Relational transformation available at [6], which transforms a relational model from a 

class model.  

Suppose that we have to change the return type of the objectIdType helper 

(lines 3-5). Then, all rules that invoke this helper must be known and analyzed before 

any change. Source Code 6 illustrates how to use the ATL static analyzer to obtain 

such information. 

At Source Code 6, lines 1-12 are similar to the previous example: we have just 

added an import to the Helper java class and changed the ATL transformation file 

name. At lines 13-14 we obtain the helper which we have to make some change. 

Finally, we obtain all rules that invoke this helper at lines 15-16. 

Even though we have illustrated small examples, it is important to emphasize that 

if the ATL static analyzer was applied to larger ATL transformations, developers 
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would save development time given that looking for information about transformation 

elements requires much effort and sometimes it is unviable if the transformation is too 

long. In addition, this task is usually error-prone when manually accomplished. 

 
Source Code 5: Excerpt of the Class to Relational ATL transformation example. 
 
1  module Class2Relational; 

2  create OUT : Relational from IN : Class; 
3  helper def: objectIdType : Relational!Type = 
4  Class!DataType.allInstances()->select(e | e.name = 

5      'Integer')->first(); 
6  rule Class2Table { 
7      from c : Class!Class 

8      to out : Relational!Table ( 
9          name <- c.name, 
10          col <- Sequence {key}->union(c.attr-> 

11              select(e | not e.multiValued)), 
12                key <- Set {key} 
13      ),  

14         key : Relational!Column ( 
15          name <- 'objectId',  
16          type <- thisModule.objectIdType)         

17  } 
18  rule DataType2Type { 
19      from dt : Class!DataType 

20      to out : Relational!Type (name <- dt.name) 
21  } 
22  rule ClassAttribute2Column { 

23      from a : Class!Attribute (a.type.oclIsKindOf( 
24          Class!Class) and not a.multiValued) 
25      to foreignKey : Relational!Column ( 

26          name <- a.name + 'Id',  
27          type <- thisModule.objectIdType) 
28  } 

 
Source Code 6: Example 2 of the application of the proposed static analyzer. 
 
1  package org.atlanalyzer.main; 

2  import org.atlanalyzer.metaelements.atl.Module; 

3  import org.atlanalyzer.metaelements. 

4      atl.Helper; ... 

5  public class Main { 

6      public static void main(String[] args)  

7      throws ATLCoreException, IOException { 

8          Transformation transf =  

9              new Transformation( 

10              "atl/classToRelational.atl"); 
11          transf.loadMetaElements(); 
12          Module module = transf.getModule(); 
13          Helper helper =  
14           module.getHelper("objectIdType"); 
15          Set<Rule> invokerRules =  
16           helper.getInvokerRules(); }} 
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5   Related Works 

Nowadays, the software engineering field offers a number of tools and frameworks 

that propose the static analysis of code written in diverse programming languages, 

such as: (i) FindBugs [9] and Checkstyle [5]. Both are open source projects for Java 

code static analysis. FindBugs is a popular tool that examines a Java class or JAR 

files looking for potential problems by matching bytecodes against a list of bug 

patterns. On the other hand, Checkstyle is a tool that checks if Java source code 

adheres to a coding standard. Also, it provides some functionality to verify errors, 

such as the verification of duplicated code and bug patterns like double checked 

locking;(ii) MOPS [14] and UNO [11]. Both are projects for C code static analysis. 

MOPS is a free tool used for finding security bugs and for verifying conformance to 

rules of defensive programming. It focuses on identifying rules of safe programming 

practices and then verifying whether these safety properties are being obeyed within a 

program. On the other hand, UNO is a research/academic project that is able to detect 

the three most common types of software defects: use of uninitialized variable, nil-

pointer references and out-of-bounds array indexing. 

In addition, there exist some tools and frameworks that are multi-language, which 

means that they support the static analysis of code written in different languages, such 

as Yasca (Yet Another Source Code Analyzer) [20] and Coverity Prevent [7]. Yasca is 

an open source tool that provides support for source code written in Java, C, C++, 

HTML, JavaScript, ASP, ColdFusion, PHP, COBOL, .NET, and other languages. 

Coverity Prevent is a commercial tool that provides support for source code written in 

C, C++, C# and Java. 

On the other hand, there is a lack of tools and frameworks to perform static 

analysis in the MDA context. [18] presents a number of proposals to facilitate the 

definition of Higher-Order Transformations (HOTs) in ATL, where each proposal is 

focused on a specific transformation class. These proposals are based on the analysis 

of a set of 42 freely available transformations in ATL. For instance, this work 

proposes a HOT library composed by those helpers that were recurrently used within 

the set of the 42 analyzed HOTs. Despite of [18] offers, among other proposals, an 

API with several helpers, its focus is not on allowing the navigation by ATL elements 

in order to obtain information about all ATL elements of a model transformation 

before its execution.  

For the best of our knowledge, there exists just one work [19] that proposes a static 

source code analysis framework to detect some common errors in model 

transformation programs specified particularly in VIATRA2 VTCL, which is a Graph 

Transformation Language that represents transformations as abstract state machines. 

Transformation programs specified in this language are internally stored as an EMF 

model. As opposite to this work, the static analyzer that we propose is focused on 

ATL transformations. In addition, it has the purpose of aiding developers during 

several development tasks of MDA-based projects, such as maintenance, while [19] is 

focused on detection of common errors in transformations specified just in VIATRA2 

VTCL. Also, our approach provides an API with methods from which developers can 

obtain information about the whole ATL transformation. 

Therefore, nowadays there is no work focused on static analysis for ATL 

transformations. It means that it is an incipient and potential research field, in which 
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our work is very promising given that it is the only one that offers a static analyzer 

that provides an API to extend and handle diverse elements from ATL 

transformations. 

6   Conclusions 

In this work, we have proposed a static analyzer for M2M transformations specified 

in ATL language. It provides an API containing a number of methods that can be used 

to manipulate elements of an ATL transformation module, such as rules, helpers, 

models and metamodels. The ATL static analyzer has been implemented in Java and 

it is available for the ATL community under a GPL license. For illustrating how it can 

be applied to obtain information from ATL transformations we have shown two 

examples.  

The main objective of the proposed static analyzer is to inspect ATL 

transformations in order to help developers to automatically find out information 

about any element enclosed by these transformations. Thus, for instance, when a 

developer needs to change any element in a transformation, it just has to invoke the 

appropriate methods of the static analyzer API to obtain information about 

dependencies and relations of this element. As we can note, the proposed static 

analyzer is very helpful along the development process of ATL transformations, such 

as during maintenance and debugging tasks. It is important to emphasize that, when 

the transformation is very large, it is unviable for developers to manually look for 

dependencies and relations of an element in this transformation. By using the ATL 

static analyzer, they can accomplish this task with reduced effort. 

As an ongoing work, we are developing a change impact analysis technique that 

reuses our ATL static analyzer in order to provide a precise impact analysis on ATL 

transformations before any change has been done. 

As a future work, we intend to extend the ATL static analyzer to allow users to 

detect bugs before running their transformations as well as to optimize them. Also, we 

intend to extend the ATL static analyzer in order to provide a user interface. It would 

be beneficial to offer the static analysis not only as an API but also as an integration 

with the current Eclipse based UI of ATL, which would be easier manipulated by the 

beginners.  
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