
A Static Analyzer for Model Transformations

Andreza Vieira and Franklin Ramalho

Federal University of Campina Grande,

Campina Grande, Paraíba, Brazil

andreza@copin.ufcg.edu.br

franklin@dsc.ufcg.edu.br

Abstract. Adoption of the Model-Driven Architecture approach is increasing

each day. As any other software development project, a MDA-based project is

constantly evolving given that software requirements change along their

lifecycle. Thus, changes in MDA transformations are also frequent. These

changes are hard and error-prone tasks when manually accomplished. We

propose a static analyzer for inspecting the source code of ATL

transformations. It provides an API comprising methods to extract and handle

diverse elements from ATL transformations. Therefore, the proposed static

analyzer can be useful during several development tasks of MDA-based

projects, such as maintenance and debugging, since it enables developers to

save effort and development time by automatically identifying dependences and

relations from transformation elements.

Keywords: Static analysis, transformation code analysis.

1 Introduction and Motivation

Within software engineering field new trends related to software development process

are emerging and showing their benefits, such as greater automation and higher

productivity. The Object Management Group (OMG) [16] has proposed an approach

that works in this direction: the Model-Driven Architecture (MDA) [12]. The main

goal of this approach is to shift the focus from code to models in the software

development process. MDA allows the automatic generation of output models from

input models by means of transformation definitions, which are transformation rules

describing how input models can be transformed into output models. These

transformation definitions are expressed through a transformation language, such as

ATLAS Transformation Language (ATL) [3], and they are automatically performed

by transformation engines.

Software development projects are constantly evolving given that software

requirements change along the whole project lifecycle. Similarly, MDA-based

projects evolve along their lifecycle and require changes in their transformations.

However, to perform changes in large transformations is a hard task given that

developers have to manually look for dependencies and relations of the

transformation element being changed, which is a waste of effort and development

time. For instance, to exclude a given rule named R1 it is necessary to know if it is

invoked by another rule along the whole transformation chain. Indeed, manually

performing this task is error-prone because it depends on the developers skills.

An approach that can be adopted to accomplish the problems previously cited is

the static analysis. It examines either the source code or the bytecode of a program

without executing it [15]. Then, all information about any transformation can be

captured and handled as necessary, mainly to identify elements that can be impacted

with any change in a transformation. The static analysis can be adopted for different

purposes within software engineering, such as for locating any particular code path

that might lead to potential runtime errors or for analyzing the change impact of

software. Automated tools can assist developers in carrying out static analysis. Within

software engineering there are a number of static analysis tools (static analyzers) for

inspecting diverse programming languages, such as FindBugs [9] for Java code and

MOPS (MOdelchecking Programs for Security properties) [14] for C code.

On the other hand, in the MDA context there are no static analysis tools that allow

the inspection of ATL transformations. Just one work [19] proposes a static analysis

approach in this context. However, it is focused on detection of common errors in

model transformations specified just in VIATRA2 VTCL (Viatra Textual Command

Language) [4] by inspecting their source codes. VIATRA2 is a framework for model

to model (M2M) transformations that uses a high level language (VTCL) combining

elements of model transformations and abstract state machines. However, [19] neither

handles M2M transformations specified in ATL language nor provides an API with

methods for helping developers to manipulate transformation elements in a

customized way, mainly for maintenance tasks.

In this work, we propose a static analyzer for M2M transformations specified in

ATL. It provides an API containing a number of methods that can be used to

manipulate elements enclosed by an ATL transformation, such as rules, helpers,

models and metamodels. The static analyzer is very useful to help developers to

accomplish several development tasks in transformations, such as maintenance and

debugging, given that: (i) developers will save effort and development time by

automatically finding out the dependencies and relations of the element being

changed in a transformation; (ii) it is not error-prone; (iii) it can analyze even very

long transformations without additional effort; and (iv) its API is very easy to

understand.

This paper is organized as follows. In Section 2, we introduce some concepts about

MDA and Static Analysis. In Section 3, we explain details about our static analyzer

implementation and give an overview about our approach. In Section 4, we present

two examples illustrating how the proposed static analyzer can be applied to obtain

information about an ATL transformation. In Section 5, we give an overview

concerning related works on static analyzers within software engineering field and

within MDA context. Finally, Section 6 summarizes our conclusions and gives some

pointers to future work.

76 MtATL 2011

2 Background

2.1 MDA and ATL Transformations

MDA is an approach proposed by the OMG whose main objective is to provide an

entire infrastructure for the software development in which the specification of a

system is separated from its implementation details. The key of MDA is the

importance attributed to the models during the software development process [12]. In

this approach, the effort and time spent during the tests and implementation tasks of

the software development lifecycle are shifted to modeling, metamodeling and

transformations tasks.

Metamodels are pivotal elements in the MDA framework. Among other roles, they

are used to define languages abstract syntax, such as process and modeling languages.

For instance, UML class diagrams allow modelers to design classes, attributes,

associations and other elements because they are defined by the UML metamodel.

The automatic generation of output models from input models happens by means

of a transformation definition: a set of transformation rules that describe how input

models can be transformed into output models. Transformation definitions are

expressed through a transformation language, such as Query/View/Transformation

(QVT) [17] and ATL. Finally, a tool called transformation engine is used to execute

the transformation definitions.

Nowadays, ATL is a very popular transformation language employed to specify

M2M transformations. By using this language, we can define three kinds of units [3]:

(i) An ATL library. It enables developers to specify helpers and attributes that can be

imported from different kinds of ATL units, including libraries themselves. Helpers

and attributes are, respectively, methods and constants defined within any ATL unit;

(ii) An ATL query. It enables developers to specify a query on a number of source

models. It can be composed by a single query element, helpers and attributes;

(iii) An ATL transformation module. It enables developers to specify the way to

produce a set of target models from a set of source models. It can be composed by

helpers, attributes and rules.

ATL supports three kinds of rules: matched rules, called rules and lazy rules. The

matched rules are declarative rules that constitute the core of an ATL transformation

given that they enable developers to specify for which kinds of source elements target

elements must be generated and the way the generated target elements have to be

initialized. The called rules are imperative rules that can generate target model

elements. However, as opposed to matched rules, they do not match any source model

element and they have to be called by a matched rule or another called rule. The lazy

rules are like matched rules. However, as opposed to matched rules, they have to be

called by another rule.

CEUR Workshop Proceedings 77

2.2 Static Analysis

Static analysis is a mechanism that aims at inspecting either the source code or the

bytecode of programs without executing it [15]. It is applied to various fields of

computer science including software engineering, in which a number of well-known

static analysis tools have been proposed, such as FindBugs and Checkstyle [5] for

Java code, as well as MOPS and UNO [11] for C code.

In the static analysis context, there are two techniques for inspecting a program

[13]: (i) by means of its source code or (ii) by means of its bytecode. A source-level

analysis generally provides a great facility for handling the program structure, such as

loops, since it contains more information and it abstracts machine details. However, it

can be time-consuming since it involves lexical and syntactic analysis of the source

code and several verifications on the structure of the code. On the other hand, a

bytecode-level analysis is more faithful, given that it inspects the code that is actually

executed. In addition, it is independent from source syntax, name resolution, type

checking, template/generics instantiation, etc. Then, it avoids redundant work with

compiler tasks already done. However, the structure of a bytecode can be hard to

understand, then becoming hard to inspect it.

Within software engineering field the static analysis tools are widely used to help

developers to locate any particular code path that might lead to potential runtime

errors. These runtime errors are generally errors which a compiler cannot find out,

such as variables that were used without initialization, variables that were not used

anywhere and logical inconsistencies. It is important to emphasize that static analysis

tools are susceptible to detect some errors that are not real errors (false-positives). In

these cases it is necessary to have a human analysis in order to judge if the error is a

false-positive.

Furthermore, the information obtained from a static analysis tool can also be

applied to other purposes within software engineering, such as: (i) to verify software’s

properties used in safety-critical computer systems and to locate potentially

vulnerable code; (ii) to detect weaknesses in the source code at the exact location; (iii)

to verify if the source code conforms to coding guidelines and standards; (iv) to prove

properties about a given program, for instance, its behavior matches with its

specification; and (v) to analyze the change impact of a software. For instance,

suppose that a software developer needs to make some changes in his project. Then, it

would be interesting if he/she applied a change impact analysis technique to figure out

how the change can affect his project.

For exemplifying one of the applications of the static analysis mechanism we

present at Source Code 1 a main Java method that hides a bug. Lines 5-6 instantiate a

map whose key is the name of a person (String) and the value is a person

(Person). At lines 7-8, we put just an element into this map. Line 9 obtains a person

from the map by the key “Bob”. Before printing the name of the city of the obtained

person (line 11), we have verified if this person was not null (line 10). At line 13, we

obtained the full name of the person and printed it. This method has no compilation

error, but when it is executed it generates a NullPointerException because line 13 tries

to obtain the full name of a person that has a null value. As it is a simple example, it is

very easy to identify the line that generates the exception. However, it is very hard to

find errors like that into large source codes. FindBugs is a static analysis tool that

78 MtATL 2011

proposes to detect this kind of error, among several others, without executing the

program.

Source Code 1: A main Java method containing one bug.

1 import java.util.HashMap;

2

3 public class Main {

4 public static void main(String[] args) {

5 HashMap<String, Person> namesMap =

6 new HashMap<String, Person>();

7 namesMap.put("Paul", new Person(

8 "Paul McDonald", "Los Angeles"));

9 Person person = namesMap.get("Bob");

10 if (person != null) {
11 System.out.print(person.getCity());
12 }
13 System.out.print(person.getFullName());
14 }
15 }

We have applied FindBugs to the main Java method presented at Source Code 1.

Then, it detected the exact code line that generated the NullPointerException (line 13)

and reported the bug message and description presented as follows.

Bug: Possible null pointer dereference of person.

Description:

There is a branch of statement that, if executed, guarantees that a

null value will be dereferenced, which would generate a

NullPointerException when the code is executed. Of course, the

problem might be that the branch or statement is infeasible and

that the null pointer exception can’t ever be executed; deciding

that is beyond the ability of FindBugs.

3 ATL Static Analyzer

The ATL static analyzer proposed in this work for M2M transformations provides an

API comprising methods to manipulate the ATL transformation elements. It has been

implemented using the Java programming language. The API has been made

available under the General Public License (GPL) and it is available at [2]. An

overview of its implementation is illustrated in Fig. 1. As we can observe, the static

analyzer receives as input an ATL transformation module file and invokes a method

from the ATL API [1] to parse this transformation. This parse results in an EObject

[8] element, which comprises all information about the transformation. Then, our

static analyzer extracts this information from the EObject element in order to

instantiate the Java classes related to the ATL transformation being analyzed (input

ATL transformation). These Java classes must be instantiated as Java objects to keep

CEUR Workshop Proceedings 79

information about the input ATL transformation, given that they follow the same

features and relationships defined by the ATL metamodel [10].

Fig. 1. Overview of our ATL static analyzer.

In this work, we have developed our static analyzer by inspecting the source code

of an ATL transformation, given that we have invoked the parse(InputStream

in)method available in the ATL API. This method receives as parameter an input

stream concerning the source code of a transformation. Then, it parses the input

stream into an EObject element, which can be exploited to retrieve information such

as helpers, rules and so on. Notice that we have invoked the parse(InputStream

in)method manually just to obtain the EObject element comprising information

about the transformation, but this method is automatically invoked by the ATL

Virtual Machine during the compilation process, then generating the bytecode (.asm).

The static analyzer was implemented according to the ATL 2.0 metamodel in order

to define the same features and relationships existent in an ATL unit. An excerpt of

the ATL metamodel is illustrated in Fig. 2. As we can observe, the ATL language

enables developers to define three kinds of ATL Unit: a transformation Module, a

Query or a Library. Fig. 2 shows that a Module can be composed by zero or

more elements of the type ModuleElement. These elements are a Helper or a

Rule. A Helper is the definition of methods or attributes within an ATL unit. On

the other hand, a Rule specifies how to generate target model elements. It can be

either declarative (MatchedRule) or imperative (CalledRule). A

LazyMatchedRule is a kind of MatchedRule.

80 MtATL 2011

Fig. 2. Excerpt of the ATL metamodel.

In order to implement the ATL static analyzer according to the ATL metamodel,

we had to create a Java class for each ATL metaclass of the ATL metamodel. For

instance, according to the Fig. 2 previously illustrated, we had to create (i) an abstract

Java class named Rule comprising a name property for the Rule ATL metaclass

and (ii) two concrete Java classes named MatchedRule and CalledRule

comprising their respective properties.

After the Java classes and their respective properties have been created, we

instantiated them with information about the input ATL transformation. For obtaining

these information we had to invoke the parse(InputStream in) method

available at “org.eclipse.m2m.atl.engine.parser.AtlParser” class

of the ATL API. This method parses a given input stream (ATL transformation) and

returns an EObject element comprising information about the given input stream. In

order to illustrate how the transformation was parsed, Source Code 2 shows an

excerpt of the loadMetaElements()method available at Transformation

Java class of the proposed ATL static analyzer. Lines 2-4 show some classes that

must be imported. Lines 10-11 get an input stream from the path of the input ATL

transformation. This path is informed by the user during the instantiation of the

Transformation Java class. Then, at lines 12-13 the transformation is parsed and

returned as an EObject.

CEUR Workshop Proceedings 81

Source Code 2: Excerpt of the loadMetaElements() method source code.

1 package org.atlanalyzer.main;

2 import org.eclipse.emf.ecore.EObject;

3 import org.eclipse.m2m.atl.

4 engine.parser.AtlParser;

5 ...

6

7 public class Transformation {

8 public void loadMetaElements() throws

9 ATLCoreException, IOException {

10 InputStream in = new BufferedInputStream(new
11 FileInputStream(this.getPath().toString()));
12 EObject modelObj =
13 AtlParser.getDefault().parse(in);
14 ...
15 in.close();
16 }
17 }

Since all information about the ATL transformation being analyzed has been

instantiated as Java objects, the proposed static analyzer provides methods to

manipulate a number of ATL transformation elements, such as rules, helpers, models

and metamodels. For instance, we can obtain all matched rules of a transformation by

invoking the method getMatchedRules(). Table 1 shows some of the methods

provided by the static analyzer and a brief description of them.

Table 1. Some methods provided by the proposed ATL static analyzer.

Method signature Description

public Rule getRule(String ruleName) Obtains a specific rule (matched or

called) by the informed ruleName;

public Set<MatchedRule> getMatchedRules() Obtains a set of all matched rules of a

transformation;

public Set<CalledRule> getCalledRules() Obtains a set of all called rules of a

transformation;

public Set<Helper> getHelpers() Obtains a set of all helpers of a

transformation;

public Helper getHelper(String helperName) Obtains a specific helper according to a

informed name;

public Set<Rule> getInvokerRules() Obtains a set containing all rules that

invoke a specific helper;

public Set<OclModel> getInputMetamodels() Obtains a set containing the metamodel

of each input model of a transformation;

public Set<OclModel> getOutputMetamodels() Obtains a set containing the metamodel

of each output model of a transformation;

public Set<MatchedRule> getChildren() Obtains a set containing all the matched

rules that extend a specific matched rule.

82 MtATL 2011

4 Examples of Application

This section presents two concrete examples with the aim at illustrating the

application of the ATL static analyzer proposed in this work.

In the first example, the ATL static analyzer was applied to obtain a set of matched

rules that extend a specific matched rule in an ATL transformation module. Source

Code 3 shows an excerpt of the transformation available at the ATL User Guide [3],

which is a KM3-copier: every model element from the source model is copied to the

target model.

Source Code 3: Excerpt of the Copy ATL transformation example.

1 module Copy;

2 create OUT : MM from IN : MM;
3 rule CopyDataType extends CopyClassifier {
4 from s : MM!DataType

5 to t : MM!DataType
6 }
7 rule CopyEnumeration extends CopyClassifier {
8 from s : MM!Enumeration
9 to t : MM!Enumeration (literals <- s.literals)
10 }

11 abstract rule CopyModelElement extends
12 CopyLocatedElement {
13 from s : MM!ModelElement

14 to t : MM!ModelElement (name <- s.name)
15 }
16 abstract rule CopyLocatedElement {

17 from s : MM!LocatedElement
18 to t : MM!LocatedElement (location <- s.location)
19 }

20 rule CopyPackage extends CopyModelElement {
21 from s : MM!Package
22 to t : MM!Package (contents <- s.contents)

23 }
24 rule CopyClass extends CopyClassifier {
25 from s : MM!Class

26 to t : MM!Class (
27 isAbstract <- s.isAbstract,
28 supertypes <- s.supertypes,

29 structuralFeatures <- s.structuralFeatures,
30 operations <- s.operations)
31 }
32 rule CopyClassifier extends CopyModelElement {
33 from s : MM!Classifier
34 to t : MM!Classifier

35 }

Suppose that in the Copy ATL transformation module it is not necessary to copy

classifiers anymore, thus we have to exclude the CopyClassifier matched rule

(lines 32-35). However, there are some matched rules in the Copy transformation that

CEUR Workshop Proceedings 83

extend this rule. Then, we have to know these matched rules before to exclude

CopyClassifier in order to eliminate the dependencies.

The application of the proposed ATL static analyzer to the Copy ATL

transformation is illustrated at Source Code 4, which shows a main Java method.

First, we had to instantiate an ATL transformation specifying its path (lines 10-11). At

line 12, the method loadMetaElements() was invoked to instantiate the Java

classes with the information obtained from the transformation. Then, the module was

obtained from the transformation (line 13). At lines 14-15, the matched rule that will

be excluded was obtained from the module. Finally, all matched rules that extend

CopyClassifier were obtained at lines 16-17.

Source Code 4: Example 1 of the application of the proposed static analyzer.

1 package org.atlanalyzer.main;

2 import org.atlanalyzer.metaelements.atl.Module;

3 import org.atlanalyzer.metaelements.

4 atl.MatchedRule;

5 ...

6

7 public class Main {

8 public static void main(String[] args)

9 throws ATLCoreException, IOException {

10 Transformation transf =
11 new Transformation("atl/copy.atl");
12 transf.loadMetaElements();
13 Module module = transf.getModule();
14 MatchedRule rule = (MatchedRule)module.
15 getRule("CopyClassifier");
16 Set<MatchedRule> children =
17 (Set<MatchedRule>)rule.getChildren();
18 }
19 }

In the second example, the ATL analyzer was applied to detect all rules (both

matched rules and called rules) that invoke a specific helper. Then, if it is necessary to

change or delete a specific helper defined in a transformation it is important to know

the rules that reference this helper. Source Code 5 shows an excerpt of the Class to

Relational transformation available at [6], which transforms a relational model from a

class model.

Suppose that we have to change the return type of the objectIdType helper

(lines 3-5). Then, all rules that invoke this helper must be known and analyzed before

any change. Source Code 6 illustrates how to use the ATL static analyzer to obtain

such information.

At Source Code 6, lines 1-12 are similar to the previous example: we have just

added an import to the Helper java class and changed the ATL transformation file

name. At lines 13-14 we obtain the helper which we have to make some change.

Finally, we obtain all rules that invoke this helper at lines 15-16.

Even though we have illustrated small examples, it is important to emphasize that

if the ATL static analyzer was applied to larger ATL transformations, developers

84 MtATL 2011

would save development time given that looking for information about transformation

elements requires much effort and sometimes it is unviable if the transformation is too

long. In addition, this task is usually error-prone when manually accomplished.

Source Code 5: Excerpt of the Class to Relational ATL transformation example.

1 module Class2Relational;

2 create OUT : Relational from IN : Class;
3 helper def: objectIdType : Relational!Type =
4 Class!DataType.allInstances()->select(e | e.name =

5 'Integer')->first();
6 rule Class2Table {
7 from c : Class!Class

8 to out : Relational!Table (
9 name <- c.name,
10 col <- Sequence {key}->union(c.attr->

11 select(e | not e.multiValued)),
12 key <- Set {key}
13),

14 key : Relational!Column (
15 name <- 'objectId',
16 type <- thisModule.objectIdType)

17 }
18 rule DataType2Type {
19 from dt : Class!DataType

20 to out : Relational!Type (name <- dt.name)
21 }
22 rule ClassAttribute2Column {

23 from a : Class!Attribute (a.type.oclIsKindOf(
24 Class!Class) and not a.multiValued)
25 to foreignKey : Relational!Column (

26 name <- a.name + 'Id',
27 type <- thisModule.objectIdType)
28 }

Source Code 6: Example 2 of the application of the proposed static analyzer.

1 package org.atlanalyzer.main;

2 import org.atlanalyzer.metaelements.atl.Module;

3 import org.atlanalyzer.metaelements.

4 atl.Helper; ...

5 public class Main {

6 public static void main(String[] args)

7 throws ATLCoreException, IOException {

8 Transformation transf =

9 new Transformation(

10 "atl/classToRelational.atl");
11 transf.loadMetaElements();
12 Module module = transf.getModule();
13 Helper helper =
14 module.getHelper("objectIdType");
15 Set<Rule> invokerRules =
16 helper.getInvokerRules(); }}

CEUR Workshop Proceedings 85

5 Related Works

Nowadays, the software engineering field offers a number of tools and frameworks

that propose the static analysis of code written in diverse programming languages,

such as: (i) FindBugs [9] and Checkstyle [5]. Both are open source projects for Java

code static analysis. FindBugs is a popular tool that examines a Java class or JAR

files looking for potential problems by matching bytecodes against a list of bug

patterns. On the other hand, Checkstyle is a tool that checks if Java source code

adheres to a coding standard. Also, it provides some functionality to verify errors,

such as the verification of duplicated code and bug patterns like double checked

locking;(ii) MOPS [14] and UNO [11]. Both are projects for C code static analysis.

MOPS is a free tool used for finding security bugs and for verifying conformance to

rules of defensive programming. It focuses on identifying rules of safe programming

practices and then verifying whether these safety properties are being obeyed within a

program. On the other hand, UNO is a research/academic project that is able to detect

the three most common types of software defects: use of uninitialized variable, nil-

pointer references and out-of-bounds array indexing.

In addition, there exist some tools and frameworks that are multi-language, which

means that they support the static analysis of code written in different languages, such

as Yasca (Yet Another Source Code Analyzer) [20] and Coverity Prevent [7]. Yasca is

an open source tool that provides support for source code written in Java, C, C++,

HTML, JavaScript, ASP, ColdFusion, PHP, COBOL, .NET, and other languages.

Coverity Prevent is a commercial tool that provides support for source code written in

C, C++, C# and Java.

On the other hand, there is a lack of tools and frameworks to perform static

analysis in the MDA context. [18] presents a number of proposals to facilitate the

definition of Higher-Order Transformations (HOTs) in ATL, where each proposal is

focused on a specific transformation class. These proposals are based on the analysis

of a set of 42 freely available transformations in ATL. For instance, this work

proposes a HOT library composed by those helpers that were recurrently used within

the set of the 42 analyzed HOTs. Despite of [18] offers, among other proposals, an

API with several helpers, its focus is not on allowing the navigation by ATL elements

in order to obtain information about all ATL elements of a model transformation

before its execution.

For the best of our knowledge, there exists just one work [19] that proposes a static

source code analysis framework to detect some common errors in model

transformation programs specified particularly in VIATRA2 VTCL, which is a Graph

Transformation Language that represents transformations as abstract state machines.

Transformation programs specified in this language are internally stored as an EMF

model. As opposite to this work, the static analyzer that we propose is focused on

ATL transformations. In addition, it has the purpose of aiding developers during

several development tasks of MDA-based projects, such as maintenance, while [19] is

focused on detection of common errors in transformations specified just in VIATRA2

VTCL. Also, our approach provides an API with methods from which developers can

obtain information about the whole ATL transformation.

Therefore, nowadays there is no work focused on static analysis for ATL

transformations. It means that it is an incipient and potential research field, in which

86 MtATL 2011

our work is very promising given that it is the only one that offers a static analyzer

that provides an API to extend and handle diverse elements from ATL

transformations.

6 Conclusions

In this work, we have proposed a static analyzer for M2M transformations specified

in ATL language. It provides an API containing a number of methods that can be used

to manipulate elements of an ATL transformation module, such as rules, helpers,

models and metamodels. The ATL static analyzer has been implemented in Java and

it is available for the ATL community under a GPL license. For illustrating how it can

be applied to obtain information from ATL transformations we have shown two

examples.

The main objective of the proposed static analyzer is to inspect ATL

transformations in order to help developers to automatically find out information

about any element enclosed by these transformations. Thus, for instance, when a

developer needs to change any element in a transformation, it just has to invoke the

appropriate methods of the static analyzer API to obtain information about

dependencies and relations of this element. As we can note, the proposed static

analyzer is very helpful along the development process of ATL transformations, such

as during maintenance and debugging tasks. It is important to emphasize that, when

the transformation is very large, it is unviable for developers to manually look for

dependencies and relations of an element in this transformation. By using the ATL

static analyzer, they can accomplish this task with reduced effort.

As an ongoing work, we are developing a change impact analysis technique that

reuses our ATL static analyzer in order to provide a precise impact analysis on ATL

transformations before any change has been done.

As a future work, we intend to extend the ATL static analyzer to allow users to

detect bugs before running their transformations as well as to optimize them. Also, we

intend to extend the ATL static analyzer in order to provide a user interface. It would

be beneficial to offer the static analysis not only as an API but also as an integration

with the current Eclipse based UI of ATL, which would be easier manipulated by the

beginners.

Acknowledgments. We would like to acknowledge the CAPES for the financial

support as well as Dalton Guerrero and João Brunet for their valuable discussions.

References

1. ATLAS Transformation Language API,

http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.m2m/org.eclipse.m2m.atl/?root=Mod

eling_Project

2. ATL Static Analyzer: A Static Analyzer Tool for ATL Transformations,

http://code.google.com/p/atl-static-analyzer

CEUR Workshop Proceedings 87

3. ATL User Guide - ATLAS Group (INRIA & LINA),

http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language

4. Balogh, A., Németh, A., Schmidt, A., Rath, I., Vágó, D., Varró, D., Pataricza, A.: The

VIATRA2 Model Transformation Framework. In: European Conf. on Model Driven

Architecture (ECMDA’05) (2005).

5. Checkstyle: A Static Analyzer Tool for Java Code, http://checkstyle.sourceforge.net

6. Class to Relational ATL Transformation Example,

http://www.eclipse.org/m2m/atl/atlTransformations/#Class2Relational

7. Coverity Prevent: A Static Analyzer Tool for C/C++, C# and Java Languages,

http://coverity.com/products/static-analysis.html

8. EObject API,

http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/EObject

.html

9. FindBugs: A Static Analyzer Tool for Java Code, http://findbugs.sourceforge.net

10. Frédéric Jouault, ATL Metamodel, http://www.emn.fr/z-

info/atlanmod/index.php/Atlantic#ATL_2.0

11. Holzmann, G.: UNO: Static Source Code Checking for User-defined Properties. Bell Labs

Technical Report, Bell Laboratories, Murray Hill, NJ (2002).

12. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model-Driven Architecture:

Practice and Promise, Addison-Wesley Profession (2003).

13. Logozzo, F., Fähndrich, M.: On the Relative Completeness of Bytecode Analysis Versus

Source Code Analysis. In: Proceedings of the Joint European Conferences on Theory and

Practice of Software 17th International Conference on Compiler Construction. Budapest,

Hungary (2008).

14. MOdelchecking Programs for Security properties (MOPS): A Static Analyzer Tool for C

Code, http://www.cs.berkeley.edu/~daw/mops

15. Nielson, F., Riis, H., Hankin, C.: Principles of Program Analysis. Springer (2010).

16. Object Management Group (OMG), http://www.omg.org

17. Object Management Group (OMG): Query/View/Transformation Specification, document

number 2008-04-03, version 1.0, April (2008), http://www.omg.org/spec/QVT/1.0/PDF

18. Tisi, M., Cabot, J., Jouault, F.: Improving Higher-Order Transformations Support in ATL.

In: Proceedings of the International Conference on Model Transformation, ICMT2010,

2010.

19. Ujhelyi, Z., Horváth, A., Varró, D.: A Generic Static Analysis Framework for Model

Transformation Programs. Technical Report TUB-TR-09-EE19, Budapest University of

Technology and Economics (2009).

20. Yet Another Source Code Analyzer (Yasca): A Static Analyzer Tool for Several

Languages, http://www.scovetta.com/yasca.html

88 MtATL 2011

