
Rewriting Ontological Queries into Small Nonrecursive
Datalog Programs?

Georg Gottlob1 and Thomas Schwentick2

1 Department of Computer Science, University of Oxford gottlob@cs.ox.ac.uk
2 Fakultät für Informatik, TU Dortmund thomas.schwentick@udo.edu

Abstract. We consider the setting of ontological database access, where an A-
box is given in form of a relational database D and where a Boolean conjunctive
query q has to be evaluated against D modulo a T -box Σ formulated in DL-
Lite or Linear Datalog±. It is well-known that (Σ, q) can be rewritten into an
equivalent nonrecursive Datalog program P that can be directly evaluated over
D. However, for Linear Datalog± or for DL-Lite versions that allow for role
inclusion, the rewriting methods described so far result in a nonrecursive Datalog
program P of size exponential in the joint size of Σ and q. This gives rise to
the interesting question of whether such a rewriting necessarily needs to be of
exponential size. In this paper we show that it is actually possible to translate
(Σ, q) into a polynomially sized equivalent nonrecursive Datalog program P .

1 Introduction

This paper is about query rewriting in the context of ontological database access. Query
rewriting is an important new optimization technique specific to ontological queries.
The essence of query rewriting, as will be explained in more detail below, is to com-
pile a query and an ontological theory (usually formulated in some description logic or
rule-based language) into a target query language that can be directly executed over a
relational database management system (DBMS). The advantage of such an approach
is obvious. Query rewriting can be used as a preprocessing step for enabling the ex-
ploitation of mature and efficient existing database technology to answer ontological
queries. In particular, after translating an ontological query into SQL, sophisticated
query-optimization strategies can be used to efficiently answer it. However, there is
a pitfall here. If the translation inflates the query excessively and creates from a rea-
sonably sized ontological query an enormous exponentially sized SQL query (or SQL
DDL program), then the best DBMS may be of little use.

Main results. We show that polynomially sized query rewritings into nonrecur-
sive Datalog exist in specific settings. Note that nonrecursive Datalog can be efficiently
translated into SQL with view definitions (SQL DDL), which, in turn, can be directly
executed over any standard DBMS. Our results are — for the time being — of theoret-
ical nature and we do not claim that they will lead to better practical algorithms. This
will be studied via implementations in the next future. Our main result applies to the
? Future improvements and extended versions of this paper will be published in arXive-CORR

at http://arxiv.org/abs/1106.3767



setting where ontological constraints are formulated in terms of tuple-generating de-
pendencies (tgds), and we make heavy use of the well-known chase procedure [17, 14].
For definitions, see Section 2. The result after chasing a tgd set Σ over a database D is
denoted by chase(D,Σ).

Consider a set Σ of tgds and a database D over a joint signature R. Let q be a
Boolean conjunctive query (BCQ) issued against (D,Σ). We would like to transform q
into a nonrecursive Datalog query P such that (D,Σ) |= q iff D |= P . We assume here
that P has a special propositional goal goal, and D |= P means that goal is derivable
from P when evaluated over D. Let us define an important property of classes of tgds.

Definition 1. Polynomial witness property (PWP). The PWP holds for a class C of
tgds if there exists a polynomial γ such that, for every finite set Σ ⊆ C of tgds and each
BCQ q, the following holds: for each database D, whenever (D,Σ) |= q, then there is
a sequence of at most γ(|Σ|, |q|) chase steps whose atoms already entail q.

Our main technical result, which is more formally stated in Section 3, is as follows.
Theorem 1. Let Σ be a set of tgds from a class C enjoying the PWP. Then each BCQ
q can be rewritten in polynomial time into a nonrecursive Datalog program P of size
polynomial in the joint size of q and Σ, such that for every database D, (D,Σ) |= q if
and only if D |= P . Moreover, the arity of P is max(a+2, 9), where a is the maximum
arity of any predicate symbol occurring in Σ, in case a sufficiently large linear order
can be accessed in the database, or otherwise by O(max(a + 2, 9) · logm), where m
is the joint size of q and Σ.

Other Results. From this result, and from already established facts, a good number
of further rewritabliity results for other formalisms can be derived. In particular, we can
show that conjunctive queries based on other classes of tgds or description logics can
be efficiently translated into nonrecursive Datalog. Among these formalisms are: linear
tgds, originally defined in [5] and equivalent to inclusion dependencies, various major
versions of the well-known description logic DL-Lite [9, 20], and sticky tgds [8] as well
as sticky-join tgds [6, 7]. For space reasons, we will just give an overview and very short
explanations of how each of these rewritability results follows from our main theorem.

Structure of the Paper. The rest of the paper is structured as follows. In Section 2
we state a few preliminaries and simplifying assumptions. In Section 3, we explain the
idea of the proof of the main result. Section 4, contains the other results following from
the main result. A brief overview of related work concludes the paper in Section 5.

2 Preliminaries and Assumptions

We assume the reader to be familiar with the terminology of relational databases and
the concepts of conjunctive query (CQ) and Boolean conjunctive query (BCQ). For
simplicity, we restrict our attention to Boolean conjunctive queries q. However, our
results can easily be reformulated for queries with output, see the extended version of
this paper [13]).

Given a relational schemaR, a tuple-generating dependency (tgd) σ is a first-order
formula of the form ∀X∀Y Φ(X, Y )→∃Z Ψ(X,Z), where Φ(X,Y ) and Ψ(X,Z)
are conjunctions of atoms over R, called the body and the head of σ, denoted body(σ)



and head(σ), respectively. We usually omit the universal quantifiers in tgds. Such σ is
satisfied in a database D forR iff, whenever there exists a homomorphism h that maps
the atoms of Φ(X,Y ) to atoms of D, there exists an extension h′ of h that maps the
atoms of Ψ(X,Z) to atoms of D. All sets of tgds are finite here. We assume in the rest
of the paper that every tgd has exactly one atom and at most one existentially quantified
variable in its head. A set of tgds is in normal form if the head of each tgd consists
of a single atom. It was shown in [4, Lemma 10] that every set Σ of TGDs can be
transformed into a set Σ′ in normal form of size at most quadratic in |Σ|, such that Σ
andΣ′ are equivalent with respect to query answering. The normal form transformation
shown in [4] can be achieved in logarithmic space. It is, moreover, easy to see that this
very simple transformation preserves the polynomial witness property.

For a database D for R, and a set of tgds Σ on R, the set of models of D and Σ,
denoted mods(D,Σ), is the set of all (possibly infinite) databasesB such that (i)D⊆B
and (ii) every σ ∈Σ is satisfied inB. The set of answers for a CQ q toD andΣ, denoted
ans(q,D,Σ), is the set of all tuples a such that a ∈ q(B) for all B ∈mods(D,Σ). The
answer for a BCQ q to D and Σ is yes iff the empty tuple is in ans(q,D,Σ), also
denoted as D ∪Σ |= q.

Note that, in general, query answering under tgds is undecidable [2], even when the
schema and tgds are fixed [4]. Query answering is, however, decidable for interesting
classes of tgds, among which are those considered in the present paper.

The chase procedure [17, 14] uses the following oblivious chase rule.
TGD CHASE RULE. Consider a database D for a relational schemaR, and a tgd σ

on R of the form Φ(X,Y ) → ∃Z Ψ(X, Z). Then, σ is applicable to D if there
exists a homomorphism h that maps the atoms of Φ(X,Y ) to atoms of D. Let σ be
applicable to D, and h1 be a homomorphism that extends h as follows: for each Xi ∈
X , h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a fresh null value
(i.e., a Skolem constant) different from all nulls already introduced. The application of
σ on D adds to D the atom h1(Ψ(X,Z)) if not already in D (which is possible when
Z is empty).

The chase algorithm for a database D and a set of tgds Σ consists of an exhaustive
application of the tgd chase rule in a breadth-first (level-saturating) fashion, which leads
as result to a (possibly infinite) chase for D and Σ. Each atom from the database D is
assigned a derivation level. Atoms in D have derivation level 0. If an atom has not
already derivation level ≤ i but can be obtained by a single application of a tgd via the
chase rule from atoms having derivation level ≤ i, then its derivation level is i+1. The
set of all atoms of derivation level ≤ k is denoted by chasek(D,Σ). The chase of D
relative to Σ, denoted chase(D,Σ), is then the limit of chasek(D,Σ) for k →∞.

The (possibly infinite) chase relative to tgds is a universal model, i.e., there exists
a homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [11, 4]. This result
implies that BCQs q over D and Σ can be evaluated on the chase for D and Σ, i.e.,
D∪Σ |= q is equivalent to chase(D,Σ) |= q.

A chase sequence of length n based on D and Σ is a sequence of n atoms such that
each atom is either from D or can be derived via a single application of some rule in Σ
from previous atoms in the sequence. If S is such a chase sequence and q a conjunctive
query, we write S |= q if there is a homomorphism from q to the set of atoms of S.



We assume that every database has two constants, 0 and 1, that are available via
the unary predicates Zero and One, respectively. Moreover, each database has a binary
predicate Neq such that Neq(a, b) is true precisely if a and b are distinct values.

We finally define N -numerical databases. Let D be a database whose domain does
not contain any natural numbers. We define DN as the extension of D by adding the
natural numbers 0, 1, . . . , N to its domain, a unary relation Num that contains exactly
the numbers 1, . . . , N , binary order relations Succ and < on 0, 1, . . . , N , expressing
the natural successor and “<” orders on N , respectively. 3 We refer to DN as the
N -numerical extension of D, and, a so extended database as N -numerical database.
We denote the total domain of a numerical database DN by domN (D) and the non-
numerical domain (still) by dom(D). Standard databases can always be considered to
be N -numerical, for some large N by the standard type integer, with the < predicate
(and even arithmetic operations). A numbermaxint corresponding toN can be defined.

3 Main Result

Our main result is more formally stated as follows:

Theorem 1. Let C be a class of tgds in normal form, enjoying the polynomial wit-
ness property and let γ be the polynomial bounding the number of chase steps (with
γ(n1, n2) ≥ max(n1, n2), for all naturals n1, n2). For each set Σ ⊆ C of tgds and
each Boolean CQ q, one can compute in polynomial time a nonrecursive Datalog pro-
gram P of polynomial size in |Σ| and |q|, such that, for every database D it holds
D,Σ |= q if and only if D |= P . Furthermore:

(a) For N -numerical databases D, where N ≥ γ(|Σ|, |q|), the arity of P is max(a+
2, 9), where a is the maximum arity of any predicate symbol occurring in Σ;

(b) otherwise (for non-numerical databases), the arity of P is O(max(a + 2, 9) ·
log γ(|Σ|, |q|)), where a is as above.

We note that N is polynomially bounded in |Σ| and |q| by the polynomial γ that
only depends on C. The rest of this section explains the basic ideas of the proof of this
result. A more detailed proof is given in [13].

High-level idea of the proof. We first describe the high level idea of the con-
struction of the Datalog program P . It checks whether there is a chase sequence
S = t1, . . . , tN with respect to D and Σ and a homomorphism h from q to (the set
of atoms of) S. To this end, P consists of one large rule rgoal of polynomial size in N
and some shorter rules that define auxiliary relations and will be explained below.

The aim of rgoal is to guess the chase sequence S and the homomorphism q at the
same time. We recall that N does not depend on the size of D but only on |Σ| and
|q| and thus rgoal can well be as long as the chase sequence and q together. One of the
advantages of this approach is that we only have to deal with those null values that
are actually relevant for answering the query. Thus, at most N null values need to be
represented.

3 Of course, if dom(D) already contains some natural numbers we can add a fresh copy of
{0, 1, . . . , N} instead.



One might try to obtain rgoal by just taking one atom Ai for each tuple ti of S and
one atom for each atom of q and somehow test that they are consistent. However, it is
not clear how consistency could possibly be checked in a purely conjunctive fashion.4

There are two ways in which disjunctive reasoning is needed. First, it is not a priori
clear on which previous tuples, tuple ti will depend. Second, it is not a priori clear to
which tuples of S the atoms of q can be mapped.

To overcome these challenges we use the following basic ideas.

(1) We represent the tuples of S (and the required tuples of D) in a symbolic fashion,
utilizing the numerical domain.

(2) We let P compute auxiliary predicates that allow us to express disjunctive relation-
ships between the tuples in S.

Example 1. We illustrate the proof idea with a very simple running example, shown in
Figure 1.

(a) Σ :
σ1: R1(X,Y ) → ∃Z R4(X,Y, Z)
σ2: R2(Y,Z) → ∃X R4(X,Y, Z)
σ3: R3(X,Z) → ∃Y R4(X,Y, Z)
σ4: R4(X1, Y1, Z1), R4(X2, Y2, Z2) → R5(X1, Z2)

(b) q : R5(X,Y ), R3(Y,X)
(c) D :

R1

a b
c d

R2

e g

R3

g a
g h

Fig. 1. Simple example with (a) a set Σ of tgds, (b) a query q and (c) a database D.

A possible chase sequence in this example is shown in Figure 2(a). The mappingX 7→ a
and Y 7→ g, maps R5(X,Y ) to t5 and R3(Y,X) to t6, thus satisfying q.

(a)

– t1: R1(a, b)
– t2: R4(a, b,⊥2)
– t3: R2(e, g)
– t4: R4(⊥4, e, g)
– t5: R5(a, g)
– t6: R3(g, a)

(b)

– t1: R1(a, b, a)
– t2: R4(a, b,⊥2)
– t3: R2(e, g, e)
– t4: R4(⊥4, e, g)
– t5: R5(a, g, a)
– t6: R3(g, a, g)

(c)

i ri fi xi1 xi2 xi3 si ci1 ci2
1 1 0 a b a 0 0 0
2 4 1 a b 2 1 1 1
3 2 0 e g e 0 0 0
4 4 1 4 e g 2 3 3
5 5 1 a g a 4 2 4
6 3 0 g a g 0 0 0

Fig. 2. (a) Example chase sequence, (b) its extension and (c) its encoding. t2 is obtained by
applying σ1 to t1. Likewise t4 and t5 are obtained by applying σ2 to t3 and σ4 to t2 and t4,
respectively.

Notation and conventions. Let C be a class of tgds enjoying the PWP, letΣ be a set
of tgds from C, and let q be a BCQ. Let R1, . . . Rm be the predicate symbols occurring
in Σ or in q. We denote the number of tgds in Σ by `.

4 Furthermore, of course, there are no relations to which the atoms Ai could possible be
matched.



Let N := γ(|Σ|, |q|) where γ is as in Definition 1, thus N is polynomial in |Σ| and
|q|. By definition of N , if (D,Σ) |= q, then q can be witnessed by a chase sequence
Γ of length ≤ N . Our assumption that γ(n1, n2) ≥ max(n1, n2), for every n1, n2,
guarantees thatN is larger than (i) the number of predicate symbols occurring inΣ, (ii)
the cardinality |q| of the query, and (iii) the number of rules in Σ.

For the sake of a simpler presentation, we assume that all relations in Σ have the
same arity a and all rules use the same number k of tuples in their body. The latter
can be easily achieved by repeating tuples, the former by filling up shorter tuples by
repeating the first tuple entry. Furthermore, we only consider chase sequences of length
N . Shorter sequences can be extended by adding tuples from D.

Example 2. Example 1 thus translates as illustrated in Figure 3. The (extended) chase
sequence is shown in Figure 2 (b). The query q is now satisfied by the mappingX 7→ a,
Y 7→ g, U 7→ g, V 7→ a, thus mapping R5(X,Y,X) to t5 and R3(Y,X, Y ) to t6.

(a) Σ :
σ1: R1(X,Y,X), R1(X,Y,X) → ∃Z R4(X,Y, Z)
σ2: R2(Y,Z, Y ), R2(Y,Z, Y ) → ∃X R4(X,Y, Z)
σ3: R3(X,Z,X), R3(X,Z,X) → ∃Y R4(X,Y, Z)
σ4: R4(X1, Y1, Z1), R4(X2, Y2, Z2) →

R5(X1, Z2, X1)

(b) q :R5(X,Y, U), R3(Y,X, V )
(c) D :

R1

a b a
c d c

R2

e g e

R3

g a g
g h g

Fig. 3. Modified example with (a) a set Σ of tgds, (b) a query q and (c) a database D.

Proof idea (continued). On an abstract level, the atoms that make up the final rule
rgoal of P can be divided into three groups serving three different purposes. That is, rgoal
can be considered as a conjunction rtuples ∧ rchase ∧ rquery. Each group is “supported”
by a sub-program of P that defines relations that are used in rgoal, and we refer to these
three subprograms as Ptuples, Pchase and Pquery, respectively.

– The purpose of rtuples is basically to lay the ground for the other two. It consists of
N atoms that allow to guess the symbolic encoding of a sequence S = t1, . . . , tN .

– The atoms of rchase are designed to verify that S is an actual chase sequence with
respect to D.

– Finally, rquery checks that there is a homomorphism from q to S.

Ptuples and rtuples. The symbolic representation of the tuples ti of the chase se-
quence S uses numerical values to encode null values, predicate symbols Ri (by i),
tgds σj ∈ Σ (by j) and the number of a tuple ti in the sequence (that is: i).

In particular, the symbolic encoding uses the following numerical parameters.5

– ri to indicate the relation Rri to which the tuple belongs;
– fi to indicate whether ti is from D (fi = 0 ) or yielded by the chase ( fi = 1);

5 We use the names of the parameters as variable names in rgoal as well.



– Furthermore, xi1, . . . , xia represent the attribute values of ti as follows. If the j-
th attribute of ti is a value from dom(D) then xij is intended to be that value,
otherwise it is a null represented by a numeric value.

Since each rule ofΣ has at most one existential quantifier in its head, at each chase step,
at most one new null value can be introduced. Thus, we can unambiguously represent
the null value (possibly) introduced in the j-th step of the chase by the number j.

The remaining parameters si and ci1, . . . , cik are used to encode information about
the tgd and the tuples (atoms) in S that are used to generate the current tuple. More
precisely, si is intended to be the number of the applied tgd σsi and ci1, . . . , cik are
the tuple numbers of the k tuples that are used to yield ti. In the example, e.g., t5 is
obtained by applying σ4 to t2 and t4. The encoding of our running example can be
found in Figure 2 (c).

We use a new relational symbol T of arity a + k + 4 not present in the schema of
D for the representation of the tuples from S. Thus, rtuples is just:
T (1, r1, f1, x11, . . . , x1a, s1, c11, . . . , c1k), . . .,

T (N, rN , fN , xN1, . . . , xNa, sN , cN1, . . . , cNk).
The sub-program Ptuples is intended to “fill” T with suitable tuples. Basically, T

contains all encodings of tuples in D (with fi = 0) and all syntactically meaningful
tuples corresponding to possible chase steps (with fi = 1).

Pchase and rchase. The following kinds of conditions have to be checked to ensure
that the tuples “guessed” by rtuples constitute a chase sequence.

(1) For every i, the relation Rri of a tuple ti has to match the head of its rule σsi .
– In the example, e.g., r4 has to be 4 as the head of σ2 is an R4-atom.

(2) Likewise, for each i and j the relation number of tuple tcij has to be the relation
number of the j-th atom of σsi .

– In the example, e.g., r2 must be 4, as c5,1 = 2 and the first atom of σs5 = σ4 is
an R4-atom.

(3) If the head of σsi contains an existentially quantified variable, the new null value is
represented by the numerical value i.

– This is illustrated by t4 in the example: the first position of the head of rule 2
has an existentially quantified variable and thus x4,1 = 4.

(4) If a variable occurs at two different positions in σsi then the corresponding positions
in the tuples used to produce ti carry the same value.

(5) If a variable in the body of σsi also occurs in the head of σsi then the values of the
corresponding positions in the body tuple and in ti are equal.

– Z2 occurs in position 3 of the second atom of the body of σ4 and in position 2
of its head. Therefore, x4,3 and x5,2 have to coincide (where the 4 is determined
by c5,2.

It turns out that all these tests can be done by rchase, given some relations that
are precomputed by Pchase. More precisely, we let Pchase specify a 4-ary predicate
IfThen(X1, X2, U1, U2) that is intended to contain all tuples fulfilling the condition:
if X1 = X2 then U1 = U2. Similar predicates are defined for conditions with two and
three conjuncts in the IF-part. Their definition by Datalog rules is straightforward.



Pquery and rquery. Finally, we explain how it can be checked that there is a ho-
momorphism from q to S. We explain the issue through the little example query
R3(x, y) ∧ R4(y, z). To evaluate this query, rquery makes use of two additional vari-
ables q1 and q2, one for each atom of q. The intention is that these variables bind to the
numbers of the tuples that the atoms are mapped to. We have to make sure two kinds
of conditions. First, the tuples need to have the right relation symbol and second, they
have to obey value equalities induced by the variables of q that occur more than once.

The first kind of conditions is checked by adding atoms IfThen(q1, i, ri, 3) and
IfThen(q2, i, ri, 4) to rquery, for every i ≤ N . The second condition is checked simi-
larly. As we do not need any further auxiliary predicates, Pquery is empty.

This completes the description of P . Note that P is nonrecursive, and has polyno-
mial size in the size of q and Σ. Furthermore, the arity of P is as required. This proves
part (a) of Theorem 1.

In order to prove part (b), we must get rid of the numeric domain (except for 0
and 1). This is actually very easy. We just replace each numeric value by a logarithmic
number of bits (coded by our 0 and 1 domain elements), and extend the predicate arities
accordingly. As a matter of fact, this requires an increase of arity by a factor of logN =
O(log |q|). This concludes our explanation of the proof ideas underlying Theorem 1.

Remark 1. Note that the evaluation complexity of the Datalog program obtained
for case (b) is not significantly higher than the evaluation complexity of the program P
constructed for case (a). For example, in the most relevant case of bounded arities, both
programs can be evaluated in NPTIME combined complexity over a database D. In
fact, it is well-known that the combined complexity of a Datalog program of bounded
arity is in NPTIME (see [10]). But it is easy to see that if we expand the signature of
such a program (and of the underlying database) by a logarithmic number of Boolean-
valued argument positions (attributes), nothing changes, because the possible values for
such vectorized arguments are still of polynomial size. It is just a matter of coding. In a
similar way, the data complexity in both cases (a) and (b) is the same (PTIME).

Remark 2. It is easy to generalize this result to the setting where q is actually a
union of conjunctive queries (UCQ).

4 Further Results Derived From the Main Theorem

We wish to mention some interesting consequences of Theorem 1 that follow easily
from the above result after combining it with various other known results.

4.1 Linear TGDs

A linear tgd [5] is one that has a single atom in its rule body. The class of linear tgds
is a fundamental one in the Datalog± family. This class contains the class of inclusion
dependencies. It was already shown in [14] for inclusion dependencies that classes of
linear tgds of bounded (predicate) arities enjoy the PWP. That proof carries over to
linear tgds.

By Theorem 1, we then conclude:



Theorem 2. Conjunctive queries under linear tgds of bounded arity are polynomially
rewritable as nonrecursive Datalog programs in the same fashion as for Theorem 1. So
are sets of inclusion dependencies of bounded arity.

4.2 DL-Lite

A pioneering and highly significant contribution towards tractable ontological reasoning
was the introduction of the DL-Lite family of description logics (DLs) by Calvanese et
al. [9, 20]. DL-Lite was further studied and developed in [1].

A DL-lite theory (or TBox) Σ = (Σ−, Σ+) consists of a set of negative constraints
Σ− such as key and disjointness constraints, and of a set Σ+ of positive constraints
that resemble tgds. As shown in [9], the negative constraintsΣ− can be compiled into a
polymomially sized first-order formula (actually a union of conjunctive queries) of the
same arity as Σ− such that for each database and BCQ q, (D,Σ) |= q iff D 6|= Σ−

and (D,Σ+) |= q. In (the full version of) [5] it was shown that for the main DL-Lite
variants defined in [9], each Σ+ can be immediately translated into an equivalent set of
linear tgds of arity 2. By virtue of this, and the above we obtain the following theorem.

Theorem 3. Let q be a CQ and let Σ = (Σ−, Σ+) be a DL-Lite theory expressed
in one of the following DL-Lite variants: DL-LiteF,u, DL-LiteR,u, DL-Lite+A,u, DLR-
LiteF,u, DLR-LiteR,u, or DLR-Lite+A,u. Then Σ+ can be rewritten into a nonrecursive
Datalog programP such that for each databaseD, (D,Σ+) |= q iffD |= P . Regarding
the arities of P , the same bounds as in Theorem 1 hold.

4.3 Sticky and Sticky Join TGDs

Sticky tgds [6] and sticky-join tgds [6] are special classes of tgds that generalize linear
tgds but allow for a limited form of join (including as special case the cartesian product).
They allow one to express natural ontological relationships not expressible in DLs such
as OWL. For space reasons, we do not define these classes here, and refer the reader
to [8]. By results of [8], which will also be discussed in detail in a future extended
version [13] of the present paper, both classes enjoy the Polynomial Witness Property.
By Theorem 1, we thus obtain the following result:

Theorem 4. Conjunctive queries under sticky tgds and sticky-join tgds over a fixed
signature R are rewritable into polynomially sized nonrecursive Datalog programs of
arity bounded as in Theorem 1.

5 Related Work on Query Rewriting

Several techniques for query-rewriting have been developed. An early algorithm, in-
troduced in [9] and implemented in the QuOnto system6, reformulates the given query
into a union of CQs (UCQs) by means of a backward-chaining resolution procedure.

6 http://www.dis.uniroma1.it/ quonto/



The size of the computed rewriting increases exponentially w.r.t. the number of atoms
in the given query. This is mainly due to the fact that unifications are derived in a
“blind” way from every unifiable pair of atoms, even if the generated rule is superflu-
ous. An alternative resolution-based rewriting technique was proposed by Peréz-Urbina
et al. [19], implemented in the Requiem system7, that produces a UCQs as a rewriting
which is, in general, smaller (but still exponential in the number of atoms of the query)
than the one computed by QuOnto. This is achieved by avoiding the useless unifica-
tions, and thus the redundant rules obtained due to these unifications. This algorithm
works also for more expressive non-first-order rewritable DLs. In this case, the com-
puted rewriting is a (recursive) Datalog query. Following a more general approach, Calı̀
et al. [3] proposed a backward-chaining rewriting algorithm for the first-order rewritable
Datalog± languages mentioned above. However, this algorithm is inspired by the orig-
inal QuOnto algorithm, and inherits all its drawbacks. In [12], a rewriting technique
for linear Datalog± into unions of conjunctive queries is proposed. This algorithm is an
improved version of the one already presented in [3]. However, the size of the rewriting
is still exponential in the number of query atoms.

Of more interest to the present work are rewritings into nonrecursive Datalog.
In [15, 16] a polynomial-size rewriting into nonrecursive Datalog is given for the de-
scription logics DL-LiteFhorn and DL-Litehorn. For DL-LiteNhorn, a DL with counting, a
polynomial rewriting involving aggregate functions is proposed. It is, moreover, shown
in (the full version of) [15] that for the description logic DL-LiteF a polynomial-size
pure first-order query rewriting is possible. Note that neither of these logics allows for
role inclusion, while our approach covers description logics with role inclusion axioms.
Other results in [15, 16] are about combined rewritings where both the query and the
database D have to be rewritten. A recent very interesting paper discussing polynomial
size rewritings is [22]. Among other results, [22] provides complexity-theoretic argu-
ments indicating that without the use of special constants (e.g, 0 and 1, or the numerical
domain), a polynomial rewriting such as ours may not be possible. Rosati et al. [21]
recently proposed a very sophisticated rewriting technique into nonrecursive Datalog,
implemented in the Presto system. This algorithm produces a non-recursive Datalog
program as a rewriting, instead of a UCQs. This allows the “hiding” of the exponential
blow-up inside the rules instead of generating explicitly the disjunctive normal form.
The size of the final rewriting is, however, exponential in the number of non-eliminable
existential join variables of the given query; such variables are a subset of the join vari-
ables of the query, and are typically less than the number of atoms in the query. Thus,
the size of the rewriting is exponential in the query size in the worst case. Relevant
further optimizations of this method are given in [18].

Acknowledgment G. Gottlob’s Work was funded by the EPSRC Grant EP/H051511/1
ExODA: Integrating Description Logics and Database Technologies for Expressive
Ontology-Based Data Access. We thank the anonymous referees, as well as Roman
Kontchakov, Carsten Lutz, and Michael Zakharyaschev for useful comments on an ear-
lier version of this paper.

7 http://www.comlab.ox.ac.uk/projects/requiem/home.html



References

1. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev, The
dl-lite family and relations, J. Artif. Intell. Res. (JAIR) 36 (2009), 1–69.

2. Catriel Beeri and Moshe Y. Vardi, The implication problem for data dependencies, Proc. of
ICALP, 1981, pp. 73–85.

3. A. Calı̀, G. Gottlob, and A. Pieris, Query rewriting under non-guarded rules, Proc. AMW,
2010.

4. Andrea Calı̀, Georg Gottlob, and Michael Kifer, Taming the infinite chase: Query answering
under expressive relational constraints, Proc. of KR, 2008, pp. 70–80.

5. Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz, A general datalog-based framework
for tractable query answering over ontologies, Proc. of PODS, 2009, pp. 77–86.

6. Andrea Calı̀, Georg Gottlob, and Andreas Pieris, Advanced processing for ontological
queries, PVLDB 3 (2010), no. 1, 554–565.

7. , Query answering under non-guarded rules in datalog+/-, Proc. of RR, 2010,
pp. 175–190.

8. , Towards more expressive ontology languages: The query answering problem, Tech.
report, University of Oxford, Department of Computer Science, 2011, Submitted for publi-
cation - available from the authors.

9. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati, Tractable reasoning and efficient query answering in description logics: The
DL-lite family, J. Autom. Reasoning 39 (2007), no. 3, 385–429.

10. Evgeny Dantsin, Thomas Eiter, Gottlob Georg, and Andrei Voronkov, Complexity and ex-
pressive power of logic programming, ACM Comput. Surv. 33 (2001), no. 3, 374–425.

11. Alin Deutsch, Alan Nash, and Jeff B. Remmel, The chase revisisted, Proc. of PODS, 2008,
pp. 149–158.

12. Georg Gottlob, Giorgio Orsi, and Andreas Pieris, Ontological queries: Rewriting and opti-
mization, Proc. of ICDE, 2011.

13. Georg Gottlob and Thomas Schwentick, Rewriting ontological queries into small nonre-
cursive datalog programs, arXiv Computing Research Repository (CoRR) arXiv:1106.3767
(2011), extended version, available at http://arxiv.org/abs/1106.3767.

14. David S. Johnson and Anthony C. Klug, Testing containment of conjunctive queries under
functional and inclusion dependencies, J. Comput. Syst. Sci. 28 (1984), no. 1, 167–189.

15. Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev,
The combined approach to query answering in dl-lite, KR (Fangzhen Lin, Ulrike Sattler, and
Miroslaw Truszczynski, eds.), AAAI Press, 2010.

16. , The combined approach to ontology-based data access, IJCAI, 2011.
17. David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv, Testing implications of data de-

pendencies., ACM Trans. Database Syst. 4 (1979), no. 4, 455–469.
18. Giorgio Orsi and Andreas Pieris, Optimizing query answering under ontological constraints,

PVLDB, 2011, to appear.
19. H. Pérez-Urbina, B. Motik, and I. Horrocks, Tractable query answering and rewriting under

description logic constraints, Journal of Applied Logic 8 (2009), no. 2, 151–232.
20. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio

Lenzerini, and Riccardo Rosati, Linking data to ontologies, J. Data Semantics 10 (2008),
133–173.

21. R. Rosati and A. Almatelli, Improving query answering over DL-Lite ontologies, Proc. KR,
2010.

22. R.Kontchakov S. Kikot, Carsten Lutz, and M. Zakharyaschev, On (In)Tractability of OBDA
with OWL2QL, Proc. DL, 2011.


