
Query Answering over SROIQ Knowledge Bases with
SPARQL

Ilianna Kollia1, Birte Glimm2, and Ian Horrocks2

1 National Technical University of Athens, Greece
2 Oxford University Computing Laboratory, UK

Abstract. W3C currently extends the SPARQL query language with so-called
entailment regimes, which define how queries are evaluated using logical en-
tailment relations. We describe a sound and complete algorithm for the OWL
Direct Semantics entailment regime. Since OWL’s Direct Semantics is based on
Description Logics (DLs), this results in an expressive query language for DL
knowledge bases. The query language differs from the commonly studied con-
junctive queries in that it only has distinguished variables. Furthermore, variables
can occur within complex concepts and can also bind to concept or role names.
We provide a prototypical implementation and propose several novel optimiza-
tion strategies. We evaluate the efficiency of the proposed optimizations and find
that for ABox queries our system performs comparably to already deployed sys-
tems. For complex queries an improvement of up to three orders of magnitude
can be observed.

1 Introduction

Query answering is important in the context of the Semantic Web, since it provides
a mechanism via which users and applications can interact with ontologies and data.
Although SPARQL [12] was standardized in 2008 by the World Wide Web Consortium
for querying Semantic Web data, only the simple semantics of RDF is supported by
SPARQL 1.0, which does not allow for any reasoning.

There is not yet a standardized query language for OWL knowledge bases (KBs).
Several of the widely deployed systems support, however, some query language. Pellet
supports SPARQL-DL [13], which is a subset of SPARQL, adapted to work with OWL’s
Direct Semantics. Similarly, KAON2 supports [9] SPARQL, but restricted to ABox
queries. Racer Pro [3] has a proprietary query language, called nRQL [4], which allows
for queries that go beyond ABox queries, e.g., one can retrieve sub- or super-concepts
of a given concept. TrOWL is another system that supports ABox SPARQL queries,
but the reasoning in TrOWL is approximate, i.e., an OWL DL ontology is rewritten
into an ontology that uses a less expressive language before reasoning is applied [14].
Furthermore, there are systems such as QuOnto3 or Requiem,4 which support profiles of
OWL 2, and which support conjunctive queries, e.g., written in SPARQL syntax. Of the
systems that support all of OWL 2 DL, only Pellet supports non-distinguished variables
as long as they are not used in cycles, which is a measure to ensure decidability.

3 http://www.dis.uniroma1.it/~quonto/
4 http://www.comlab.ox.ac.uk/projects/requiem/home.html

The SPARQL W3C working group is currently devising version 1.1 of SPARQL,
which also includes several entailment regimes. These entailment regimes redefine the
semantics of SPARQL queries based on standard semantic web entailment relations
such as RDFS or OWL Direct Semantics entailment. This allows for using SPARQL
also as a query language over OWL ontologies with query answers also including solu-
tions that are implicit consequences of the queried ontology or knowledge base.

In this paper, we present an implementation and optimization techniques for the
SPARQL OWL 2 Direct Semantics entailment regime, which we call SPARQL-OWL
for brevity. SPARQL-OWL only allows for distinguished variables (for compatibility
with SPARQL 1.0), but it poses significant challenges for implementations, e.g., by
allowing variables that bind to concepts or roles and which can even occur within com-
plex concepts. Our implementation supports ontologies (knowledge bases) in OWL 2
DL and is based on the HermiT reasoner.5 Most of the devised optimization techniques
are also applicable when using another OWL reasoner. In our algorithm, we extend the
techniques used for conjunctive query answering to deal with arbitrary SPARQL-OWL
queries and propose a range of novel optimizations in particular for SPARQL-OWL
queries that go beyond SPARQL-DL.

Our prototypical system is the first to fully support SPARQL-OWL, and we have
performed a preliminary evaluation in order to investigate the feasibility of our algo-
rithm and the effectiveness of the proposed optimizations. This evaluation suggests
that, in the case of standard conjunctive queries, our system performs comparably to
existing ones. It also shows that a naive implementation of our algorithm behaves badly
for some non-standard queries, but that the proposed optimizations can dramatically
improve performance, in some cases by as much as three orders of magnitude.

An extended version of this paper is accepted at ESWC’11 [10].

2 Preliminaries

In this section we give a brief introduction to the SPARQL-OWL entailment regime
and in the next section we describe an algorithm that finds answers to queries under this
regime.

2.1 The Relationship between RDF, SPARQL, and OWL

SPARQL is originally an RDF query language and the WHERE clause of a SPARQL
query consists of an RDF graph, where some nodes or edges are replaced by variables.
There is, however, a close relationship between OWL and RDF since OWL ontologies
can be represented as RDF graphs. Furthermore, OWL’s RDF-Based Semantics is a
direct extension of the RDF and RDFS semantics. We focus here, however, on OWL’s
Direct Semantics, which is based on the DL SROIQ [8] and which is only defined for
certain well-formed RDF graphs. Well-formedness guarantees that the RDF graph can
be mapped into an OWL 2 DL ontology [11], which can be seen as a SROIQ KB.

5 http://www.hermit-reasoner.com

An example of a SPARQL query is
SELECT ?i FROM <ontologyIRI> WHERE { ?i rdf:type C }

where the triple in the WHERE clause is called a basic graph pattern (BGP) and is
written in Turtle [1]. Since the Direct Semantics of OWL is defined in terms of OWL
structural objects, such a BGP is mapped into structural objects, which can have vari-
ables in place of class, object property, data property, or individual names or literals. For
example, the above BGP is mapped to ClassAssertion(C ?i) in functional-style syntax
or C(?i) in DL syntax.

OWL DL is a typed language and to map RDF triples into OWL structural ob-
jects, one often has to know the type of a term. For example, in order to map the
triple p rdfs:subpropertyOf p′ into an OWL structural object, we have to know whether
p is an abstract or a concrete role (an object or a data property), in the former case,
the mapping results in SubObjectPropertyOf(p p′), whereas in the latter case, we get
SubDataPropertyOf(p p′). In DL notation, we get p v p′, but p and p′ would either be
abstract or concrete roles. In many cases, the typing information from the queried KB
can be used to disambiguate the mapping process. For variables that map to concepts or
roles, however, typing information is usually required and has to be added to the BGP.
For example,
a rdf:type [rdf:type owl:Restricion ; owl:onProperty ?x ; owl:someValuesFrom ?y]

could be mapped to either (1) or (2).
ClassAsserion(ObjectSomeVauesFrom(?x ?y) a) (1)

ClassAsserion(DataSomeVauesFrom(?x ?y) a) (2)
In such a case, a triple such as ?x rdf:type owl:ObjectProperty can be added to disam-
biguate the mapping process. Although the SPARQL specification uses Turtle, other
query syntaxes can also be defined. Pellet accepts, for example, queries where the BGP
is written in Manchester Syntax [7].

For further details, we refer interested readers to the W3C specification that defines
the mapping between OWL structural objects and RDF graphs [11] and to the SPARQL-
OWL entailment regime6 that defines the extension of this mapping between BGPs and
OWL objects with variables.

2.2 SPARQL-OWL Queries

In the following, we directly write BGPs in DL notation extended to allow for variables
in place of concept, role and individual names in axioms. For simplicity, we do not
consider concrete roles (data properties) here.

Anonymous individuals in the query are treated as variables whose bindings do not
appear in the query’s result sequence. This is motivated by the way SPARQL handles
anonymous individuals (known as blank nodes in RDF terminology). This is in con-
trast to conjunctive queries where they are treated as existential variables. Furthermore,
anonymous individuals in the queried KB are treated as (Skolem) constants and can be
returned in a query answer. For brevity, we assume here that neither the query nor the
queried KB contains anonymous individuals.

6 http://www.w3.org/TR/sparql11-entailment/

Definition 1. Let NC, NR, NI , VC, VR, and VI be countable, infinite, and pairwise dis-
joint sets of concept names, role names, individual names, concept variables, role vari-
ables, and individual variables, respectively. We call S = (NC,NR,NI ,VC,VR,VI) a sig-
nature. A SPARQL-OWL query w.r.t. S consists of axiom templates, which are SROIQ
axioms where in place of concept names, one can use names from NC ∪ VC, in place
of role names, one can use names from NR ∪ VR, and in place of individual names, one
can use names form NI ∪ VI . A SROIQ knowledge base uses only terms from NC,NR,
and NI . The restriction of S to terms that occur in a knowledge base K (a query q) is
denoted as SK (Sq); we write V(q) to denote the set of all variables in q.

Given a knowledge base K with SK = (NKC ,N
K
R ,N

K
I , ∅, ∅, ∅) and a query q over

(NKC ,N
K
R ,N

K
I ,VC,VR,VI), a solution mapping µ for q over K is a partial function

µ : VC ∪ VR ∪ VI → NKC ∪ NKR ∪ NKI such that dom(µ) = V(q), µ(v) ∈ NKC for each
v ∈ VC ∩ dom(µ), µ(v) ∈ NKR for each v ∈ VR ∩ dom(µ), and µ(v) ∈ NKI for each
v ∈ VI ∩ dom(µ), where dom(µ) denotes the domain of µ; we write µ(q) to denote the
result of replacing each variable v in q with µ(v).

The evaluation of q over K yields a set of solution mappings µ with
{ µ | K ∪ µ(q) is a SROIQ knowledge base and K |= µ(q)}

More complex WHERE clauses, which use operators such as UNION for alternative
selection criteria or OPTIONAL to query for optional bindings [12, 5], can be evaluated
simply by combining solution mappings obtained by the BGP/query evaluation. There-
fore, we focus here on BGP evaluation only.

In the remainder, we use K to denote the SROIQ KB obtained from a queried
RDF graph, and q for the query obtained from mapping a BGP into axiom templates.
We further assume that the signature of K is SK = (NKC ,N

K
R ,N

K
I , ∅, ∅, ∅) and a query

uses symbols from (NKC ,N
K
R ,N

K
I ,VC,VR,VI).

3 Evaluation of SPARQL-OWL Queries

A straightforward algorithm to realize the entailment regime simply tests, for each pos-
sible solution mapping µ, whether K |= µ(q). Since only terms that are used in K can
occur in the range of solution mappings, there are finitely many mappings to test. In the
worst case, however, the number of mappings that have to be tested is still exponential
in the number of variables in the query. Such an algorithm is sound and complete if the
reasoner used to decide entailment is sound and complete since we check all mappings
for variables that can constitute actual solution mappings.

3.1 General Query Evaluation Algorithm

Optimizations cannot easily be integrated in the above sketched algorithm since it uses
the reasoner to check for the entailment of the instantiated query as a whole and, hence,
does not take advantage of relations that may exist between axiom templates. For a
more optimized evaluation, we evaluate the query axiom template by axiom template.
Initially, our solution set contains only the identity mapping, which does not map any
variable to a value. We then pick our first axiom template, extend the identity mapping

to cover the variables of the chosen axiom template and use the reasoner to check which
of the mappings instantiate the axiom template into an entailed axiom. We then pick the
next axiom template and again extend the mappings from the previous round to cover
all variables and check which of those mappings lead to an entailed axiom. Thus, axiom
templates which are very selective and are only satisfied by very few solutions reduce
the number of intermediate solutions. Choosing a good execution order, therefore, can
significantly affect the performance.

For example, let q = {C(?x), r(?x ?y)} with r ∈ NR,C ∈ NC, ?x, ?y ∈ VI . The query
belongs to the class of conjunctive queries. We assume that the queried KB contains 100
individuals, only 1 of which belongs to the concept C. This C instance has 1 r-successor,
while we have overall 200 pairs of individuals related with the role r. If we first evaluate
C(?x), we test 100 mappings (since ?x is an individual variable), of which only 1 map-
ping satisfies the axiom template. We then evaluate r(?x ?y) by extending the mapping
with all 100 possible mappings for ?y. Again only 1 mapping yields a solution. For the
reverse axiom template order, the first axiom template requires the test of 100 ∗ 100
mappings. Out of those, 200 remain to be checked for the second axiom template and
we perform 10, 200 tests instead of just 200.

The importance of the execution order is well known in relational databases and cost
based optimization techniques are used to find good execution orders. Ordering strate-
gies as implemented in databases or triple stores are, however, not directly applicable
in our setting. In the presence of expressive schema level axioms, we cannot rely on
counting the number of occurrences of triples. We also cannot, in general, precompute
all relevant inferences to base our statistics on materialized inferences. Furthermore,
we should not only aim at decreasing the number of intermediate results, but also take
into account the cost of checking or computing the solutions. This cost can be very
significant with OWL reasoning.

For several kinds of axiom templates we can, instead of checking entailment, di-
rectly retrieve the solutions from the reasoner. For example, for C(?x), reasoners typi-
cally have a method to retrieve concept instances. Although this might internally trigger
several tests, most methods of reasoners are highly optimized and avoid as many tests
as possible. Furthermore, reasoners typically cache several results such as the computed
concept hierarchy and retrieving sub-concepts can then be realized with a cache lookup.
Thus, the actual execution cost might vary significantly. Notably, we do not have a
straight correlation between the number of results for an axiom template and the actual
cost of retrieving the solutions as is typically the case in triple stores or databases. This
requires cost models that take into account the cost of the specific reasoning operations
(depending on the state of the reasoner) as well as the number of results.

As motivated above, we distinguish between simple and complex axiom templates,
where simple axiom templates are those that correspond to dedicated reasoning tasks.
Complex axiom templates are, in contrast, evaluated by iterating over the compatible
mappings and by checking entailment for each instantiated axiom template. An example
of a complex axiom template is (∃r.?x)(?y).

Algorithm 1 shows how we evaluate queries. We first explain the general outline of
the algorithm and leave the details of the used submethods for the following section.
We first simplify axiom templates where possible (rewrite, line 1). Next, the method

Algorithm 1 Query Evaluation Procedure
Input: K : the queried knowledge base, which is a SROIQ knowledge base

q: a SROIQ query
Output: a set of solutions for evaluating q over K
1: Axt := rewrite(Kq) {create a list Axt of simplified axiom templates from q}
2: Axt1, . . . ,Axtm:=connectedComponents(Axt)
3: for j=1, . . . , m do
4: R j := {µ0 | dom(µ0) = ∅}

5: axt1, . . . , axtn := reorder(Axtj)
6: for i = 1, . . . , n do
7: Rnew := ∅
8: for µ ∈ R j do
9: if isSimple(axti) and V(axti) \ dom(µ) , ∅ then

10: Rnew := Rnew ∪ {(µ ∪ µ′) | µ′ ∈ callReasoner(µ(axti))}
11: else
12: B := {µ′ | µ′ extends µ, µ′ is a solution mapping for axti and K}
13: B := prune(B, axti,K)
14: while B , ∅ do
15: µ′ := removeNext(B)
16: if K |= µ′(axti) then Rnew := Rnew ∪ {µ

′}

17: else B := prune(B, axti, µ′)
18: end while
19: end if
20: end for
21: R j := Rnew

22: end for
23: end for
24: R := {µ1 ∪ . . . ∪ µm | µ j ∈ R j, 1 ≤ j ≤ m}
25: return R

connectedComponents (line 2) partitions the axiom templates into sets of connected
components, i.e., within a component the templates share common variables, whereas
between components there are no shared variables. Unconnected components unneces-
sarily increase the amount of intermediate results and, instead, we can simply combine
the results for the components in the end (line 24). For each component, we proceed as
described below: we first determine an order (method reorder in line 5). For a simple
axiom template, which contains so far unbound variables, we then call a specialized
reasoner method to retrieve entailed results (callReasoner in line 10). Otherwise, we
check which compatible solutions yield an entailed axiom (lines 11 to 19). The method
prune (lines 13 and 17) excludes mappings that cannot lead to entailed axioms.

3.2 Optimized Query Evaluation

Axiom Template Reordering We now explain how we order the axiom templates in
the method reorder (line 5). Since complex axiom templates can only be evaluated
with costly entailment checks, our aim is to reduce the number of bindings before we
check the complex templates. The simple axiom templates are ordered by their cost,

Table 1. Axiom templates and their equivalent simpler ones, where C(i) are complex concepts
(possibly containing variables), a is an individual or variable

C1 u . . . u Cn(a) ≡ {Ci(a) | 1 ≤ i ≤ n}
C v C1 u . . . u Cn ≡ {C v Ci | 1 ≤ i ≤ n}
C1 t . . . t Cn v C ≡ {Ci v C | 1 ≤ i ≤ n}

which is computed as the weighted sum of the estimated number of required consistency
checks and the estimated result size. These estimates are based on statistics provided
by the reasoner and this is the only part where our algorithm depends on the specific
reasoner that is used. In case the reasoner cannot give estimates, one can still work
with statistics computed from explicitly stated information. We do this for some simple
templates, e.g., queries for domains and ranges of properties, for which the reasoner
does not provide result size estimations. Since the result sizes for complex templates
are difficult to estimate using either the reasoner or the explicitly stated information in
K , we order complex templates based only on the number of bindings that have to be
tested. It is obvious that the reordering of axiom templates does not affect soundness
and completeness of Algorithm 1.

Axiom Template Rewriting Some costly to evaluate axiom templates can be rewrit-
ten into axiom templates that can be evaluated more efficiently and yield an equiva-
lent result. Such axiom templates are shown on the left-hand side of Table 1 and their
equivalent simplified form is shown on the right-hand side. To understand the intu-
ition behind such transformation, we consider a query with only the axiom template:
?x v ∃r.?y u C. Its evaluation requires a quadratic number of consistency checks in
the number of concepts (since ?x and ?y are concept variables). The rewriting yields:
?x v C and ?x v ∃r.?y. The first axiom template is now evaluated with a cheap cache
lookup (assuming that the concept hierarchy has been precomputed). For the second
one, we only have to check the usually few resulting bindings for ?x combined with
all other concept names for ?y. We apply the rewriting in the method rewrite in line 1
of our algorithm. Soundness and completeness is preserved since instantiated rewritten
templates are semantically equivalent to the corresponding instantiated complex ones.

Concept and Role Hierarchy Exploitation The number of consistency checks required
to evaluate a query can be further reduced by taking the concept and role hierarchies
into account. Once the concepts and roles are classified (this can ideally be done be-
fore a system accepts queries), the hierarchies are stored in the reasoner’s internal
structures. We further use the hierarchies to prune the search space of solutions in
the evaluation of certain axiom templates. We illustrate the intuition with an exam-
ple: Infection v ∃hasCausalLinkTo.?x If C is not a solution and B v C holds, then B is
also not a solution. Thus, when searching for solutions for ?x, the method removeNext
(line 15) chooses the next binding to test by traversing the concept hierarchy topdown.
When we find a non-solution C, the subtree rooted in C of the concept hierarchy can
safely be pruned, which we do in the method prune in line 17. Queries over knowledge
bases with a large number of concepts and a deep concept hierarchy can, therefore,
gain the maximum advantage from this optimization. We employ similar optimizations

using the role hierarchies. It is obvious that we only prune mappings that cannot con-
stitute actual solution and instance mappings, hence, soundness and completeness of
Algorithm 1 is preserved.

Exploiting the Domain and Range Restrictions The implicit domains and ranges of the
roles in K (in case the reasoner precomputes and stores them) and/or the explicit ones
can be exploited to reduce the number of entailment checks that need to be performed
in order to evaluate a query.

Let us assume that K contains > v ∀takesCourse.Course, expressing a range re-
striction, and q contains GraduateStudent v ∃takesCourse.?x. In case at least one so-
lution mapping exists for ?x, the concept Course and its super-concepts can immedi-
ately be considered solution mappings for ?x. Moreover, if the reasoner precomputes
the disjoint concepts, this information can be used to prune the possible concepts for ?x
that are disjoint from the concept Course. This is done in the method prune (line 13),
which again preserves soundness and completeness.

4 System Evaluation

Since SPARQL’s entailment regimes only change the evaluation of BGPs, standard
SPARQL algebra processors can be used to combine the intermediate results, e.g.,
in unions or joins. Furthermore, standard OWL reasoners such as HermiT, Pellet, or
FaCT++ can be used to perform the required reasoning tasks.

4.1 The System Architecture

In our system, the queried KB is loaded into an OWL reasoner and the reasoner per-
forms initial tasks such as concept classification before the system accepts queries. We
use the ARQ library7 of the Jena Semantic Web Toolkit for parsing the SPARQL queries
and for the SPARQL algebra operations apart from the BGP evaluation. The BGPs are
mapped to queries (as in Def. 1) and represented in a custom extension of the OWL API
[6]. The query is then passed to a query optimizer, which applies the axiom template
rewriting and then searches for a good query execution plan based on statistics provided
by the reasoner. We use the HermiT reasoner for OWL reasoning, but only the module
that generates statistics and provides cost estimations is HermiT specific.

4.2 Experimental Results

We tested our system with the Lehigh University Benchmark (LUBM) [2] and a range
of custom queries that test complex axiom template evaluation over the more expressive
GALEN ontology. All experiments were performed on a Windows Vista machine with
a double core 2.2 GHz Intel x86 32 bit processor and Java 1.6 allowing 1GB of Java
heap space. We measure the time for one-off tasks such as classification separately
since such tasks are usually performed before the system accepts queries. Whether more

7 http://jena.sourceforge.net/ARQ/

Table 2. Query answering times in milliseconds for LUBM(1,0) and in seconds for the queries
of Table 3 with and without optimizations

LUBM(1, 0) GALEN queries from Table 3
Query Time Query Reordering Hierarchy Rewriting Time

Exploitation
1 20 1 2.1
2 46 1 x 0.1
3 19 2 780.6
4 19 2 x 4.4
5 32 3 >30 min
6 58 3 x 119.6
7 42 3 x 204.7
8 353 3 x x 4.9
9 4,475 4 x x >30 min

10 23 4 x x 361.9
11 19 4 x x >30 min
12 28 4 x x x 68.2
13 16 5 x >30 min
14 45 5 x >30 min

5 x x 5.6

costly operations such as the realization of the ABox, which computes the types for all
individuals, are done in the beginning, depends on the setting and the reasoner. Since
realization is relatively quick in HermiT for LUBM (GALEN has no individuals), we
also performed this task upfront. The given results are averages from executing each
query three times. The ontologies and all code required to perform the experiments are
available online.8

We first evaluate the 14 LUBM queries. These queries are simple ones and have
variables only in place of individuals and literals. The LUBM ontology contains 43
concepts, 25 abstract roles, and 7 concrete roles. We tested the queries on LUBM(1,0),
which contains data for one university starting from index 0, and which contains 16,283
individuals and 8,839 literals. The ontology took 3.8 s to load and 22.7 s for classifi-
cation and realization. Table 2 shows the execution time for each of the queries. The
reordering optimization has the biggest impact on queries 2, 7, 8, and 9. These queries
require much more time or are not answered at all within the time limit of 30 min
without this optimization (758.9 s, 14.7 s, >30 min, >30 min, respectively).

Conjunctive queries are supported by a range of OWL reasoners. SPARQL-OWL
allows, however, the creation of very powerful queries, which are not currently sup-
ported by any other system. In the absence of suitable standard benchmarks, we created
a custom set of queries as shown in Table 3. Since the complex queries are mostly based
on complex schema queries, we switched from the very simple LUBM ontology to the
GALEN ontology. GALEN consists of 2,748 concepts and 413 abstract roles. The on-
tology took 1.6 s to load and 4.8 s to classify (concepts and roles). The execution time
for these queries is shown on the right-hand side of Table 2. For each query, we tested

8 http://www.hermit-reasoner.com/2010/sparqlowl/sparqlowl.zip

Table 3. Sample complex queries for the GALEN ontology

1 Infection v ∃hasCausalLinkTo.?x
2 Infection v ∃?y.?x
3 ?x v Infection u ∃hasCausalAgent.?y
4 NAMEDLigament v NAMEDInternalBodyPart u ?x

?x v ∃hasShapeAnalagousTo?y u ∃?z.linear
5 ?x v NonNormalCondition

?z v ModifierAttribute
Bacterium v ∃?z.?w
?y v StatusAttribute
?w v AbstractStatus
?x v ∃?y.Status

the execution once without optimizations and once for each combination of applicable
optimizations from Section 3.

As expected, an increase in the number of variables within an axiom template leads
to a significant increase in the query execution time because the number of mappings
that have to be checked grows exponentially in the number of variables. This can, in
particular, be observed from the difference in execution time between Query 1 and 2.
From Queries 1, 2, and 3 it is evident that the use of the hierarchy exploitation opti-
mization leads to a decrease in execution time of up to two orders of magnitude and, in
combination with the query rewriting optimization, we can get an improvement of up
to three orders of magnitude as seen in Query 3. Query 4 can only be completed in the
given time limit if at least reordering and hierarchy exploitation is enabled. Rewriting
splits the first axiom template into the following two simple axiom templates, which are
evaluated much more efficiently:

NAMEDLigament v NAMEDInternalBodyPart and NAMEDLigament v ?x
After the rewriting, the reordering optimization has an even more pronounced effect
since both rewritten axiom templates can be evaluated with a simple cache lookup.
Without reordering, the complex axiom template could be executed before the simple
ones, which leads to the inability to answer the query within the time limit of 30 min.
Without a good ordering, Query 5 can also not be answered, but the additional use of
the class and property hierarchy further improves the execution time by three orders of
magnitude.

Although our optimizations can significantly improve the query execution time, the
required time can still be quite high. In practice, it is, therefore, advisable to add as many
restrictive axiom templates for query variables as possible. For example, the addition of
?y v Shape to Query 4 reduces the runtime from 68.2 s to 1.6 s.

5 Discussion

We have presented a sound and complete query answering algorithm and novel op-
timizations for SPARQL’s OWL Direct Semantics entailment regime. Our prototypi-
cal query answering system combines existing tools such as ARQ, the OWL API, and

the HermiT OWL reasoner. Apart from the query reordering optimization—which uses
(reasoner dependent) statistics provided by HermiT—the system is independent of the
reasoner used, and could employ any reasoner that supports the OWL API.

We evaluated the algorithm and the proposed optimizations on the LUBM bench-
mark and on a custom benchmark that contains queries that make use of the very expres-
sive features of the entailment regime. We showed that the optimizations can improve
query execution time by up to three orders of magnitude.
Acknowledgements This work was supported by EPSRC in the project HermiT: Rea-
soning with Large Ontologies. The work has also been supported by the EC Indicate
project.

References

1. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team Submission
(14 January 2008), available at http://www.w3.org/TeamSubmission/turtle/

2. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Semantics 3(2-3), 158–182 (2005)

3. Haarslev, V., Möller, R.: Racer system description. In: Gor, R., Leitsch, A., Nipkow, T. (eds.)
Proc. 1st Int. Joint Conf. on Automated Reasoning (IJCAR’01). LNCS, vol. 2083, pp. 701–
705. Springer (2001)

4. Haarslev, V., Möller, R., Wessel, M.: Querying the semantic web with Racer + nRQL. In:
Proc. KI-2004 International Workshop on Applications of Description Logics (2004)

5. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

6. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL 2 ontolo-
gies. In: Patel-Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Workshop on OWL:
Experiences and Directions. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

7. Horridge, M., Patel-Schneider, P.F. (eds.): OWL 2 Web Ontology Language: Manchester
Syntax. W3C Working Group Note (27 October 2009), available at http://www.w3.org/TR/

owl2-manchester-syntax/

8. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., My-
lopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR’06). pp. 57–67. AAAI Press (2006)

9. Hustadt, U., Motik, B., Sattler, U.: ReducingSHIQ− description logic to disjunctive datalog
programs. In: Proc. 9th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’04). pp. 152–162. AAAI Press (2004)

10. Kollia, I., Glimm, B., Horrocks, I.: SPARQL Query Answering over OWL Ontologies. In:
Proc. 8th Extended Semantic Web Conf. (ESWC’11) (2011), to appear

11. Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Mapping to RDF
Graphs. W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/

owl2-mapping-to-rdf/
12. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-

mendation (15 January 2008), available at http://www.w3.org/TR/rdf-sparql-query/

13. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: Golbreich, C., Kalyan-
pur, A., Parsia, B. (eds.) Proc. OWLED 2007 Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 258. CEUR-WS.org (2007)

14. Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: Tractable OWL 2 reasoning infrastructure. In: Pro-
ceedings of the Extended Semantic Web Conference (ESWC’10) (2010)

