
In the Search of Improvements to the
EL+ Classification Algorithm

Barış Sertkaya

sertkaya.baris@googlemail.com

Abstract. We investigate possible improvements to the existing algo-
rithm for classifying EL+ TBoxes. We present a modified algorithm based
on the well-known linear closure algorithm from relational databases. De-
spite its better worst-case complexity, surprisingly it turns out that this
algorithm does not perform well in practice. We discuss optimizations to
the existing algorithm and evaluate them using our prototypical reasoner
cheetah on several large bio-medical knowledge bases.

1 Introduction

In [9, 8] Brandt has shown that the tractability result in [2] for subsumption w.r.t.
cyclic EL TBoxes can be extended to the DL ELH, which in addition to EL allows
for general concept inclusion axioms and role hierarchies. Later in [3] Baader et.
al. have shown that the tractability result can even be further extended to the
DL EL++ which in addition to ELH allows for the bottom concept, nominals,
role inclusion axioms, and a restricted form of concrete domains. In addition to
these promising theoretical results, it turned out that despite their relatively low
expressivity, these fragments are still expressive enough for the well-known bio-
medical knowledge bases SNOMED [12] and (large parts of) Galen [19], and the
Gene Ontology GO [11]. In [4, 6, 20] the practical usability of these fragments
on large knowledge bases has been investigated. The CEL Reasoner [18] was
as a result of these studies the first reasoner that could classify the mentioned
knowledge bases from life sciences domain in reasonable times.

Successful applications of the EL family increased investment of further work
in this direction. The EL family now provides the basis for the profile OWL2
EL1. Moreover, there are now a few other reasoners specifically tailored for the
EL family, like Snorocket [16] and TrOWL [21], and CB [15], which extends
the EL++ algorithm to Horn SHIQ. A comprehensive study comparing the
performace of several reasoners on large bio-medical knowledge bases has been
presented in [13].

In the present work we investigate possible improvements to the existing clas-
sification algorithm for the EL family. We present a modified algorithm based
on the well-known linear closure algorithm [7] from relational databases [17].
We evaluate both the modified algorithm and the implementation of the simple

1 http://www.w3.org/TR/owl2-profiles/#OWL 2 EL



algorithm in our prototypical EL+ reasoner cheetah on several large knowl-
edge bases from life sciences. Surprisingly, it turns out that despite its better
worst-case complexity, the modified algorithm performs worse than the simple
algorithm in practice. In Section 2 we introduce the linear closure algorithm
from relational databases. In Section 3 we present our modified algorithm based
on linear closure, and in Section 4 we present our experimental results.

2 Computing Closure Under Functional Dependencies

In relational databases [17], specification of constraints on data is of crucial im-
portance for correct modelling of the world and correct design of the database
schemas. One way of specifying constraints is using functional dependencies in-
troduced in [10]. A functional dependency occurs when the values of a tuple on
one set of attributes uniquely determine the values on another set of attributes.
Formally, given a relation r and a set of attribute names R, a functional depen-
dency (FD) is a pair of sets X,Y ⊆ R written as X → Y . The relation r satisfies
the FD X → Y if the tuples with equal X-values also have equal Y-values. In
this case, one says that the set of attributes X functionally determine the set of
attributes Y .

Given a set of FDs F and an FD X → Y , one interesting question is whether
F implies X → Y , i.e., whether every relation that satisfies all FDs in F also
satisfy X → Y , which we denote as F |= X → Y . In order to answer this, one
can compute the smallest set of all FDs that F implies by using a set of inference
axioms called Armstrong’s axioms [1] and check whether the mentioned FD is an
element of this set. However, the set of FDs that F implies can be considerably
larger than F and costly to compute. Thus one is interested in answering this
question without computing this set. Instead, one computes the so-called closure
of X under F and checks whether it contains Y . The closure of a set of attributes
X ⊆ R under a set of FDs F is the smallest subset X+ of R such that X ⊆ X+

and for every A→ B ∈ F if A ⊆ X+ holds, then B ⊆ X+ holds as well. 2

2.1 The Linear Closure Algorithm

In [7] Beeri and Bernstein have given an algorithm for efficiently computing
closure under a set of FDs. Briefly, for each attribute the algorithm keeps an
index pointing to the set of FDs whose left handsides contain that attribute.
Additionally, for each FD it keeps a counter whose value is initally the size of
the left handside of that FD. Initialization of these data structures is shown in
the procedure Initialization in Algorithm 1.

For computing the closure of a set of attributes x under a set of FDs F it
keeps a queue update which is initally equal to x. In the procedure Closure it
repeatedly fetches and removes an attribute from update and decrements the

2 Note that, from the viewpoint of logic, computing closure is computing consequences
in propositional Horn logic. In fact, the notions we have defined can easily be refor-
mulated in propositional logic when we view the attributes as propositional variables.



Algorithm 1 The Linear Closure Algorithm

Procedure: Initialization

1: for all FD W → Z ∈ F do
2: count[W → Z] := |W |
3: for all attribute A ∈W do
4: list[A] := list[A] ∪ {W → Z}
5: end for
6: end for
7: newdep := update := x

Procedure: Closure

1: while update 6= ∅ do
2: choose an A from update
3: update := update \ {A}
4: for all FD W → Z ∈ list[A] do
5: count[W → Z] := count[W → Z]− 1
6: if count[W → Z] = 0 then
7: add := Z \ newdep
8: newdep := newdep ∪ add
9: update := update ∪ add

10: end if
11: end for
12: end while

return newdep

counters of FDs that contain this attribute in the left handside. Once a counter
becomes zero, it extends the queue update and the closure newdep with the
new attributes on the right handside of that FD. This continues until the queue
update becomes empty.

Note that the initialization takes at most |F |.|W | time, which is linear in the
size of the input. Now consider the closure computation: Each attribute can enter
update at most once. For each attribute A fetched from update the counters of
the FDs in list[A] are decremented, which is performed at most ΣW→Z∈F |W |
times. If the counter of any FD W → Z becomes 0, then the new attributes in
Z are added to update and newdep. If the involved sets are represented as bit
vectors, this operation takes time proportional to ΣW→Z∈F |Z|.

Since all steps of the algorithm can be performed in time linear in the sizes
of FDs F and the set of attributes, the algorithm has complexity O(n).

3 A Modified Algorithm for classifying EL+ TBoxes

In the present section we present an EL+ classification algorithm based on the
linear closure algorithm introduced in the previous section. EL+ is the DL al-
lowing for the top concept >, conjunction C u D, existential restriction ∃r.A,
general concept inclusion axioms (GCIs) C v D and role inclusion axioms (RIs)
r1 ◦ · · · ◦ rn v s, where A is an atomic concept, r an atomic role, and C,D



concept descriptions. RIs are interpreted as rI1 ◦ · · · ◦ rIn ⊆ sI , where ◦ denotes
composition of binary relations.

In [9, 8] Brandt has shown that the tractability result in [2] for subsumption
w.r.t. cyclic TBoxes can be extended to the DL ELH, which in addition to
EL allows for GCIs and simple RIs, i.e., RIs with an atomic role on the left
handside. Later in [3] Baader et. al. have shown that the tractability result can
even be further extended to the DL EL++ which in addition to EL+ allows for
the bottom concept ⊥, nominals {a} and a restricted form of concrete domains.

In [4, 5] Baader et. al. have considered a restriction of the polynomial-time
classification algorithm in [3] to EL+ and have given a refined version of the al-
gorithm tailored for efficient implementations of it. This algorithm initially turns
the input TBox into a normalized TBox by applying a series of normalization
rules. Afterwards, it applies a set of completion rules to compute a mapping S
assigning to each concept name a subset of the concept names occurring in the
original TBox. The completion rules are repeatedly applied until no rule applies
any more. Consequently, the mapping S maps every concept name A to its set
of subsumers. That is, B ∈ S(A) implies that the subsumption relation A v B
holds in the original TBox. What is important here is a clever strategy for finding
the next completion rule to be applied. Because if this is done by a brute-force
approach, even though still polynomial, the algorithm will not perform well in
practice for large real life TBoxes. In order to avoid this, the “refined” algorithm
suggested in [4, 5] uses a modification of the approach used in [14] for check-
ing satisfiability of propositional Horn formulae. As shown in [6, 20], the refined
classification algorithm makes at most O(n4) additions to the mapping S and
to the other data structures used.

In the following, we present an algorithm based on the linear closure al-
gorithm introduced in the previous section. We exploit the similarity between
computing closure under a set of functional dependencies and computing the set
of subsumers of a concept. In its simplest form, one can view a GCI that consists
of conjunctions of concept names on both sides as an FD. In this case, comput-
ing the subsumers of a concept w.r.t. a set of such GCIs trivially boils down to
computing the closure of that concept under that set of GCIs, and classifying
the TBox boils down to computing the closure of every concept name occurring
in the TBox. For the general case, where TBox contains RIs, and where GCIs
contain existential restrictions, the inferences due to these should of course also
be taken into account.

As in the existing algorithm, we first transform the TBox into a normal
form. Our normal form slightly differs from the original one introduced in [9,
3]. Instead of only binary conjunctions on the left handsides of GCIs, it allows
for conjunctions of arbitary size. This kind of GCIs have already been used
in the normal form in [4, 6]. There it was reported that for large knowledge
bases like SNOMED [12], this minor change considerably reduces the number
of newly introduced concept names, and thus reduces the size of the normalized
knowledge base. Here, in addition to the left handside, we also allow conjunctions
of arbitrary size on the right handside of GCIs. Of course theoretically this does



not make any difference but it in the implemtation of the algorithm it allows a
compact representation of the axioms.

3.1 The Normal Form

Given a TBox T we write CNT and CN>T to denote the sets of concept names
occurring in T with and without the top concept, respectively. Likewise we write
RNT to denote the set of role names occurring in T . We say that T is in normal
form if

1. all GCIs in T are of the form

C1 u . . . u Cn v D1 u . . . uDm

where Ci is either a concept name from CN>T or is of the form ∃r.A, and Dj

is either a concept name from CNT or is of the form ∃r.A where A ∈ CN>T
and r ∈ RNT .

2. all role inclusions are of the form r v s or r1 ◦ r2 v s where r1, r2, s ∈ RNT .

Basically, a normalized GCI consists of conjunctions on both sides where con-
juncts are either concept names or existentially quantified concept names. Role
inclusion axioms are normalized exactly the same way as in [4, 6]. Note that

NF1 r1 ◦ . . . ◦ rk v s ; r1 ◦ . . . ◦ rk−1 v u, u ◦ rk v s
NF2 C1 u . . . u ∃r.Ĉ u . . . u Cn v D ; Ĉ v A, C1 u . . . u ∃r.A u . . . u Cn v D
NF3 C v D1 u . . . u ∃r.Ĉ u . . . uDm ; C v D1 u . . . u ∃r.A u . . . uDm, A v Ĉ

where Ĉ 6∈ CN>T , C,D,Ci, Di are arbitrary concept descriptions, u denotes a new role
name, and A denotes a new concept name.

Fig. 1. Normalization rules

our normalization rules shown in Figure 1 are a “stripped down” version of the
original normalization rules. Therefore the linear upper bound on the size of the
normalized TBox shown in [4, 20] also holds for our normalization rules.

3.2 The Modified Classification Algorithm

Like the linear closure algorithm, our classification algorithm maintains a set of
counters in order to decide when to apply a GCI. However we do not maintain
only one counter per GCI, but for every concept name we have a counter for
every GCI. This is because we want to compute the subsumer list of every
concept name occurring in the input TBox, and not only one concept name. The
counters initally contain the size (number of conjuncts) of the left handsides of



the GCIs. For every concept name we maintain a stack that keeps track of the
concepts still to be processed for that concept name. Note that our algorithm
differs from the original classification algorithm in [4, 6] here in the sense that
instead of keeping track of axioms to be processed we keep track of concepts
to be processed. Our possible stack entries are concept names A ∈ CN>T , or
existentially restricted concept names ∃r.A where A ∈ CN>T . The counters are
kept in the two-dimensional array count[A][C v D] and the stacks are stored
as q(A) for A ∈ CN>T and C v D ∈ T .

In addition to these, for every concept name we keep an index pointing to the
list of GCIs that contain this concept name on the left handside. This information
is stored in list(A) for A ∈ CNT . As in the original algorithm we keep a
subsumer list S(B) for each concept name B. Unlike the original algorithm in
addition to concept names this list also contains concept descriptions of the form
∃r.A where A ∈ CN>T . Therefore we do not have the data structure R(·, ·) in the
original algorithm for storing relations.

Having explained the data structures we are now ready to give the algo-
rithm. The first procedure properly initializes the data structures count[·][·],
list(·), q(·), and S(·).

Algorithm 2 initialize the data structures

Procedure: Initialization

1: for all GCI α =
d
{C1, . . . , Cn} v

d
{D1, . . . , Dm} ∈ T do

2: for all A ∈ CNT do
3: count[A][α] = n
4: end for
5: for all C ∈ {C1, . . . , Cn} do
6: list(C) = list(C) ∪{α}
7: end for
8: end for
9: for all A ∈ CNT do

10: q(A) = {A,>}
11: S(A) = {A,>}
12: end for

Next we describe the processing of the stacks. Upon popping an entry (a
normalized concept description) C from q(A) we call process-concept-name if
C is a concept name, and process-existential-restriction if C is an exis-
tential restriction. Later we traverse the GCIs that have C on the left handside
and decrement the counters for A. If the counter count[A][

d
{C1, . . . , Cn} vd

{D1, . . . , Dm}] becomes zero, we extend S(A) and q(A) with the new concept
descriptions in {D1, . . . , Dm}.

A concept name fetched from the stack of A is processed as in Algorithm 4,
and an existential restriction popped from the stack of A is processed as shown
in Algorithm 5. Here v∗T denotes the reflexive transitive closure of the role hier-
archy axioms in the normalized TBox. Processing of the stacks continues until



Algorithm 3 process stack entry C popped from q(A)

Procedure: process-stack-entry(A,C)

1: if C ∈ CNT then
2: process-concept-name(A,C)
3: end if
4: if C = ∃r.E then
5: process-existential-restriction(A,∃r.E)
6: end if
7: for all GCI α =

d
{C1, . . . , Cn} v

d
{D1, . . . , Dm} ∈ list(C) do

8: count[A][α] = count[A][α] - 1
9: if count[A][α] = 0 then

10: q(A) = q(A) ∪ {Di | Di 6∈ S(A)}
11: S(A) = S(A) ∪ {Di | Di 6∈ S(A)}
12: end if
13: end for

Algorithm 4 process the concept name B popped from q(A)

Procedure: process-concept-name(A,B)

1: for all D ∈ CNT s.t. ∃r.A ∈ S(D) and ∃r.B 6∈ S(D) do
2: q(D) = q(D) ∪ {∃r.B}
3: S(D) = S(D) ∪ {∃r.B}
4: end for

all stacks q(·) are empty. Note that our algorithm differs from the “refined”
algorithm introduced in [5, 6] only in the way how the stacks (there queues)
are processed, and how axioms that apply at a particular step are detected. In
principle it still performs exactly the same operations in the “abstract” algo-
rithm introduced there. That is, it still performs the completion rules in [5, 6].
In fact, the lines 9-11 of Algorithm 3 implement the completion rules R1, R2
and part of R3 in [6]. Lines 2-4 of Algorithm 5 implement rest of R3, and the
whole process-existential-restricton procedure implement rules R4 and
R5. Since we do not modify the original abstract algorithm in [5, 6] we do not
need to give proof of correcteness of our algorithm here.

It has been shown in [6, 20] that the refined algorithm there makes at most
n4 additions to the subsumer list S(·) and to the queues used, where n is the
size of the normalized TBox. For every addition to S(·) this algorithm performs
a subset check in order to decide whether the fetched axiom from the queue is
applicable at that step or not. This subset check brings an overhead which in
the worst-case is n, thus the overall runtime of the original algorithm is O(n5).

The counters used by our algorithm allow us to check whether an axiom
applies without doing the subset check mentioned above, thus avoid the n-step
overhead in the worst-case. Basically, this is how our algorithm achieves a better
worst-case complexity O(n4) instead of the O(n5) worst-case complexity of the
original algorithm.



Algorithm 5 process the existential restriction ∃r.E fetched from q(A)

Procedure: process-existential-restriction(A,∃r.E)

1: for all s ∈ RNT s.t. r v∗T s do
2: for all D ∈ CNT s.t. D ∈ S(E) and ∃s.D 6∈ S(A) do
3: q(A) = q(A) ∪ {∃s.D}
4: S(A) = S(A) ∪ {∃s.D}
5: end for
6: for all D ∈ CNT s.t. ∃x.A ∈ S(D) and ∃y.E 6∈ S(D) and x, y ∈ RNT s.t.
x ◦ s v y ∈ T do

7: q(D) = q(D) ∪ {∃y.E}
8: S(D) = S(D) ∪ {∃y.E}
9: end for

10: for all D ∈ CNT s.t. ∃x.D ∈ S(E) and ∃y.D 6∈ S(A) and x, y ∈ RNT s.t.
s ◦ x v y ∈ T do

11: q(A) = q(A) ∪ {∃y.D}
12: S(A) = S(A) ∪ {∃y.D}
13: end for
14: end for

4 Implementation and Evaluation

In order to evaluate the runtime behaviour of our modified algorithm, we have
implemented it and performed a series of tests on large bio-medical knowledge
bases: Foundational Model of Anatomy3 (FMA) is a large but simple TBox that
contains 75139 concept names. Similarly, the Gene Ontology 4 (GO) and Na-
tional Cancer Institute Thesaurus 5 (NCI) are large knowledge bases with shal-
low hierarchies. The GO contains 25070 concept names, and the NCI contains
27652 concept names. We have stripped down Galen 6 by removing function-
alities and inverse roles to obtain the knowledge base Galen−, which contains
23136 concept names. Finally we have also used the very large knowledge base
SNOMED 7, which contains 293707 concept names. We have implemented the
algorithm in the C programming language due to its speed and efficient use of
the memory, which is important for dealing with these large knowledge bases.
Currently our implementation can only read EL+ knowledge bases written in
OWL 2 Functional-Style Syntax. We have implemented the parser for this syn-
tax using the tools lex and yacc, which are used for generating lexical analyzer
and parser for a given grammar.

In order to evaluate its performance, we have implemented the modified
algorithm presented above, in our prototypical reasoner cheetah8. We have

3 http://sig.biostr.washington.edu/projects/fm/AboutFM.html
4 http://www.geneontology.org/
5 http://www.cancer.gov/cancertopics/cancerlibrary/terminologyresources
6 http://www.co-ode.org/galen/
7 http://www.nlm.nih.gov/research/umls/Snomed/snomed main.html
8 http://code.google.com/p/cheetah



FMA GO NCI SNOMED Galen−

cheetah 4.78 1.37 1.29 179.57 21.41

cheetah∗ 4.03 1.00 0.88 92.23 12.32

CB 6.59 3.17 2.13 46.88 3.20
Table 1. Comparison of runtimes in seconds

compared its performance with the performance of the simple algorithm that
performs subset checks instead of maintaining counters in order to decide when
to apply an axiom. The simple algorithm still uses the normalization rules intro-
duced in Section 3.1, and stacks for keeping track of concepts still to be processed,
but does not use counters. Instead, for a concept name B popped from q(A), it
compares the left handsides of axioms containing B with the current subsumers
of A, and applies an axiom if the former is a subset of the later. In our compar-
ison we have also involved the CB Reasoner9 that has been introduced in [15].
The underlying algorithm of the CB Reasoner extends the EL++ classification
algorithm in [4] to the much more expressive fragment Horn SHIQ, for which
reasoning is not tractable any more. CB is able to classify the medical knowledge
base Galen [19] that uses this expressivity, and as reported in [13], it outperforms
all other reasoners for several other large bio-medical knowledge bases as well.

The results of our experiments were surprising. Despite its better worst-case
complexity, in practice our modified algorithm performed worse than our imple-
mentation of the simple algorithm. The results of our experiments are shown in
Table 1, where cheetah represents the implementation of our modified algo-
rithm, and cheetah∗ the implementation of the simple algorithm. The exper-
iments are run on a computer with an Intel Core i3 processor running at 2.1
GHz, 8 GB of main memory and on the Linux operating system with 2.6.38
kernel. As seen in Table 1, the modified algorithm performs always worse than
the simple algorithm. A closer look into the input knowledge bases reveals that
the worst-case, i.e., axioms with very long conjunctions on the left handsides do
not occur in practice. In fact, in SNOMED the longest conjunction on the left
handside of a GCI is 12, for the Galen version we used it is 5, for FMA, GO and
NCI it is just 1. When it comes to average size of conjunctions on the left hand
side, for SNOMED it is 1.30 and for Galen− it is 1.29, which are very small com-
pared to the number of concept names occurring in these knowledge bases. This
explains the poor performance of the modified algorithm. The worst-case, i.e.,
large conjunctions on the left handsides, does not occur in any of the knowledge
bases we have used in our experiments. In practice the conjunctions on the left
handsides are so small that even plain subset check is fast enough compared to
the overhead of maintaining the counters.

According to the table the CB Reasoner performs in general better than
both cheetah and cheetah∗. This is due to our unoptimized implementation
of the processing of stacks. CB spends a big portion of the runtime for loading

9 http://code.google.com/p/cb-reasoner



and normalizing the knowledge base however it is very efficient in computing
the subsumer lists. For instance for SNOMED in our experiments it took CB
13.99 seconds to load and normalize the knowledge base, and only 21.47 seconds
to compute the subsumer lists. On the other hand for cheetah∗ loading and
normalizing the knowledge base took 3.9 seconds, and computing the subsumer
lists took 84.13 seconds.

5 Concluding Remarks and Future Work

We have investigated a modification to the EL+ classification algorithm for im-
proving its worst-case complexity. It turned out the modified algorithm performs
worse in practice. However, there is some room for further improvement of both
the modified and the simple algorithm. During the execution of both algorithms,
some axioms are applied several times, which in principle could be avoided. For
instance if we are processing the stack of concept name A and find out that A
is subsumed by B, we can skip the axioms already applied while computing the
subsumers of B and just extend the subsumer list of A with that of B. This
would bring the overhead of keeping track of which axioms have already been
applied for which concept name, but save the effort of applying those axioms
again. One other possible improvement is to make use of the axioms that have
only one concept name or existential restriction, i.e., no conjuction on the left
handside. One can apply such axioms immediately before the execution of the
algorithm, thus pre-filling the stacks and subsumer lists with told-subsumers
appropriately.

As future work we are going to implement and test these further improve-
ments. In addition to this, we are going to extend the cheetah reasoner to
support the OWL2 EL Profile and improve its usability by providing a platform
independent Java interface and a Protege plugin for it.

Acknowledgements: We would like to thank Yevgeny Kazakov for giving his
remarks and providing information about the CB Reasoner.

References

1. W. W. Armstrong. Dependency structures of data base relationships. Proceed-
ings of the Information Processing Congress 74, (IFIP 74), pages 580–583. North-
Holland, 1974.

2. F. Baader. Terminological cycles in a description logic with existential restrictions.
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03), pages 325–330. Morgan Kaufmann, 2003.

3. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, (IJCAI 05),
pages 364–369. Professional Book Center, 2005.

4. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Proceedings of the Methods for
Modalities Workshop (M4M-05), 2005.



5. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner
for life science ontologies. Proceedings of the 3rd International Joint Conference
on Automated Reasoning (IJCAR’06), volume 4130 of Lecture Notes in Artificial
Intelligence, pages 287–291. Springer-Verlag, 2006.

6. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Journal of Logic, Language and
Information, Special Issue on Method for Modality (M4M), 2007. To appear.

7. C. Beeri and P. A. Bernstein. Computational problems related to the design of
normal form relational schemas. ACM Transactions on Database Systems, 4(1):30–
59, 1979.

8. S. Brandt. On subsumption and instance problem in ELH w.r.t. general tboxes.
Proceedings of the 2004 International Workshop on Description Logics, (DL2004),
volume 104 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

9. S. Brandt. Polynomial time reasoning in a description logic with existential restric-
tions, gci axioms, and - what else? Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, (ECAI 2004), pages 298–302. IOS Press, 2004.

10. E. F. Codd. A relational model of data for large shared data banks. Communica-
tions of ACM, 13(6):377–387, 1970.

11. T. G. O. Consortium. Gene ontology: Tool for the unification of biology. Nature
Genetics, 25:25–29, 2000.

12. R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, International,
Northfield, IL: College of American Pathologists, 1993.

13. K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of reasoners for
large ontologies in the owl 2 el profile. Semantic Web Journal, 2011. To appear.

14. W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. Journal of Logic Programming, 3:267–284, 1984.

15. Y. Kazakov. Consequence-driven reasoning for horn shiq ontologies. Proceedings
of the 21st International Joint Conference on Artificial Intelligence, (IJCAI 2009),
pages 2040–2045, 2009.

16. M. Lawley and C. Bousque. Fast classification in protege: Snorocket as an owl2 el
reasoner. In Proceedings of Australasian Ontology Workshop, 2010.

17. D. Maier. The Theory of Relational Databases. Computer Science Press, Maryland,
1983.

18. J. Mendez and B. Suntisrivaraporn. Reintroducing CEL as an OWL 2 EL reasoner.
Proceedings of the 22nd International Workshop on Description Logics (DL 2009),
volume 477 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

19. A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings of
the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97).
AAAI Press, 1997.

20. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. Ph.D. dissertation, Institute for
Theoretical Computer Science, TU Dresden, Germany, 2009.

21. E. Thomas, J. Z. Pan, and Y. Ren. Trowl: Tractable owl 2 reasoning infrastruc-
ture. The Semantic Web: Research and Applications, 7th Extended Semantic Web
Conference, (ESWC 2010), volume 6089 of Lecture Notes in Computer Science,
pages 431–435. Springer-Verlag, 2010.


