
A Connection Method for the Description Logic ALC

Fred Freitas

Informatics Center, Federal University of Pernambuco (CIn - UFPE), Brazil
fred@cin.ufpe.br

1 Introduction

The problem of reasoning over ontologies written in Description Logic (DL) [1] has
received strong interest, particularly after the Semantic Web inception. The necessity
of creating reasoners to deal with OWL (Ontology Web Language) [2], in its various
versions, posed interesting research questions for inference systems, making the
problem earn the reputation of being complex, whose users see solutions as black
boxes. Consequently, not many inference systems became well known to the public;
indeed, tableaux methods [1] took over the field. Apart from the reasoning algorithms,
many other practical issues have been brought about, stemming from the natural
features of the Web, that ask for certain requirements for inferencing. Among them,
the use of memory is certainly an important asset for a good reasoning performance.
Therefore, methods that do not require a huge amount of memory may be promising.
 This paper tries to tackle this issue by adapting a reasoning method that makes a
parsimonious usage of memory. The inference system proposed here is based on the
connection calculus [3], which is a clear and effective inference method applied
successfully over first order logic (FOL). Its main features meet with the demands: it
keeps only one copy of each logical sentence in memory and it does not derive new
sentences from the stored ones. The formal system, the ALC Connection Method (ALC
CM), displays some desirable features for a DL reasoner,: it is able to perform all DL
inference services, namely, subsumption, unsatisfiability (or inconsistency),
equivalence and disjointness. As the most widespread DL tableaux systems, ALC CM
reduces them to subsumption or validity - the dual of unsatisfiability, used in most DL
systems (interested readers should check that information at [7]).
 The rest of the article is organized as follows. Section 2 defines one of the most
basic description logic languages, ALC (Attributive Concept Language with
Complements) [1], together with the disjunctive normal formal used by the method.
ALC was chosen as the starting of the work, because it constitutes the foundation of
many other Description Logics. Section 3 brings a proposed ALC ontologies’ matrix
normal form that fits to the connection method. Section 4 describes the ALC adapted
connection method and states the key logical properties for inference systems
(soundness, completeness and termination). Section 5 brings discussion in the light of
representation and reasoning, and section 6 presents future work and conclusions.

 2

2 The Description Logic ALC

Description Logics (DLs for short) are a family of knowledge representation
formalisms that have been gaining growing interest in the last two decades,
particularly after OWL (Ontology Web Language) [2], was approved as the W3C
standard for representing the most expressive layer of the Semantic Web.
 An ontology or knowledge base in ALC is a set of axioms 𝑎𝑖 defined over the triple
(𝑁𝐶 , 𝑁𝑅 , 𝑁𝑂) [1], where 𝑁𝐶 1T18Tis the set of concept names or atomic concepts (unary
predicate symbols), 𝑁𝑅 1T18Tis the set of role or property names (binary predicate
symbols), and 𝑁𝑂 1T18T the set of individual names (constants), instances of NC and 𝑁𝑅 .
 NC contains concepts (like Bird, Animal, etc) as well as other concept definitions
as follows. If r is a role (r ∈ 𝑁𝑅) and C and D are concepts (C, D ∈ 𝑁𝐶 0T18T) then the
following definitions belong to the set of ALC concepts: (i) C ⊓ D (the intersection of
two concepts); (ii) C ⊔ D (the union of two concepts); (iii) ¬0TC (the complement of
a concept); (iv) ∀r.C (the universal restriction of a concept by a role); and (v)
∃r.C (the existential restriction of a concept by a role). Note that, in the definitions
above, C and D can be inductively replaced by other complex concept expressions.
 There are two axiom types allowed in ALC: (i) Assertional axioms, which are
concept assertions C(a), or role assertions R(a,b), where C ∈NC , r ∈NR , a,b ∈NO
and (ii) Terminological axioms, composed of any finite set of GCIs (general concept
inclusion) in one of the forms C ⊑ D or C ≡ D, the latter meaning C ⊑ D and D ⊑ C,
C and D being concepts. An ontology or knowledge base (KB) is referred to as a pair
(T,A), where T is the terminological box (or Tbox) which stores terminological
axioms, and A is the assertional box (ABox) which stores assertional axioms. T may
contain cycles, in case at least an axiom of the form C ⊑ D, D can be expanded to an
expression that contains C.
 There are two major ways of defining ALC semantics. The most frequently used
one relies on the definitions of interpretation, model, fixpoints, etc, over a domain ∆
[1]. Another way is mapping ALC constructs to first order logic (FOL) (like in [6])
and exploiting the semantics defined for FOL. FOL semantics is available, for
instance in [3]. The latter was chosen, with the purpose of taking advantage of the
already formalized completeness and soundness theorems for the work.
 Next, the ALC disjunctive normal form used by the inference system is presented.

2.1. An ALC Positive Matrix Form

Definition 1 (ALC disjunctive normal form (ALC DNF), clause). An ALC DNF
formula is a disjunction of conjunctions, in the form C1 ∨ … ∨ Cn, where each Ci is a
clause. Clauses are conjunctions of ALC predicates (ALC concepts or relations,
instantiated or not), like L1 ∧ … ∧ Lm, also denoted as {L1, … , Lm}. ALC formulae can
be also expressed in ALC disjunctive clausal form or ALC positive matrix form, as
{𝐶1, … , 𝐶𝑛},. A formula stated this way is called an ALC matrix. In an ALC matrix,
each clause occupies a column.

 3

To reach this normal form, the first two actions to be made over the axioms are: (i)
splitting equivalence axioms of the form C ≡ D into two axioms C ⊑ D and D ⊑ C,
and (ii) converting all the axioms into a Negated Normal Form (NNF), in which
negations occurs only on literals [1]. Next, some necessary definitions are introduced.

Definition 2 (ALC disjunction, ALC conjunction). An ALC disjunction is either a
literal, a disjunction E0 ⊔ E1 or an universal restriction ∀r. E0 . An ALC conjunction
is either a literal, a conjunction 𝐸0 ⊓ 𝐸1 or an existential restriction ∃r. E0. E0 and E1
are arbitrary concept expressions.

Definition 3 (ALC pure disjunction). The set 𝑆𝐷 of ALC pure disjunctions is the
smallest set where: (i) D0 ∈ 𝑆𝐷 for every literal D0; (ii) D0 ⊔ D1 ∈ 𝑆𝐷 , in case
D0, D1 ∈ 𝑆𝐷; (iii) if D0 ∈ 𝑆𝐷 then ∀r. D0 ∈ 𝑆𝐷. An element D� ∈ 𝑆𝐷 is an ALC pure
disjunction. An ALC non-pure disjunction is an ALC disjunction that is not pure.

Definition 4 (ALC pure conjunction). The set 𝑆𝐶 of ALC pure conjunctions is the
smallest set where: (i) C0 ∈ 𝑆𝐶 for every literal C0; (ii) C0 ⊓ C1 𝑆𝐶 iff C0, C1 ∈ 𝑆𝐶;
and (iii) if C0 ∈ 𝑆𝐶 then ∃r. C0 ∈ 𝑆𝐶. An element C�� ∈ 𝑆𝐶 is an ALC pure conjunction.
An ALC non-pure conjunction is an ALC conjunction that is not pure.

Definition 5 (Impurity on a non-pure expression). Impurities on non-pure ALC DL
expressions are either conjunctive expressions in a non-pure disjunction or disjunctive
expressions in a non-pure conjunction. The set of impurities is called ALC impurity
set, and is denoted by 𝑆𝐼.

Example 1 (Impurities on non-pure expressions).
The expression (∀r. (D0 ⊔ … ⊔ Dn ⊔ (C0 ⊓ … ⊓ Cm) ⊔ (A0 ⊓ … ⊓ Ap)), a non-pure
disjunction, contains two impurities: (C0 ⊓ … ⊓ Cm) and �A0 ⊓ … ⊓ Ap�.

Definition 6 (Positive normal form). An ALC axiom is in positive normal form iff it
is in one of the following forms: (𝑖) C� ⊑ D�; (ii) C ⊑ ∃r. C�; and (iii) ∀r. D� ⊑ C; where
C is a concept name, C� a pure conjunction and D� a pure disjunction.

 In [7], algorithms for transforming ALC axioms to this normal form are available.

2.2 Translation Rules for the normalization

With all axioms in the normal form defined just above, it is easy to map them to
matrix form, by applying the rules given in Table 1. Table 2 brings the mapping
treatment of recursive sub-cases of existential and universal restrictions, when they
occur inside any of the the normal form C� ⊑ D�,. An improvement of the approach is,
as the usual DL notation, variables are not needed, since all relations are binary and
dash lines make for disambiguation, as soon will be seen.

Some important remarks must be stated at this point for the sake of clarity.
The first is that the whole knowledge base KB is negated during this

transformation. This is due to the fact that in order to prove the validity of KB ⊨𝛼 (𝛼
being a subsumption axiom) using a direct method, ¬KB ∨ 𝛼 must be proven a
tautology (coming from KB→𝛼, according to the Deduction Theorem [3]).

 4

Table 1. Translation rules to map ALC into FOL positive NNF and matrices.

Axiom type FOL Positive NNF
mapping Matrix

C ⊑ ∃r. C� , where

C� = � Ai

n

i=1

with Ai ∈ 𝑆𝐶 (pure conjunction)

(C(x)∧ ¬r(x,f(x))) ∨
(C(x) ∧ ¬𝐴1(f(x))) ∨

...∨
(C(x) ∧ ¬𝐴𝑛(f(x)))

1 n

C CC

A Ar¬ ¬¬

 
 
 





∀r. D� ⊑ C, where

D� = � A′j

m

j=1

with 𝐴′𝑗 ∈ 𝑆𝐷 (pure disjunction)

(¬r(x,f(x)) ∧ ¬C(x)) ∨
(¬𝐴′1((f(x)) ∧ ¬C(x))∨

...∨
 (¬𝐴′𝑚((f(x)) ∧ ¬C(x))

1' 'mr A A

C C C

¬

¬ ¬ ¬

 
 
 





C� ⊑ D�, where

C� = � Ai ,
n

i=1

D� = � A′j

m

j=1

with Ai ∈ 𝑆𝐶 (pure conjunction)
and A′j ∈ 𝑆𝐷 (pure disjunction)

𝐴1(x) ∧ ...∧ 𝐴𝑛(x)

∧
¬𝐴′1(x) ∧ ...∧ ¬𝐴′𝑚(x)

1

1'

'

n

n

A

A
A

A

 
 
 
 
 ¬ 
 
 ¬ 





Table 2. Recursive sub-cases of restrictions for axioms of type C� ⊑ D�,.

Axiom type FOL Positive
NNF mapping Matrix

A is an existential
restriction:

… ⊓ ∃r.A ⊓ ... ,
with A ∈ 𝑆𝐶 (pure conjunction)

... ∧
r(x,y)∧
A(y)∧

...

r

A

 
 
 
 
  





A’ is an universal
restriction:

…⊔ ∀r.A’ ⊔ …,
with A’ ∈ 𝑆𝐷 (pure disjunction)

…∧
r(x,y) ∧
¬A’(y) ∧

…
'

r

A¬

 
 
 
 
  





The first consequence of that is that subsumption axioms of the form C ⊑ D, which
are usually logically translated as C → D, because negated (¬(C → D), indeed), are
now translated to C ∧ ¬D, instead of ¬C ∨ D. Moreover, to establish a uniform set of

 5

rules applicable over ALC formulae, ¬𝛼 is dealt with, instead of 𝛼, so as to consider
ALC axioms as ¬𝐴1∨ …∨ ¬𝐴𝑛∨ 𝛼 (coming from ¬𝐴1∨ …∨ ¬𝐴𝑛∨ ¬¬𝛼), where 𝐴𝑖∈T
(axioms in the TBox). The translation rules are then applied over ¬𝛼 and all 𝐴𝑖.
 Another remark regards implicit skolemization. In the original CM, once the whole
KB should be negated, universal quantifiers (∀) are skolemized instead of existential,
and all variables in the resulting DNF are then (implicitly) existentially quantified.
Aiming at keeping a close correspondence with the original CM, only the cases in
which ALC axioms, when translated to FOL, contain Skolem functions need to solved.
For instance, the axiom C ⊑ ∃r. B, negated, translates to FOL Skolem DNF as ∃x(A(x)
∧ ¬r(x,f(x))) ∨ (A(x) ∧ ¬B(f(x))) (coming from the skolemization of ∀y in ∃x (A(x) ∧
(∀y (¬r(x,y) ∧ ¬B(y)))). In such cases, vertical and horizontal dash lines are employed
to stand for the relations in the matrix. Vertical dash lines represent existential
restrictions (∃r.C), which are not skolemized, while horizontal dash lines represent
universal restrictions (∀r. C), in which the qualifier concept corresponds to a
skolemized concept. An example should makes things clearer.

Example 2 (Positive normal form, skolemization, clause, matrix). The query
Animal ⊓ ∃hasPart.Bone ⊑ Vertebrate
Bird ⊑ Animal ⊓ ∃hasPart.Bone ⊓ ∃hasPart.Feather

reads in FOL as (∀w(Animal(w) ∧ (∃z (hasPart(w,z) ∧ Bone(z)) → Vertebrate(w))) ∧
(∀x(Bird(x)→Animal(x)∧ ∃y(hasPart(x,y)∧ Bone(y))∧ ∃v(hasPart(x,v) ∧ Feather(v)))
 → ∀t(Bird(t) → Vertebrate(t)))

where the variables y and t were respectively skolemized by the function f(x) and the
constant c. In positive matrix clausal form, the formula is represented by

{{Bird(x) ,¬Animal(x)}, {Bird(x) ,¬hasPart(x,f(x))}, {Bird(x) ,¬Bone(f(x))}, {Bird(x)
,¬hasPart(x,g(x))}, {Bird(x) ,¬Feather(g(x))}, {Animal(w), hasPart(w,z), Bone(z),
¬Vertebrate(w)}, {¬Bird(c)}, {Vertebrate(c))}}. Figure 1 shows it as a matrix.

() ()Bird Bird Bird Bird Bird Animal Bird c Vertebrate c
Animal hasPart Bone hasPart Feather hasPart

Bone
Vertebrate

¬ 
 ¬ ¬ ¬ ¬ ¬ 
 
 ¬ 

Figure 1. An ALC formula and query in disjunctive clausal form represented as a matrix.

The vertical line connecting the symbols hasPart and Bone in the antepenultimate
column has the function of denoting that the concept Bone has implicitly in FOL as
argument the variable that is the 2nd argument of the relation hasPart (coming from the
FOL translation ∃x∃y hasPart(x,y) ∧ Bone(y) that arose from the axiom
∃hasPart.Bone ⊑ Vertebrate. On its turn, the horizontal dash line connecting the
symbols ¬hasPart and ¬Feather represents the ALC expression ∃hasPart.Feather
in the original axiom Bird ⊑ ∃hasPart.Feather. This expression, negated,
corresponds in FOL Skolem NF to ∃x ¬hasPart(x,f(x))∨¬Feather(f(x)). Thus, during
reasoning, skolemized predicates such as the last ones can only be unified with
variables, and not with concrete individuals or other with distinct Skolem functions.

⊨Bird ⊑ Vertebrate

 6

Dash lines can superpose other dash lines, for instance to represent the axiom
A ⊑ ∃r1. (∃r2. B). In this normal form they cannot cross, although this would not
consist in a problem for the ALC method.

A last remark regards memory usage. By using this normal form, the number of
newly introduced symbols (and also the number of axioms) grows linearly with the
number of impurities. It is in most cases a gain compared with other normalizations
(e.g., EL [4] and resolution [6]), whose number of new axioms grows linearly to the
axioms’ length, although in the worst case they are equal. See [7] for more examples
and further discussion regarding this topic.

3 An ALC Connection Method

The connection method (CM) [3] was created by W. Bibel in the 70s, and earned
good reputation in the field of automated theorem proving in the 80s and 90s. Apart
from needing less memory than other first-order logic inference systems, it offers the
same advantages, according to its author, since any reductions, compressions,
optimizations and improvements that fit to resolution or tableaux in can also be
properly applied to it (see [3], 4.4). As a result, it is probably feasible to finding ways
to implement typical DL tableaux optimizations to the ALC connection method under
development, although such issues are out of the scope of the current paper.

Such distinctive features naturally led to the idea of proposing a connection
method especially tailored to infer over description logic Semantic Web ontologies.
The core of the paper, the ALC connection calculus, is explained next.

3.1 An ALC Connection Sequent and Matrix Calculus

Definition 7 (Path, connection, unifier, substitution). A path is a set of literals from
a matrix in which every clause (or column) contributes with one literal. A connection
is a pair of complementary literals from different clauses, like {𝐿1

𝜎 , ¬𝐿2
𝜎}, where σ(𝐿1)

(or 𝜎(𝐿2���)) is the most general unifier (mgu) between predicates 𝐿1 and ¬𝐿2. σ is the
set of substitutions, which are mappings from variables to terms. All occurrences of
the variable contained in a substitution would be replaced by the term indicated in σ.

Example 4 (Path, connection, unifier, substitution). Some paths of the matrix of
Figure 1 are: {Bird(x), ¬Bone(f(x)), Animal(w) ,¬Bird(c), Vertebrate(c)} and
{¬Animal(w), Bird(x), ¬Bone(f(x)), Animal(w) ,¬Bird(c), Vertebrate(c)}. Some
connections from the matrix are {Bird(x), ¬Bird(c)}, {¬hasPart(x,f(x)), hasPart(w,z)},
and σ={x/c, w/c, z/f(c)} is the whole matrix’ mgu.

Lemma 1 (Validity, active path, set of concepts). An ALC formula represented as a
matrix M is valid when every path contains a connection {𝐿1, ¬𝐿2}, provided
that 𝜎(𝐿1) = 𝜎(¬𝐿2���). This is due to the fact that a connection represents the
tautology 𝐿1

𝜎 ∨ ¬𝐿2
𝜎 in DNF. As a result, the connection method aims at finding a

connection in each path, together with a unifier for the whole matrix. During the

 7

proof, the current path is called active path and denoted by ℬ. The set of concepts 𝜏 of
a variable or instance x during a proof is defined by 𝜏(𝑥) ≝ {𝐶|𝐶(𝑥) ∈ ℬ} [9].

Definition 8 (ALC connection calculus in sequent style). Figure 2 brings the ALC
connection calculus rules in sequent style of the, adapted from [10]. The basic
structure is the tuple {C,M,Path}, where the clause C is the open sub-goal, M is the
matrix corresponding to the query KB ⊨𝛼, and Path is the active path.

𝐴𝑥𝑖𝑜𝑚 (𝐴𝑥)
{ }, 𝑀, 𝑃𝑎𝑡ℎ

𝑆𝑡𝑎𝑟𝑡 𝑅𝑢𝑙𝑒 (𝑆𝑡)
𝐶2, 𝑀, {}
𝜀, 𝑀, 𝜀

𝑤ℎ𝑒𝑟𝑒 𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐾𝐵 ⊨ 𝛼, 𝐶2 𝑖𝑠 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1 ∈ 𝛼

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝑅𝑒𝑑)
𝐶𝜎 , 𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝐶 ∪ {𝐿1}, 𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}
𝑤𝑖𝑡ℎ 𝜎(𝐿1) = 𝜎(𝐿2���)

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝐸𝑥𝑡)
𝐶2

𝜎\{𝐿2
𝜎}, 𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿1} 𝐶𝜎 , 𝑀, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1}, 𝑀, 𝑃𝑎𝑡ℎ

𝑤𝑖𝑡ℎ 𝐶2 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1 ∈ 𝑀, 𝐿2 ∈ 𝐶2, 𝜎(𝐿1) = 𝜎(𝐿2���),

𝐶𝑜𝑝𝑦 𝑅𝑢𝑙𝑒 (𝐶𝑜𝑝)
𝐶 ∪ {𝐿1}, 𝑀 ∪ {𝐶2

𝜇}, 𝑃𝑎𝑡ℎ ∪ {𝐿2}
𝐶 ∪ {𝐿1}, 𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝑤𝑖𝑡ℎ 𝐿2 ∈ 𝐶2, 𝜇 ← 𝜇 + 1, 𝑎𝑛𝑑
�𝑥𝜇

𝜎 ∉ 𝑁𝑂 𝑜𝑟 𝜏(𝑥𝜇
𝜎� ⊈ 𝜏�𝑥𝜇−1

𝜎)� 𝑤𝑖𝑡ℎ 𝜎(𝐿1) = 𝜎(𝐿2���) (𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

Figure 2. The ALC connection sequent calculus rules (adapted from [10]).

Rules are applied bottom-up. To start, the matrix M representing 𝐾𝐵 ⊨ 𝛼 is put in
the bottom of the St rule, and a clause 𝐶1 ∈ 𝛼 is chosen as the first clause. Then, the
three last rules are applied. The key rule for the calculus is the Extension rule, once it
finds connections of the form {𝐶(𝑥), ¬𝐶(𝑦)}, ({C, ¬C} in the notation used here) or
{r(x,y),¬r(z,w)}and the proper unifier σ for it (In the first case σ={x/y} and in the
second σ={x/z, y/w}). Besides this slight change in the Start rule (𝐶1 ∈ 𝛼), a blocking
mechanism was included as a new rule, the Copy rule. If the current literal can only
connect a clause already in the active path, this clause is copied to the matrix, and the
indexing function 𝜇: 𝑀 → ℕ, that assigns the number of copies of each clause, is
incremented. The use of this function avoids ordering of individuals, as done in the
original CM. An important remark about the rule is that the copy is virtual, in the
sense that only an index 𝜇 is created. CM requires only one copy of the matrix in
memory. This is one of its main advantages. Its use of memory may be better than
tableaux in cases the proof demands many derivations, like with cyclic ontologies.

Blocking didn’t occur in the original CM due to FOL semi-decidability, but it
consists in a common practice in DL to guarantee termination. The first action to be
accomplished is incrementing 𝜇. Then, before making a copy of clause 𝐶2 (this copy

 8

will be named 𝐶2
𝜇), it is necessary to check whether the set of concepts 𝜏 associated to

the variable 𝑥𝜇
𝜎 (i.e., if the new 𝑥𝜇 was unified) of the new literal 𝐿2

𝜇 from 𝐶2
𝜇 being

created by the Cop rule is not contained in the set of concepts of the original variable
x (𝜏(𝑥𝜎)), from 𝐿2(𝑥) of 𝐶2 [9].

Examples of the ALC CM calculus’ application can be found at [7].

Theorem 1 (Soundness and completeness) An ALC formula in positive matrix form
is valid iff there is a connection proof for “𝜀, 𝑀, 𝜀”, i.e. the application of the rules
makes the Axiom rule (Ax) applicable to all leaves of the generated tree.

Proof The introduced changes in rules do not lose the soundness of the original CM
(whose proof is available at [3], III.3.9 and 3.10), because such changes made the new
rules only more restrictive, so as to making them fire in less cases than in the original
CM. They also do not affect completeness, viz: (i) The original Start rule allows any
clause to start the method. By restricting it to begin just with a literal from the
consequent to be proven (𝛼), proofs departing from possibly inconsistent matrices are
avoided, from which any axiom can be summoned. In other words, it ensures the
participation of 𝛼 in the proof. If the axiom 𝛼 holds, then a proof starting by one of its
literals is found by the original CM as well. (ii) The blocking conditions hold only
when: (a) a new clause is being created from a variable (thus, it is not an instance, as
stated by the first blocking condition 𝑥𝜇

𝜎 ∉ 𝑁𝑂), and, (b) the variable being copied is
already a copy of another variable attached to the same concepts (as stated by the
conditions 𝜏(𝑥𝜇

𝜎) ⊈ 𝜏(𝑥𝜎)18T). Therefore it prevents infinite applications of the Copy
rule that would not help proving 𝐾𝐵 ⊨ 𝛼18T, and thus, such condition does not interfere
in the original CM’s completeness. ∎

Theorem 2 (Termination). ALC CM always terminates.

Proof Having the mindset that the Copy rule is the only source of non-termination,
the proof has three subcases: (i) When KB contains no cycle, the calculus finishes in a
finite number of steps because the number of choices arising from the finite number
of clauses and possible connections is also finite. Since the Copy rule is never fired,
and there are no loops, ALC CM always terminates. (ii) When KB contains cycles and
𝐾𝐵 ⊨ 𝛼, the system always terminates, because ALC CM behaves exactly equal the
original CM, whose termination proof can be found at [3]), except for the blocking
conditions. However, blocking only plays the role of a termination condition, since it
prevents the Copy rule to be fired, thus assuring termination; (iii) The case when KB
contains cycles and 𝐾𝐵 ⊭ 𝛼 is the only aspect not covered by the original CM, given
FOL’s semi-decidability. Nevertheless, ALC CM always terminates for this case, due
to the fact that the Copy rule obliges the set of concepts of the newly created instance
of literal 𝐿2 not to be a subset of any of the sets of concepts of other introduced
instances of the literal. Once every set of concepts is a subset of 𝑁𝐶 and 𝑁𝐶 is finite,
the number of distinct sets is limited to 2|𝑁𝐶|. So, the number of copies for literals is
finite. Thus ALC CM always terminates in all three cases. ∎

 9

y

The system can also be expressed in an easier way using matrices to build proofs.
Figure 5 portraits an example using matrices. An ALC CM calculus’ algorithm of the
system was adapted [7] from the one described in [3], III.7.2.

Example 5 (ALC connection calculus). Figure 3 deploys the proof of the query
stated in example 1. In the figure, literals of the active path are in boxes and arcs
denote connections. For building a proof, firstly a clause from the consequent (Start
rule) is chosen, say, the clause {¬Bird(c)} and a literal from it (¬Bird(c)).

() ()Bird Bird Bird Bird Bird Animal Bird c Vertebrate c
Animal hasPart Bone hasPart Feather hasPart

Bone
Vertebrate

¬ 
 ¬ ¬ ¬ ¬ ¬ 
 
 ¬ 

() ()Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

¬ 
 ¬ ¬ ¬ ¬ ¬ 
 
 ¬ 

() ()Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

¬ 
 ¬ ¬ ¬ ¬ ¬ 
 
 ¬ 

() ()Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

¬ 
 ¬ ¬ ¬ ¬ ¬ 
 
 ¬ 

() ()Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

¬ 
 ¬ ¬ ¬ ¬ ¬ 
 
 ¬ 

() ()Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

¬ 
 ¬ ¬ ¬ ¬ ¬ 
 
 ¬ 

Figure 3. The connection proof example in matrix form.

 Step 1 connects this clause with the first matrix clause. An instance or variable -
representing a fictitious individual that is being predicating about -, appears in each
arc; in this connection, the instance c. The arrow points to literals still to be checked
in the clause (only the literal ¬Animal in Step 1), that should be checked afterwards.
After step 2, the connection {¬Animal, Animal} is not enough to prove all paths
stemming from the other clause (the one with literal ¬Animal). In order to assure that,
the remaining literals from that clause, viz hasPart, Bone and ¬Vertebrate, have still
to be connected. Then, in step 3, when the predicate hasPart is connected, instance c

(c,y)

c

c

c

c

c

(c,y)

(c,y)

(c,y)

y

c

1.

2.

3.

4.

5.

6 &7.

c

 10

being dealt with any more, but a relation between it and another variable or fictitious
individual, say y (indicated by (c,y)).
 Until that moment, only the Extension rule was applied. However, in step 4, the
Reduction rule is used, triggered by its two enabling conditions: (i) there is a
connection for the current literal already in the proof; and (ii) unification can take
place. Unification would not be possible between different individuals and/or
skolemized functions (in ALC, equality among individuals is not necessary).
 Next, a connection for the literal Bone was needed. That time, the variable (or
fictitious individual) y is being referred, for the reason that it stands for a part of the
individual c (hasPart(c,y)).
 In case the system is able to summon the query, the processing finishes when all
paths are exhausted and have their connections found. In case a proof cannot be
entailed, the system would have tried all available options of connections, unifiers and
clause copies, having backtracked to the available options in case of failure.
 In [7], the interested reader could also find how the system deals with cycles and
blocking, the DL services it is able to perform (such as a new way for inconsistency
checking) and the reductions to subsumption and unsatisfiability.

4 Discussion

While planning the ALC CM, i.e. adapting the original CM to ALC, the notation was
designed in order to avoid any ambiguities to arise from the lack of variables in the
representation – that was the rationale of dashlines replacing the quantifiers, so as to
eliminate possible ambiguities with skolemization for the connections. This notation
can be changed even further, since assertions are better stored outside the matrices,
bringing two benefits: matrix size can be dramatically shrunk and powerful indexing
mechanisms for retrieving assertions, such as relational databases, can be employed.
However, even sticking only to TBoxes, matrices can be sparse, a memory waste. A
simple solution for this consists in storing matrices as arrays of arrays.
 Concerning reasoning, the first aspect to be taken into account resides in the
strong similarity between CM and tableaux [10]. For that reason, reductions and
optimizations designed over the latter are very likely to be incorporated to the former.
Additionally, connection calculi are more goal-oriented than tableau calculi;
therefore, they tend to be more efficient. As a support from this belief, this fact could
be empirically observed in a comparison between a connection prover (leanCoP) and
a tableaux connection prover (leanTAP) [8], although proving this requires more
formal work and experiments Departing from such premises, in case the DL tableaux
optimizations fit to ALC CM, a performance at least comparable to other leading DL
tableaux approaches is expected to an ALC leanCoP , which is under development,
given that CM itself usually displays a quite competitive performance (it already won
a CASC competition once [11]). Of course, a deeper investigation on the cases in
which could be advantageous to rely on tableaux or ALC CM is on the research
agenda of this work.

 11

5 Conclusions and Future Work

A connection method to take on the DL ALC was formalized in this work, by adapting
the CM calculus formalized in sequent style from [10] and including a new rule.
Notational improvements were also introduced, the key one being the representation
without variables. Of course, this work is planned to continue in many research
directions, such as implementations, other DLs, Semantic Web, etc.
 First, the work presented here shall be extended to more complex description logic
languages in a near future. Particularly, formalizations and implementations for the
DLs EL++, SHIQ and SROIQ will be practically useful for applications related to the
Semantic Web provided that good solutions for dealing with equality are available,
like eq-connections [3].
 Another potential reasoning advantage to be pursued could be the memory
required for ALC CM. Despite the fact that, given a connection proof, the size of an
equivalent tableau proof is not significantly bigger (perhaps a quadratic increase in
size); the proof search might indeed take up much more space, as the search is
essentially saturation-based and many parts of a problem maybe not be required for
the proof. However, these statements demand additional research to be proven true.

Last but not least, lean implementations written in Prolog, in the flavor of
leanCop [8], that demand small memory space, can serve applications that are
constrained in memory, such as stream reasoning in mobile applications, for instance.

References

1. Baader, F., Calvanese, D. McGuinness, D,, Nardi, D., Patel-Schneider, P. (Eds.): The
Description Logic Handbook. Cambridge University Press, 2003.

2. Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL - Web Ontology Language Semantics
and Abstract Syntax W3C Recommendation. www.w3.org/tr/2004/rec-owl-semantics-
20040210/ , 2004. [Accessed 10 Jan 2010].

3. Bibel, W. Automated theorem proving. Vieweg Verlag, Wiesbaden, 1987.
4. Baader, F., Brandt, S., Lutz, C. Pushing the EL Envelope. LTCS-Report 05-01, Chair for

Automata Theory, Inst. for Theoretical Computer Science, TU Dresden, Germany, 2005.
5. Ghilardi, S., Lutz, C., Wolter, F. Did I damage my ontology: A Case of Conservative

Extensions of Description Logics. Proceedings of the Tenth International Conference of
Principles of Knowledge Representation and Reasoning 2006 (KR’06), AAAI Press, 2006

6. Schlicht, A. Stuckenschmidt, H. Peer-to-peer Reasoning for Interlinked Ontologies. Int.
Journal of Semantic Computing, Special Issue on Web Scale Reasoning, 2010

7. Freitas, F., Schlicht, A., Stuckenschmidt, H. A Connection Method for Reasoning with the
Description Logic ALC. Technical report. University of Mannheim. 2010.
www.cin.ufpe.br/~fred/CM-ALCTechRep.doc [Accessed 10 Dec 2010].

8. Otten, J., Bibel, W. leanCoP: Lean Connection-Based Theorem Proving. Journal of
Symbolic Computation, Volume 36, pages 139-161. Elsevier Science, 2003.

9. Schmidt, R., Tishkovsky, D. Analysis of Blocking Mechanisms for Description Logics. In
Proceedings of the Workshop on Automated Reasoning, 2007.

10. Otten, J. Restricting backtracking in connection calculi. AI Comm., 23(2-3): 159-182 2010.
11. Moser, M., Ibens, O., Letz, R., Steinbach, J., Goller, C., Schumann, J., Mayr, K. SETHEO

and e-SETHEO - the CADE-13 systems. J. of Automated Reasoning, 18(2):237{246, 1997.

http://ki.informatik.uni-mannheim.de/fileadmin/publication/Schlicht10p2p.pdf
http://www.cin.ufpe.br/~fred/CM-ALCTechRep.doc

