
Understanding Software Ecosystems:
A Strategic Modeling Approach

Eric Yu and Stephanie Deng

Faculty of Information, University of Toronto,
Toronto, Canada M5S 3G6

Abstract. Software ecosystems is an increasingly popular form of industry
organization promoted by leading software vendors. Due to its novelty and
complexity, many issues remain unclear for the various parties involved in the
ecosystem. A transition from more conventional industry structures and
relationships to an ecosystem will likely have profound impacts on business as
well as technical design choices. In this paper, a preliminary attempt is made to
use a strategic modeling approach based on the i* modeling framework to help
understand software ecosystems. i* models are used to depict strategic
dependencies between software vendor, third party developers, and end-users,
and to help explore and reason about alternate ways for achieving strategic
goals for each actor. We compare the buyer-supplier relationships in the
traditional software supply chain to the open ecosystem format from a mobile
platform vendor's perspective. Implications of the changing dynamics between
the software vendor and its direct buyer and supplier are also discussed.

Keywords: Software ecosystem, strategic modeling, i*, industry structure,
software supply chain, business model

1 Introduction

The software industry is constantly evolving and is currently undergoing rapid
changes. Not only are products and technologies evolving quickly, many innovative
companies are experimenting with new business models, leading occasionally to
fundamental shifts in entire industry structures and how firms and customers
interrelate [1]. Recently many companies have adopted the strategy of using a
platform to attract a mass following of software developers as well as end-users,
building entire “software ecosystems” around themselves, even as the business world
and the research community are still attempting to get a better understanding of the
phenomenon.

Software ecosystems (SECO) refers to the set of businesses and their
interrelationships in a common software product or service market [2]. While the
SECO approach appears attractive and is gaining momentum, its higher complexity
brings tough challenges for its potential adopters [2]. For example, what factors need
to be considered in order to succeed in a SECO? How can software vendors establish
and sustain strong buyer-supplier relationships? Furthermore, the current lack of
sufficient modeling techniques for SECO makes it harder for the participants and

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

65

potential adopters to conceptualize an ecosystem and therefore to establish viable
strategies to address SECO challenges.

Some methods have been proposed to identify and analyze the complex
relationships in software ecosystems. For instance, the Software Ecosystem Modeling
(SEM) technique enumerates SECO objects to provide a holistic picture of the
relationships in the software supply network [3]. However, these methods do not
directly address strategic aspects of SECO suggested above. Other related work are
discussed in a later section.

This paper illustrates the potential for using strategic modeling to help understand
alternate SECO configurations. As a small example, we compare the buyer-supplier
relationships in the traditional software supply chain to the open ecosystem format
from a mobile platform vendor's perspective. We aim to reveal what is implied in
such relationships and the impacts they can have on strategic organizational goals,
from which different strategies in the buyer-supplier relationships may be illustrated.
Hence, the understanding of key aspects around this issue can be improved.

Strategic modeling focuses on investigating and analyzing the strategic goals,
intentions and relationships of each actor in a network of actors. It is a means to
answer the “whys” behind an organization’s decisions. Strategic modeling can be
helpful in understanding organization issues at different levels [4].

The paper has the following structure. Section 2 provides a brief explanation of the
i* modeling framework that supports strategic reasoning. Section 3 presents the
modeling analysis and reasoning with two contrasting cases. Section 3.1 presents the
buyer-supplier relations in the traditional software supply chain. Section 3.2 explains
the buyer-supplier relations in the open ecosystem. The implications from the
modeling analysis are discussed in Section 4. Section 5 concludes the paper with a
reflection on the results.

2 A simplified example of buyer-supplier relationships

We use a small example to illustrate the basic concepts of i* strategic modeling, using
general knowledge about the product-oriented software business domain.

Figure 1 shows a simplified set of relationships between a software vendor and an
end-user. The overall operation of the software vendor is represented by the task run
software business. 1 Running the software business consists of getting software
produced, and selling the software portfolio. To get software produced, one can build
it in-house, or one can integrate software from an OEM supplier. Selling software
portfolio includes providing related services such as support and maintenance. For the
purpose of this simple example, these model elements constitute a very rudimentary
breakdown of the main components of running a software business. To model what it
means to have a well-run business, we include model elements that reflect business
performance objectives or criteria that would guide choice among strategic
alternatives. For example, in choosing between building software in-house or
integrating OEM software, one would consider factors such as product quality and
time-to-market (TTM). These are factors that contribute to high value as perceived by

1 Where appropriate, we use italics to highlight text that refer to model elements in the figures.

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

66

customers. High perceived value will help attract new customers and reinforce
customer loyalty, both of which are essential for building a large customer base,
which in turn contributes to profitability.

Fig. 1. A simplified i* model showing relationships between Software Vendor and End-User

In the i* strategic modeling approach, all actors are presumed to be acting
strategically. The End-User, just like the Software Vendor, has different options and
can choose those that are most strategically advantageous. In Figure 1, we show a
much simplified situation in which the end-user acquires software from a vendor (as
opposed to alternatives, not shown, such as building the software himself, or
acquiring it from another vendor operating under a different business model, e.g.,
open source.) In doing so, he relies on the vendor to support and maintain the
software. In return, the vendor depends on the end-user to pay license and
maintenance fee, and to acknowledge satisfaction, e.g., by continuing to be a
customer. For the internal strategic reasoning of the end-user, we show a very
simplified situation where the user considers all of these three factors to be essential:
good product quality, be affordable, and offering a variety of functionalities.

In an i* model, the main types of elements are goals, tasks, resources, and
softgoals. These are called intentional elements because they represent what the actor
wants to achieve. For examples, tasks are not simply process steps or activities (as in
conventional process models), but are oriented towards some goals. In i*, a goal is a
condition or state of affairs that the actor wants to achieve, without specifying how it
is to be achieved. Modeling the condition (e.g., software be produced) as a goal
indicates that there can be different ways (means) for achieving it. A means-ends
link is used to connect a means (typically a task) to an end (typically a goal). A task
specifies a particular way of doing something. It may be decomposed into its
constituent elements through task decomposition links. The constituent elements
may include subtasks as well as subgoals, resources, and softgoals. In Figure 1 the
task run software business is decomposed into a (sub)goal software be produced and
the subtask sell software portfolio. A resource is something that is needed for
performing some task or for achieving some goal (and is hence also intentional). In
Figure 1, software and license fee are examples of resources. A softgoal is similar to a

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

67

goal except that its criteria for satisfaction are not clear-cut and often not known a
priori. Whereas (“hard”) goals are either satisfied or not satisfied, softgoals are judged
qualitatively and said to be sufficiently satisfied (satisficed) or partially satisfied. The
contribution link is used to show how individual elements contribute to the
fulfillment of a softgoal. For instance, performing the task integrate OEM software
“helps” (i.e., positively contributes to) the softgoal higher product value, which in
turn contributes to establishing customer loyalty and attract new customers. The
“hurt” link indicates a negative contribution. The “make” and “break” links indicate
that the contribution is sufficient to satisfice (or deny) the target softgoal. The help
and hurt links indicate partial contribution, i.e., insufficient to satisfice (or deny) the
target softgoal. Between actors, the dependency link indicates that one actor depends
on another actor to have a goal achieved, a task performed, a resource to be furnished,
or a softgoal to be satisfied. The different types of dependency imply different
degrees of control and vulnerability of the depender [6]. In the example, the end-user
depends on the vendor to provide the software (specified as a resource) while he
receives license and maintenance fee in return. He also expects the software to be
supported and maintained (a desired end result without specifying how it is to be
achieved). If the end-user is not satisfied, then customer loyalty is not achieved,
which means that the end-user is likely not to have future business with the software
vendor.

i* is a modeling framework that provides explicit support to strategic reasoning
through modeling actors’ goals and rationales [6]. The Strategic Rationale (SR) model
in the i* framework models an actor’s intentional relationships both inside (as internal
constructs) and outside (as external dependencies) the actor [5], and supports the
process of exploring and evaluating alternative means to achieve specific goals of
each actor. i* modeling can complement other types of SECO modeling by revealing
the intentional and strategic dimension of relationships in SECO. Strategic reasoning
from the viewpoint of each SECO participant is important for tackling the
complexities of some SECO challenges, such as what strategies and tradeoffs are
needed to build sustained buyer-supplier relationships. Since the focus of i* modeling
is to reason about the strategic interests of various actors, i* models need not include
every detail. Only those elements that would make a difference in assessing strategic
goal achievement and in comparing alternatives need to be included.

The i* modeling framework was originally developed in the area of requirement
engineering, to help analyze the social setting for which an information systems is
intended [5]. It has also been applied to business process re-engineering, software
process improvement, software architecture reasoning, security and privacy [16], and
to reasoning about business models and disruptive innovations [7]. A version of i* has
been adopted as part of the User Requirements Notation (URN), an ITU-T
international standard [17].

3 Open Ecosystem versus Traditional Software Supply Chain

In this section, we apply i* strategic modeling analysis to compare the buyer-supplier
relationships in two contrasting cases: the traditional software supply chain and the

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

68

open ecosystem, from a mobile platform vendor’s perspective. We slightly extend the
model introduced in section 2 to illustrate the reasoning for the two approaches. For
example, we include additional important rationales of the software vendor, such as
increased solution gravity, vendor lock-in and retaining flexibility in product
development. While there are many other aspects in a software business, this study
focuses mainly on the aspect of buyer-supplier relationships in producing and selling
software products.

Since our intention is not to enumerate possible differences in the business models,
for simplicity, we model the typical configuration in such settings and only include
the essential actors. There are three actors in both models. For the traditional software
supply chain (Figure 2), we consider Software Vendor, End-User and OEM Supplier
as the main actors, while for the open system (Figure 3), the supplier is replaced by
Developer. In transitioning towards an open ecosystem, the relationships between the
software vendor and its buyers and suppliers evolve from a simple linear
configuration to a more complex network of relationships. By employing the i*
modeling technique, we are able to reveal the intentional elements implied in such
relationships and their impacts on various actors through SR model constructs, from
which two different strategies in the buyer-supplier relationships are illustrated.

The major literature sources we draw upon for constructing the models include the
work done by Jansen, Finkelstein & Brinkkemper [2], Bosch [8], Popp and Meyer [9],
and Popp [10]. The knowledge of mobile SECO is mostly based on publicly
accessible information on the Internet. In the following subsections, we analyze the
buyer-supplier relationships in the traditional software supply chain and the open
ecosystem through i* SR modeling and analysis.

3.1 Adopting a Traditional Software Supply Chain Approach

Figure 2 illustrates the relationships between the actors involved in the traditional
software supply chain. In a traditional software supply chain, there is a predominantly
linear relationship from the end-user to the software vendor and from the vendor to its
suppliers. Often the supplier is transparent or not directly visible to the end-user,
although in some business models, the supplier does have a direct connection with the
end-user [9]. For our illustration, we follow Popp and Meyer’s characterization of the
OEM supplier role [9] for the underlying business model between the software vendor
and its supplier. Popp and Meyer also described motivations for supplier relationships
from both the vendor’s and the supplier’s viewpoint. Many of these motivations have
been reflected in the models (as softgoals).

For simplicity of exposition, we reuse most of the elements in the Strategic
Rationale model for the Software Vendor as in Figure 1. We rename the main task as
run software business as supply chain, with a means-ends link to the goal software
business be run. The means-ends link indicates that the supply chain approach is only
one way to run a software business. This will be contrasted in the next section with
the open ecosystem approach. By having OEM suppliers, the software vendor can
integrate complementary OEM software into its own solutions, which can help the
vendor shorten time-to-market and gain higher customer value for its products.
Higher value in turn contributes to attaining a large customer base. In Figure 2, OEM

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

69

supplier is a typical supplier in the traditional software supply chain. By licensing
software to the software vendor for its products (main task inside the OEM supplier
SR model), the supplier can lower sales cost and be a niche player in a specialized
field. In order to serve multiple buyers, the supplier often prefers to keep its flexibility
and stay independent of any particular vendor.

Fig. 2. Buyer-supplier relationships in the traditional software supply chain

The relationship between the software vendor and the OEM supplier can be
analyzed in terms of the intentional dependencies that exist in both directions. The
supplier provides OEM software to the vendor based on commercial licenses [9].
This is modeled as resource dependency OEM software from vendor to OEM, and the
license fees and maintenance fees dependency in the opposite direction. Furthermore,
the vendor depends on the supplier for the OEM software to be of good quality and to
have short release timing. In the other direction, the supplier relies on the software
vendor to reach large customer base which can help its customer growth. He also
hopes to be visible to the vendor’s customers to some extent through the vendor’s
distribution channels. In addition, the software vendor depends on OEM for
knowledge of the software in order to do integration and to provide support.

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

70

End-User is the individual or organization who acquires software for private or

internal use. It is the most common type of buyer in the software business world. The
end-user needs to pay the license and maintenance fee for the software provided by
the vendor. End-user depends on the vendor for quality and variety of the software, as
well as for software support and maintenance services. The means-ends link indicates
that acquiring software from the software vendor operating in a supply chain fashion
is only one way to meet the goal of having software.

3.2 Adopting an Open Ecosystem Approach

A new strategy to engage buyer-supplier relationships for the OS platform vendor has
emerged in the mobile SECO in recent years. In the traditional software supply chain,
the software vendor provides both the platform and a range of applications to the end-
user. In an open ecosystem, the software vendor provides a platform, but relies mainly
on third party developers to create new value (through platform-specific applications)
for the end-user, aiming to attract a large number of developers and end-users around
the platform it provides.

Figure 3 depicts relationships among software vendor, developer, and end-user in a
typical mobile platform ecosystem. The model is constructed using publicly
accessible information on the Internet, and is not meant to accurately reflect any
actual ecosystem.

Dependencies among the actors are more complex in an ecosystem than in the
supply chain case. For an ecosystem to succeed, the software vendor needs to have a
deep understanding of the rationales of the developer.

The software vendor provides platform software to the developer and the end-user,
while depending on the developer to develop creative applications for the platform. In
addition to platform support and maintenance, the vendor also provides the market
channel for selling developer’s applications. When the end-user acquires applications
from the market channel, the vendor will have revenue share (in some form) on the
purchase from the developer, while the developer is responsible for supporting and
maintaining the applications. Moreover, since both are users of the platform, the
software vendor needs to achieve both developer satisfaction and end-user
satisfaction. Note that the software vendor can still integrate OEM components to its
platform, rather than to build it all by itself.

In order to be profitable, the developer not only needs to use the right platform but
also to create the right applications. Adopting available open platform from the
software vendor is one efficient way for developer to monetize the ecosystem, but the
platform should have the potential for big market, and is easy to use from the
developer’s point of view. While ease of use of the platform can minimize the effort
by developers to contribute and therefore help to improve the developer’s satisfaction,
it is the big market that drives profitability and ultimately satisfies the developer.

Furthermore, the developer depends on the software vendor to provide a powerful
platform and fair condition for using the platform. The developer also wants to be
visible to the end-user through the market channel, allowing its applications to get to
market quickly. The end-user now relies on the developer to provide attractive

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

71

applications that have variety and good quality, rather than relies on the software
vendor for these.

Fig. 3. Buyer-supplier relationships in the software open ecosystem

In adopting an open ecosystem strategy (Figure 3), we see that the software vendor
emphasizes different business goals and chooses different ways to achieve them,
compared to the traditional supply chain (Figure 2). Supplying platform to developer
not only helps the software vendor increase platform gravity, which increases
customer lock-in, but also achieves diversity in platform-specific applications and
drives fast innovation. Diversity and innovation contribute to perceptions of high
value by both existing and new customers. Similar to the traditional software supply
chain, time to market is fast and satisfaction management contributes to attaining
large customer. However, this approach does reduce the vendor’s flexibility in
modifying the platform once the platform is adopted on a large scale.

To more systematically assess whether desired goals are achieved, one can apply a
semi-automated algorithm [11] to propagate qualitative evaluation labels across the
graph, to help answer analysis questions from the models. Initial labels are set (if an
element is satisfied or denied) and then propagated throughout the model using a
combination of propagation rules and human judgment. The answers are interpreted
from the propagated labels. Figure 3 illustrates the propagation of labels to answer the

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

72

question: if the vendor’s platform is not easy-to-use from the developer’s viewpoint,
how it will affect the vendor and the end-user? Four types of labels are shown in the
model: satisfied (√), weakly satisfied (√.), denied (X), weakly denied (X.). From the
analysis, we can conclude that although the developer is not satisfied with the
platform, the developer is still likely to use the platform if it is possible to make profit
from the platform. However, the dissatisfaction will affect end-user satisfaction, thus
impacting the software vendor’s goal of achieving large customer base through the
applications delivered. Note that at various points in the propagation, human
judgment is required when the resulting value from a number of contributing values
are underdetermined. Domain knowledge may be needed to judge the relative weights
of different goals and to what degree an element is satisfied or denied.

4 Discussion

In the research agenda for SECO outlined in [2], the definition of SECO conveys the
two central ideas that 1) a shared market in software products and services defines the
boundary of a software ecosystem and 2) the technological platform or market acts as
the common ground of the relationships among businesses within the ecosystem. It
has been a long-established practice to build business partnerships (with customers,
suppliers and partners), but the software ecosystem era brings new forms and
interesting dynamics into this old practice. In SECO, as each individual player’s
success is tied to the outcome of the entire ecosystem [9], software vendors have been
increasingly influenced by their external relationships. Without a good understanding
of these relationships and their underlying rationales in terms of the strategic goals of
each of the actors, a software vendor may incur unforeseen risks while embracing
SECO enticed by its apparent benefits. Several observations can be made from the
comparison between the traditional supply chain and the open ecosystem approaches.

First, the two models show that the buyer-supplier relationships have moved from
a relatively simple linear chain to a more complex network of multilateral
relationships. The complexity can be found in two ways: 1) increased number of
dependencies, especially the associated softgoal dependencies, and 2) increased
reciprocal dependencies among multiple actors.

Second, the role of supplier has evolved in certain ways. The OEM supplier in the
traditional supply chain is purely a supplier of a needed software component, with no
direct involvement with the software vendor’s customers. In the open ecosystem, the
developer is both a (platform) customer and an (application) supplier. In the supply
chain, supplier is usually hidden behind the software vendor and has no influence
over the end-user. In the open ecosystem case, while still having no control over the
end-user, developer is largely visible and directly connected to the end-user.

Third, the model shows the possibility for the software vendor to exercise control
via dependencies. It is important to note the difference between a goal dependency
and a task dependency as conveyed in an i* model. A goal dependency indicates that
the dependee has freedom on choosing how to achieve a certain desired state, while a
task dependency means that the depender stipulates how the task is to be done. For
example, in the open ecosystem, the software vendor has a goal dependency on the

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

73

developer for platform-specific applications be developed. By using means-ends links
and subsequent decompositions on subtasks, different ways of how this goal may be
achieved can be depicted as alternatives and strategies that either give more freedom
to the developer or impose more control on the developer. In this way, different levels
of control from the software vendor over the relationships can be expressed through
the models and further analyzed.

Last but not least, while both are valid ways for a software vendor to run its
software business, the two approaches have different impacts on the vendor’s
strategic goals (mainly appearing as softgoals) resulting from the separation of
provision of the platform and its applications. When the software vendor provides
both platform and application to the end-user, application variety is somehow limited
because a single vendor does not have the capability to accomplish all the
functionalities that the end-user(s) needs [8]. As the provisioning of them is separated,
the open ecosystem approach offers better prospects for diversity and fast innovation
that appear to be attractive to users. Moreover, this separation allows a larger set of
users’ needs to be met, which may be unfocused or neglected in the supply chain
approach. It may also show the benefits in lowering the cost by supporting and
maintaining a platform instead of a portfolio of products that are based on the
platform.

Since the research community for SECO is quite new, there is only limited
literature available on SECO modeling. A number of works have used modeling
approaches to analyze software ecosystems and strategies of software vendors. Popp
and Meyer [9] identified a set of roles that software companies can play in the
ecosystem. They presented the relationships between different roles from a value
model perspective, which focuses on value creation through the exchange of goods,
services and payments. Recently Boucharas, Jansen and Brinkkemper [3] proposed
the SEM technique to formalize modeling on SECO. The approach consists of two
types of models: the Product Deployment Context (PDC) and the Software Supply
Network (SSN). The PDC shows the software product architecture in the running
environment while the SSN provides a holistic picture of the relationships between a
vendor and its first-tier buyers and suppliers. Similar to Popp and Meyer’s
perspective, the enumeration of relationships between the actors in an SSN is based
on value exchange (i.e., products, services, finance and content). In [12], [13], the
interactions among ecosystems parties are modeled quantitatively using network
analysis. Statistical techniques are applied to historical data. In [14], [15],
mathematical models are used to study particular strategies (i.e., platform design
moves, pricing strategies) of the software vendors. Statistical analysis or simulations
are used to determine the impact of alternative strategies. In contrast, the strategic
models in this paper aim to offer insights on the intentional and strategic aspects of
the ecosystem actors and their relationships.

The i* method supports the expression and reasoning of the intentional aspects of
goals and relations in the network of actors. When analyzing and designing SECO
strategies, i* modeling can help situate the SECO specific goals (e.g., monetize on the
ecosystem) with individual actor’s goals, which provides an overall perspective on the
important factors needed to be considered in an ecosystem. Furthermore, by
elaborating means-ends at the goal level, i* models facilitate exploring alternatives
(i.e., different strategies to achieve a goal). The evaluation mechanisms can assist

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

74

choosing among explored alternatives. Note that there can be goals at the strategic
level (e.g., greater flexibility) and at the operational level (e.g., improved
communication). Another benefit from the approach is that a body of knowledge can
be accumulated through model building over many cases. This body of knowledge
may then provide quality, ready-to-use information for future analysis of the SECO
domain.

Limitations of the i* method include model scalability when the analysis involves a
large number of actors, and reliance on the knowledge and experience of the modeler
for achieving quality models.

The models we constructed in this preliminary study are based on knowledge
gleaned from the literature. A more systematic method for knowledge acquisition and
validation with domain experts will help improve the quality of the models.

5 Conclusion

In this paper, we provided an illustration of how strategic modeling using the i*
framework can help in analyzing different configurations in the software industry. We
used models to contrast how the dynamics of the buyer-supplier relationships have
changed moving from the traditional software supply chain towards an open
ecosystem. The i* strategic modeling method helps to improve the understanding
around this issue in the following ways:

 it helps visualize the increased dynamics in the networked environment by
making the relationships explicit, for both inside and outside the actors of
interest, especially in revealing the intentional dimension of the relationships;

 it facilitates exploring strategies and alternatives to various degrees in the
current setting; and

 it brings out a structure for systematic reasoning for how well the interests and
concerns may be addressed by different configurations in the environment.

The i* models presented in this paper illustrate two strategies for the OS platform
vendors. However, many variations are possible in each actor for further analysis. For
instance, the variation can be related to strategies (e.g., the degree of control that a
software vendor wants to impose on the external application development, to build or
to exploit software). Variations can also arise from different business model designs
(e.g., the types of services a software vendor provides, to leverage an OS-centric or an
application-centric ecosystem).

The models in this paper are much simplified for the purpose of illustrating the
modeling and analysis technique. For example, since we have focused only on
comparing the product aspect of the buyer-supplier relationships, partners who mainly
provide complementary services in the SECO have not been included in the models in
the paper. In addition, empirical studies are needed to validate the approach, from
which the effectiveness of strategy reasoning and design, using i* modeling, can be
demonstrated through real world SECO case studies.

Acknowledgments. Financial support from the Natural Sciences and Engineering
Research Council of Canada is gratefully acknowledged.

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

75

References

1. Messerschmitt, D., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press, Cambridge (2003)

2. Jansen, S., Finkelstein, A., Brinkkemper, S.: A Sense of Community: A Research Agenda for
Software Ecosystems. ICSE Companion 2009. pp. 187-190 (2009)

3. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing Software Ecosystem Modeling. In:
IWOCE '09 Proceedings of the 1st International Workshop on Open Component
Ecosystems. ACM Press, New York (2009)

4. Yu, E.: Strategic Modeling for Enterprise Integration. In: Proceedings of the 14th World
Congress of International Federation of Automatic Control (IFAC’99). Elsevier Science,
Permagon. pp. 127-132 (1999)

5. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (eds): Social Modeling for Requirements
Engineering. MIT Press, Cambridge (2011)

6. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering
(RE'97). IEEE Computer Society, Washington, DC. pp. 226-235 (1997)

7. Samavi, R., Yu, E., Topaloglou, T.: Strategic Reasoning about Business Models: A
Conceptual Modeling Approach. Information Systems and e-Business Management. 7(2),
pp. 171-198 (2009)

8. Bosch, J.: From Software Product Lines to Software Ecosystems. In: SPLC '09 Proceedings
of the 13th International Software Product Line Conference. pp. 111-119 (2009)

9. Popp, K., Meyer. R.: Profit from Software Ecosystems. Books on demand, Synomic GmbH
(2010)

10. Popp, K.: Definition of supplier relationships in software,
http://www.drkarlpopp.com/resources/ICSOBSubmission2.pdf

11. Horkoff, J., Yu, E.: Interactive Analysis of Agent-Goal Models in Enterprise Modeling.
International Journal of Information System Modeling and Design. IGI-Global, 1(4), pp. 1-
23 (2010)

12. Kabbedijk, J., Jansen, S.: Steering Insight: An exploration of the Ruby Software Ecosystem.
In: Proceedings of the Second International Conference on Software Business. (2011)

13. Iyer, B., Lee, C. -H., Venkatramen, N., Vesset, D.: Monitoring Platform Emergence:
Guidelines from Software Networks. Communications of the Association for Information
Systems. 19 (1) (2007)

14. Liu, X., Lee, C. -H., Iyer, B.: The Impact of Design Moves on Platform Adoption: The Case
of Microsoft Windows OS. In: HICSS '06 Proceedings of the 39th Annual Hawaii
International Conference on System Sciences. IEEE Computer Society, Washington, DC.
(2006)

15. Buxmann, P.: Network Effects on Standard Software Markets: A Simulation Model to
examine Pricing Strategies. Standardization and Innovation in Information Technology,
2001 2nd IEEE Conference. pp. 229-240 (2001)

16. Yu, E.: Social Modeling and i*. In: Conceptual Modeling: Foundations and Applications.
A. Borgida et al (eds). LNCS vol. 5600. Springer, pp. 99-121. (2009)

17. ITU-T, Recommendation Z.151 (11/08), User Requirements Notation (URN) – Language
definition. (2008). http://www.itu.int/rec/T-REC-Z.151/en

Eds: Jansen, Bosch, Ahmed, and Campell Proceedings of the Workshop on Software Ecosystems 2011

76

