
Investigating F# as a development tool for distributed
multi-agent systems?

Extended abstract

Alex Muscar

Software Engineering Department, University of Craiova, Bvd. Decebal 107, Craiova, 200440,
Romania, amuscar@software.ucv.ro

1 Introduction

Recently we have set up a research project to investigate the development of software
systems based on the metaphor of distributed multi-agent organizations. In what fol-
lows we focus on the design and implementation of distributed algorithms using two
programming frameworks that we consider appropriate: JADE1 and F#2. For experimen-
tal evaluation we have considered the distributed version of the Depth-First Traversal
(DDFT) algorithm presented in [3].

We adopt a very weak notion of “agency” by understanding an agent as a computa-
tional entity that (i) has its own thread of control and can decide autonomously if and
when to perform a given action; (ii) communicates with other agents by asynchronous
message passing. We consider asynchronous programming as being characterized by
many simultaneously pending reactions to internal or external events [5].

The rest of the paper is structured as follows. In section 2 we outline the DDFT
algorithm that we considered in our experimental implementations using both F# in
section 3 and JADE in section 4. We proceed with an experimental evaluation and
comparison of those two implementations in section 5. Finally we draw some conclusions
in section 6.

2 Background and Problem formulation

The DDFT algorithm operates over a graph in which vertices are entities and edges
are communication links between entities. Each entity has a set of neighbors which
does not necessarily coincide with the set of all vertices. In the context of multi-agent
systems this can be seen as a simplified form of organization. The key point of DDFT
is to visit the graph by forwarding a token for as long as possible and backtracking
when forwarding is not possible. In this scenario there is exactly one initiator. The other
entities will be idle waiting for the token. When visited, an entity forwards the message

? This work was supported by the strategic grant POSDRU/CPP107/DMI1.5/S/78421, Project
ID 78421 (2010), co-financed by the European Social Fund Investing in People, within the
Sectoral Operational Programme Human Resources Development 2007 - 2013.

1 http://jade.tilab.com/
2 urlhttp://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS 
ISBN 978-86-7031-188-6, pp. 32 - 36, 2011

32



2 Alex Muscar

to each of its neighbors in turn and when it runs out of neighbors it sends the token back
to the sender. If the entity has already been visited it will just reply signaling that the
link is a back-edge and it will not proceed to forwarding the token. For a more detailed
description ad the pseudocode of the algorithm we refer the interested reader to [3].

We can identify four states of the DDFT algorithm: Initiator, Idle, Visited and Done.
As stated above only one entity will start in the Initiator state, whereas the rest will have
the state Idle. When visited, an entity enters the state Visited. After the algorithm has ran,
all the entities will be in the Done state.

3 The F# approach

F#’s rich type system provides for both expressive and safe programming [4]. More
information can be encoded at the type level and it can be statically checked by the
compiler. For instance, by using discriminated unions3 we can defined message types that
agents can exchange in a succinct and type-safe manner. This is achieved in conjunction
with pattern matching, which can be used to decompose complex structures.

Programs that implement message passing software agents in F# follow a certain
pattern: sets of recursive functions, each defining an asynchronous computation, are
used to model the states of a state machine out of which only one is identified as the
initial state [4]. This idiom can be used to write any agent who can be modeled as a state
machine. Note that the state transitions are implicitly coded by allowing the functions
that implement each state to call each other.

3.1 Asynchrony

F# has built in support for asynchronous programming via blocks of the form async {. . .}
which in F# parlance are called asynchronous computation [5]. Inside async blocks
the some control constructs (e.g. let!, return!) of the language take a special meaning
which helps in composing asynchronous computations in a manner that’s close to the
core language. When executed, an asynchronous computation will eventually produce a
value.

4 The JADE approach

JADE is a very flexible agent platform that provides the basic functionalities for the
development of distributed multi-agent systems. A JADE-based system is composed of
a set of software agents. Each software agent has its own thread of control. The actual
program performed by a JADE agent is defined as a set of plugin components known
as behaviors. A behavior consists of a sequence of primitive actions. Behaviors are
executed in parallel using interleaving of actions on the agent’s thread with the help of a
non-preemptive scheduler, internal to the agent [1].

Our JADE implementation of the DDFT algorithm is fairly straight forward. We have
extended the generic Behaviour class to represent our agent’s behavior. State transitions

3 http://msdn.microsoft.com/en-us/library/dd233226.aspx

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

33



Investigating F# as a development tool for distributed multi-agent systems 3

are implemented by updating the value of the an instance variable in a switch statement.
As in the case of F# we have omitted the implementation of the JADE agent for brevity.

Whenever an agent must receive a message, we use the following JADE idiom: (i)
invoke the receive() method, (ii) test if there is a message in the mailbox, (iii) do the
work if an appropriate message was received, otherwise invoke block(). The invocation
of block() is necessary because the receive() method is non-blocking, i.e. it immediately
returns either a message or null if the mailbox is empty.

5 Results and discussion

So far we have seen two approaches for implementing the same algorithm: (i) one
based on a functional programming language and (ii) the other using the more familiar
imperative paradigm combined with a middleware framework. We are now going to take
a closer look at the implications of our choice in each case.

5.1 Safety

In F# we use statically typed messages and we constrain our mailboxes to operate only on
those message types that are relevant to our agent. By doing so we ensure that we won’t
send messages that we can’t handle or that our agent can’t understand. This method is
also applicable when using serialization since the .NET runtime embeds type information
in the serialized entities so they can safely be re-constructed at the destination.

In JADE there are three possibilities: (i) plain strings, the least safe method since
strings cannot be checked to be of an appropriate type; (ii) serialization which is a
convenient way of packing messages that are sent between agents written in Java, and
(iii) ontologies which set up a vocabulary and a nomenclature of elements that can be
used as message contents.

5.2 Usability

The structure of the programs derived using both approaches follows the algorithm
specification closely, but the F# solution (including the code to generate a tree shaped
hierarchy of agents) is nearly half the size of the JADE solution. The agent logic itself
spans over 30 lines of F# code whereas in JADE it spans over 70 lines of code. Note that
this is the case in which we used strings for messages in JADE. If we were to take the
solution using serialization or the one using ontologies the amount of code would grow
further.

Another advantage we get from using F# is that we don’t have to explicitly manage
the state of the agent ourselves. Instead of keeping track of it in a variable, like we do in
Java, we let the runtime take care of that. We just call functions corresponding to states
whenever we want to transition to a new state. This makes the code more declarative,
allowing the programmer to state what we want done instead of how we want to do it.

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

34



4 Alex Muscar

5.3 The threading model

While the code structure of the solutions is quite similar, following closely the algorithm,
the underlying systems behave quite differently. Whereas JADE uses one thread per
agent [1], F#’s runtime uses the thread pool approach [5].

F#’s approach of using lightweight tasks which are scheduled for execution in a
thread pool leads to a more scalable solution–as long as asynchronous operations don’t
block the executing thread [5]. In this scenario a (rather small) number of OS threads
run tasks that are scheduled in the thread pool. Thus a very large number of tasks can be
ran without paying the price of spawning a thread per task.

JADE does offer a block() method that marks a behavior as being blocked, but it has
a different purpose. While blocked a behavior does not poll for messages but the agent
continues to take up a thread. When a message is delivered all blocked behaviors will be
marked as active again.

5.4 Performance

While DDFT is a good example for getting a feel of developing distributed systems
using both solutions and the means they offer for this task, in order to evaluate the
performance of both platforms we implemented an example inspired from the real world:
Google’s mapreduce [2]. In mapreduce a machine–the master–splits the work in chunks
and assigns each chunk to a mapper–more than one chunk can be assigned to a mapper
if there are more chunks than mappers. When done, the intermediary results generated
by mappers are forwarded to one or more reducers for final processing.

Using the mapreduce model we implemented an application that counts the number
of occurrences of each word in a collection of documents–4 documents, 11.8 Mb each.
In our setup we had a master, a reducer and between 1 and 4 mappers, each running
on its own machine. In order to simplify the implementation each mapper had the 4
documents available locally.

We ran the test on network of computers with Core 2 Duo processors running at
2.2 GHz each with 4 GBs of RAM. The computers are connected by a Myrinet-2000
network4. The F# benchmark was run on .NET 4.0 and the Java one on Java 1.6.0 22.
Figure 1 shows a comparison of the total time for each solution with a varying number
of mappers–from 1 to 4.

6 Conclusions and Future Work

In light of our experiment we think F# is a viable option for writing distributed algorithms.
F#’s asynchronous computation model proved to be a scalable option. This is confirmed
by the results shown in section 5.4 where the F# solution performed consistently better
than the JADE implementation. Also the fact that F# doesn’t use one thread per agent
means that a larger number can be spawned thus allowing for finer grained solutions to
be implemented. Also our F# implementation of the DDFT algorithm is half the size of
the JADE version.

4 http://www.myri.com/myrinet/overview/

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

35



Investigating F# as a development tool for distributed multi-agent systems 5

Fig. 1. mapreduce performance for F# and JADE.

Based on our initial results we would like to use F# to investigate computational
properties of distributed multi-agent organizations, with a focus on advanced properties
like self-configuration and adaptivity. One line of research is to see if F#’s advantages
outlined in this paper will scale-up to significantly more complex systems.

References

1. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley
(2007)

2. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51, 107–113 (January 2008)

3. Santoro, N.: Design and analysis of distributed algorithms. Wiley (2007)
4. Syme, D., Granicz, A., Cisternino, A.: Expert F# 2.0. Apress Berkley (2010)
5. Syme, D., Petricek, T., Lomov, D.: The F# asynchronous programming model (2011)

PROCEEDINGS OF THE WORKSHOP ON APPLICATIONS OF SOFTWARE AGENTS, 2011

36




