
Generic Tools for Data Analysis and Visualisation

Uta Priss

Edinburgh Napier University, School of Computing,
www.upriss.org.uk

Abstract. This position paper discusses challenges that need to be overcome in
order to build generic tools for data analysis and visualisation. Its intention is to
stimulate discussion among the CUBIST workshop participants, not to present
results.

In the Star Trek television programs, data analysis is usually accomplished by speak-
ing to the computer and asking it to analyse some problem. The computer then provides
a succinct, coherent and relevant analysis of the data which allows the Star Trek crew
to make their decisions. In reality, although humanity has made some progress with
implementing Star Trek technology1, achieving automated computerised data analysis
is probably at least as difficult as implementing automated natural language processing
because the computer would need to understand the problem within its full context. A
more achievable but still difficult goal would be to build data analysis software that col-
laborates with human users during the data preprocessing and modelling stages and then
automates the rest of the analysis. In recent years, great advances have been made with
respect to the availability of large toolkits for data analytical methods, visualisation,
storage and retrieval. Thus, although the general problem is difficult (or impossible),
many of the building blocks for achieving somewhat more modest solutions are avail-
able, even using low cost or free, open source tools.

With respect to using Formal Concept Analysis (Ganter & Wille, 1999) as a tool for
data analysis, drawing from our own experience in past projects (Priss & Old, 2010),
the most labour-intensive part of using FCA is usually the preprocessing stage during
which one builds the formal contexts from the raw data or during which one decides
how to select smaller data sets if the original data is too large to be visualised in a single
lattice. In our experience each new data set provides new challenges. One usually has to
write scripts or use other computational means to preprocess the data. It is not always
possible to reuse methods (or scripts) from one project directly for the next one. In
some cases (Endres et al 2010), a custom application has to be purpose-built for the
data. Ideally, there should be methods and tools which speed-up the data preprocessing
stage. It would be nice if it was possible to apply FCA quickly to any new data set
that one encounters in order to explore the data. So, with respect to FCA, the general
problem of building a generic data analysis tool can be scaled down to the problem of
building a generic data preprocessing tool which makes it easier to apply FCA to any

1 For example, we finally have Star Trek’s PADDs in the form of modern tablet computers, such
as Apple’s iPad, and there is a list of further “Star Trek Technologies that Actually Came True”
available at http://electronics.howstuffworks.com/10-star-trek-technologies.htm.



given data set. Additionally, it would be desirable if FCA tools could be more easily
integrated with existing tools for data preprocessing, mining, extraction, modelling and
so on to allow for a combination of methods.

text generation

concept extraction conceptual structures

data mining/weeding
visualisation

vector space
machine learning
statistics

data

text

linguistics

format conversion

algebraic methods
logic

data cleaning/extraction
data preprocessing

data typology

semantics scaling

crawling, sampling

Fig. 1. Components of a generic tool for data analysis and visualisation

The purpose of this position paper is to provide an overview of the challenges that
need to be overcome in order to build such generic tools for data analysis (both FCA-
based ones and tools where FCA is just one component among many others). Figure 1
provides an overview of the steps, tasks and tools that we envisage as building blocks for
generic data analysis tools. In the case of FCA, concept extraction, conceptual structures
and visualisation are meant to refer to the corresponding FCA techniques. In the general
case, conceptual structures could be represented using ontologies or other formal meth-
ods and visualisation could be any commonly used method (graph- or network-based,
statistical plots or charts, 3-d visualisation, and so on). Many parts of Figure 1 are well
established and supported by many existing tools (for example, tools for linguistic pars-
ing and stemming, statistics, data mining and machine learning). In some cases, tools
cover a variety of areas. For example, data mining tools tend to provide methods for
data preprocessing and often have plugins for some linguistic processing. A tool such
as NLTK2 provides linguistic methods as well as some machine learning methods. A
tool such as Sage3 combines a wide range of mathematical methods (including statis-
tics, network modelling and mathematical plotting) in a single toolbox.

But we believe that there are also some aspects of Figure 1 that are still missing and
pose challenges, in particular:

Text generation, crawling, sampling: In modern applications text is not just ex-
tracted from existing databases and document collections but also generated on demand
from web-based or other continually updated sources. This area is probably most diffi-
cult to automate because it heavily depends on the structures of the textual data. Semi-

2 http://www.nltk.org/
3 http://www.sagemath.org/



structured text (such as XML, linked data) is easier to process than unstructured text. It
is easier to look for specific patterns than to discover previously unknown structures.

Text/data: In this paper, “data” denotes text that is slightly more structured (using
mark-up, database or spreadsheet tables, linked data, etc) whereas text can be in any for-
mat or medium. The main challenges with respect to the data itself are the amount (for
example, processing all of Wikipedia would require giga- or terabytes of space) and in-
ternationalisation. For example, although Unicode is an international coding standard,
in our experience, it can still pose problems because not all software supports it per-
fectly. Unexpected effects can occur. For example, printing a mixture of characters from
languages that write right to left and those that write left to right can confuse printed
output. Some major languages (such as Chinese) are often written in non-Unicode en-
codings.

Format conversion: Many tools for format conversion exist4 but not all formats
tend to be supported and errors may be introduced in the conversion process. For ex-
ample, even though Weka is a very popular data mining toolkit5 and data is commonly
stored in spreadsheet or csv formats, importing such formats into Weka’s internal format
can introduce errors because, for example, leading zeros in string data are automatically
deleted.

Data cleaning: Data cleaning is often discussed in a database context, probably
because databases provide rules for consistency and integrity checks. In a more general
context, some form of conceptual modelling is required in order to determine what
constitutes an error.

Data typology, scaling: The idea for data typology or scaling is that once a datatype
or conceptual type is established it should predict the kind of analyses that are suitable
for the data. Commercial tools often provide “Wizards” that help users with modelling
decisions, but this is less supported in free tools or tools that have more general func-
tionality.

Data weeding: We see a difference between mining and weeding (Priss & Old,
2011) in that mining explores all of the data simultaneously whereas weeding allows
for a careful (concept-guided) selection of subsets of the data.

Selection of programming language: A promising programming language for
toolkits of mathematical, mining and machine learning software is currently Python.
Although Python is a scripting language, more complex algorithms and treatment of
large data sources can be accomplished by writing relevant routines in C or C++ which
are accessed by Python scripts. Unfortunately, because Python does not have a stan-
dard graphical component, different visualisation software requires different additional
graphical software which can make tools difficult to install. The main software for
graphical, GUI applications is probably Java. Scripting is easier with Python than Java.
Both Python and Java are cross-platform but Python is probably more suited for Unix
than PCs.

4 For FCA these are tools such as FcaStone (http://fcastone.sourceforge.net/), FcaBedrock for
reading csv files (http://sourceforge.net/projects/fcabedrock/) and ToscanaJ for database con-
nections (http://tockit.sourceforge.net/).

5 http://www.cs.waikato.ac.nz/ml/weka/



Cross-disciplinary approaches: Toolkits often combine software at a syntactic
level but not necessarily in a semantically consistent manner. For example, an anal-
ysis of using FCA and Sage (Priss, 2010) demonstrates that although Sage allows to
combine a variety of tools with FCA software, coding is still required to model the data
appropriately for each tool. Also different tools in a single toolkit can be of varying
quality. Approaches from other disciplines are sometimes missing.

Testing, validation, evaluation: Methods and standards need to be established that
allow for comparison and evaluation of data analysis methods across a variety of dis-
ciplines. In particular, it would be interesting to discuss the methods and techniques
provided by FCA that are not already available through more traditional methods. Eval-
uation and testing must involve both the domain experts and the tool builders.

Usability and learning curve: Tools must be usable, well documented and fairly
easy to learn in order to attract sufficient users.

In summary, modern toolkits (such as Sage and NLTK) are a good starting point
for building generic data analysis and visualisation tools. But there are numerous chal-
lenges that need to be overcome in order to truly integrate a large variety of methods
in a manner that renders them widely applicable. So far FCA software does not appear
to be integrated into any of the existing toolkits, but integration of FCA and Sage, for
example, can be accomplished (Priss, 2010).

References

1. Endres, Dominik M.; Foldiak, Peter; Priss, Uta (2010). An Application of Formal Concept
Analysis to Semantic Neural Decoding. Annals of Mathematics and Artificial Intelligence, 57,
3, Springer-Verlag, 2010, p. 233-248.

2. Priss, Uta; Old, L. John (2010). Concept Neighbourhoods in Lexical Databases. In: Kwuida;
Sertkaya (eds.), Proceedings of the 8th International Conference on Formal Concept Analysis,
ICFCA’10, Springer Verlag, LNCS 5986, p. 283-295.

3. Priss, Uta (2010). Combining FCA Software and Sage. In: Kryszkiewicz; Obiedkov (eds.),
Proceedings of the 7th International Conference on Concept Lattices and Their Applications
(CLA’10), 2010, p. 302-312

4. Priss, Uta; Old, L. John (2011). Data Weeding Techniques Applied to Roget’s Thesaurus. In:
Knowledge Processing in Practice. Springer Verlag, LNAI 6581, p. 150-163.

5. Ganter, Bernhard, & Wille, Rudolf (1999). Formal Concept Analysis. Mathematical Founda-
tions. Berlin-Heidelberg-New York: Springer.


