
SiMoL– A Modeling Language for Simulation and (Re-)Configuration∗

Iulia Nica and Franz Wotawa†

Technische Universität Graz, Institute for Software Technology
Inffeldgasse 16b/2, Graz, Austria
{inica,wotawa}@ist.tugraz.at

Abstract

Simulation and configuration play an important
role in industry. Modeling languages like Mat-
lab/Simulink or Modelica, which are often used to
model the dependencies between the components
of physical systems, are less suitable for the area
of knowledge-based systems. For these languages,
the description of knowledge and its connection
to a theorem prover for nonmonotonic reasoning
(needed for configuration tasks) is, due to technical
reasons, almost impossible. In this paper we focus
on a language that can be used for both simulation
and configuration purposes. SiMoL is an object-
oriented language that allows representing systems
comprising basic and hierarchical components.

1 Introduction

The adaptation of technical systems after deployment to en-
sure the desired system’s functionality over time is an impor-
tant task and can never be avoided. Reasons for adaptation are
necessary corrections due to faults in system parts, changes
in user requirements, or changes of technology among oth-
ers. All activities necessary for increasing the lifetime of a
system and retaining its usefulness are summarized under the
general term maintenance.

In our research we focus on system changes due to changes
in requirements. For example, consider a cellular network
where the base stations are initially configured to ensure cur-
rent and future needs to some extent. Due to changes in
the environment, i.e., new apartment buildings constructed in
reach of the base station or an increased use of cellular net-
works for data communication, the base station or even the lo-
cal topology of the network has to be adapted. This adaption
can more or less be classified as a re-configuration problem
where the current system’s structure, behavior, and the new
requirements are given as input. Changes in the structure and
behavior of the system in order to cope with the changes in

∗Authors are listed in alphabetical orde. The work presented in
this paper has been supported by the BRIDGE research project Sim-
ulation and configuration of Mobile networks with M2M Applica-
tions (SIMOA), which is funded by the FFG.

†Corresponding author.

the requirements are a solution of the re-configuration prob-
lem.

In order to provide a method for computing solutions for a
given re-configuration problem we need to state the problem
in a formal way. Therefore, we require a modeling language
for stating systems comprising components and their relation-
ships. In principle, formal languages like first order logic or
constraint languages would be sufficient for this purpose. But
using such languages usually is not easy and prevents systems
based on such languages to be used in practice. Hence, there
is a strong need for easy to learn and use modeling languages
that are expressive enough to state configuration problems.
The SiMoL language we introduce in this paper serves this
purpose. The language itself is from a syntactical point of
view close to Java. The idea behind SiMoL is to provide a
language that can be used for (restricted) simulation and con-
figuration at the same time.

SiMoL is an object-oriented language with multiple inher-
itance and allows for stating constraints between variables.
Beside the basic data types like integer and boolean, SiMoL
makes use of component instances. All component instances
are statically declared. In this paper we focus on describing
the syntax and the semantics of SiMoL.

2 Related research
Over time, the AI community has developed a large variety
of configuration tools that fitted the different necessities and
goals in each practical area, thus creating a strong foundation
for newcomers. As preamble to our approach, we shortly re-
call three configuration systems, that make use of constraint
programming.

ConBaCon [John and Geske, 1999] treats the special case
of re-configuration, using the conditional propagation of con-
straint networks and has its own input language - ConBa-
ConL. In [John and Geske, 1999], the authors present Con-
BaConL, a ”largely declarative specification language”, by
means of which one can specify the object hierarchy, the
context-independent constraints and the context constraints.
Furthermore, the constraints are divided into Simple Con-
straints, Compositional Constraints and Conditional Con-
straints.

LAVA is another successful automated configurator [Fleis-
chanderl et al., 1998], used in the complex domain of tele-
phone switching systems. It makes use of generative con-
straints and is the successor of COCOS [Stumptner et al.,

1994], a knowledge-based, domain independent configura-
tion tool. The modeling language is ConTalk, an enhanced
version of LCON that follows the Smalltalk notation. A Con-
Talk constraint is a statement which describes a relationship
between components ports or between the attributes values.

A powerful configuration system that combines constraint
programming(CP) with a description logic(DL) is the ILOG
(J)Configurator [Junker and Mailharro, 2003]. The combined
CP-DL language, in which the configuration problem is for-
mulated provides, on the one hand, the constraints, needed
in the decision process, and on the other hand, the con-
structs of the description logic, able to deal with unknown
universes. When solving the problem, the constructs of de-
scription logic, which are well-suited to model the configura-
tion specific taxonomic and partonomic relations, are mapped
on constraints and thus the wide range of constraint solving
algorithms may be used.

Power supply
(PS)

Communication
device

(CD)

Acceleration
sensor

(AS)

GPS sensor
(GPS)

Figure 1: A small sensor systems

The other field
of interest for our
research has been
the modeling lan-
guages currently
used for simula-
tion of technical
systems. Mat-
lab/Simulink 4

and Modelica
5 are the most
famous ones
in the area of
dynamic systems
modeling and
simulation. When
working with
Simulink, the
user is capable
of modeling the
desired system in the graphical interface, based on the large
library of standard components (called blocks). Also making
use of predefined building blocks, Modelica, on the other
side, is an equation-based object-oriented language with
multi-domain modeling capability. Although both of them
are complex languages, capable of modeling a great variety
of components, neither Simulink or Modelica can be used for
re-configuration purposes, as the description of knowledge
and its connection to a theorem prover for nonmonotonic
reasoning (needed for configuration tasks) is, due to technical
reasons, almost impossible.

Throughout the rest of this paper, we present our model-
ing language - SiMoL. SiMoL can be applied in both simula-
tion and re-configuration domains, using the powerful mech-
anism of constraint solving and hence being highly scalable
for complex simulation and re-configuration tasks.

3 An example
In this paper we make use of the following small example to
discuss SiMoL, as well as re-configuration using SiMoL for

4www.mathworks.com
5www.modelica.com

modeling systems. Figure 1 depicts a small system compris-
ing 4 components, i.e., a power supply (PS), an acceleration
sensor (AS), a GPS sensor (GPS), and a communication de-
vice (CD). The communication device is used for sending
the measured sensor information to a server. The power sup-
ply is for providing electricity to the connected components.
All these components have a behavior and provide function-
ality.

For the purpose of specifying functionality we introduce
a function fct that maps a component to a set of attributes,
which indicate a certain functionality. For our example, we
introduce the attributes ad, gps, comm to state the accelera-
tion sensor functionality, the gps functionality, and the ability
for communication respectively.

fct(AS) = {ad} fct(GPS) = {gps} fct(CD) = {comm}
We now specify additional constraints of the system. The

following constraint formally represents the requirement that
the power provided by PS must be larger or at least equiva-
lent to the sum of the power consumption of the other com-
ponents:
power(PS) ≥ power(AS) + power(GPS) + power(CD)

Moreover, we state that the device has to provide at least
ad, gps, comm functionality.

fct(AS) ∪ fct(GPS) ∪ fct(CD) ⊇ {ad, gps, comm}
Finally, we have the requirement that the sum of the cost

of each part of the device is not allowed to exceed a certain
pre-defined maximum cost.
cost(PS) + cost(AS) + cost(GPS) + cost(CD) ≤ max cost

In configuration we are interested in providing specific im-
plementations of the components PS, AS, GPS, and CD
such that all requirements are fulfilled and no constraint is
violated. Hence, what we do now for our running example,
is to introduce specific instances of the generic components
with different costs and power consumptions. Table 1 sum-
marizes all the used concrete component implementations.

A valid configuration is now a set of components that ful-
fills all constraints. For example, when assuming maximum
cost of 60, the set {PS1, AS2, GPS1, CD2} is a valid con-
figuration but {PS2, AS2, GPS1, CD2} is not because of vi-
olation of the cost constraint.

Throughout this paper we make use of this example and
show how SiMoL can be used for modeling such systems.

4 SiMoL definition
In order to define SiMoL we discuss its syntax and seman-
tics as well as its capability to be used for re-configuration
purposes.

SiMoL syntax: As already mentioned, SiMoL uses a Java-
like syntax and the common conventions compass most of
the defined tokens: identifiers for any type of component and
attribute, integer and boolean literals, separators, arithmetic
and relational operators (+,−, ∗, /,=, <,>,<=, >=, ! =),
special tokens - comments, reserved words and literals.

Additionally, SiMoL offers support for using units of mea-
surement, thus creating a more realistic model.

Another feature of the language, that provides direct con-
trol over the possible values of a component attribute, is the

Generic component Instance 1 Instance 2
PS PS1 : costs(PS1) = 10, power(PS1) = 10 PS2 : costs(PS2) = 20, power(PS2) = 15
AS AS1 : costs(AS1) = 2, power(AS1) = 4 AS2 : costs(AS2) = 20, power(AS2) = 1
GPS GPS1 : costs(GPS1) = 6, power(GPS1) = 5
CD CD1 : costs(CD1) = 10, power(CD1) = 10 CD2 : costs(CD2) = 20, power(CD2) = 4

Table 1: The component instances for our small sensor system

component CD{
attribute int power, costs;
constraints{

power={4,6,10} W;
costs={10..30}; } }

Figure 2: SiMoL: initialization of attributes with integer val-
ued ranges

initialization of attributes with integer valued ranges, as il-
lustrated in fig. 4.

Basically, a program written in SiMoL comprises 3 sec-
tions: a knowledge base declaration section, which is op-
tional, an import declaration section, which is also optional,
and a component definition section, that is the main construct-
ing unit of a SiMoL program and it is mandatory. Gener-
ally, each component will posses a set of attributes and will
introduce constraints in the system. The attributes decla-
ration is marked by the attribute keyword, whilst the
relations stated between the component attributes and new-
component instance-declaration statements appear enclosed
in the constraints{ . . . } block. By convention, an
empty component definition section is not allowed, i.e., if the
constraints block is missing, we have to declare at least one
attribute for the current component. Furthermore, in the case
of derived components, the opposite holds: even with no at-
tributes declared, we may state constraints over the inherited
attributes. For instance:
component AS{

attribute int power, costs;
constraints{

power={4,6} W;
costs={2..30}; }}

component AS1 extends AS{
constraints{

power=4;
costs=2;}}

The ability to extend the functionality and behavior of ex-
isting components is of great importance for the taxonomic
structure of a configuration domain. In any object oriented
languages, the taxonomy relations are represented through
the inheritance mechanism. We designed SiMoL with mul-
tiple inheritance. In order to demonstrate the necessity of this
feature, let us consider the following scenario. For our small
system described in Section 3, we introduce a new require-
ment that refers to a specific signal modulation which can
be accomplished by a new component - a modem (M). The
modem receives the measured sensor information and trans-
mits the modified signal to the communication device. The
function fct from Section 3 will similarly depict for M the
modulation-demodulation functionality :

fct(M) = {mdm}

Now the additional constraints of the system become:

power(PS) ≥ power(AS) + power(GPS)
+power(CD) + power(M)

fct(AS) ∪ fct(GPS) ∪ fct(CD) ∪ fct(M)
⊇ {ad, gps, comm,mdm}

cost(PS) + cost(AS) + cost(GPS) + cost(CD)
+cost(M) ≤ max cost

The problem appears if the pre-defined maximum cost is
always exceeded, because of the new added component. In
other words, we can not afford both a modem and a com-
munication device. Therefore, a new component type - a
communication device with integrated modem (MDC)- will
solve the case (under the assumption that cost(MDC) ≤
cost(CD) + cost(M)). In SiMoL, the MDC definition has
the following syntax:
component MDC extends DC,M {

constraints{
power={4,6} W;
costs={2..30};}}

In the constraints section, we may have the following types
of statements:

• an empty statement: ;,

• a component instance declaration: GPS1 gps1; Op-
tionally, one can also initialize its attributes: GPS1
gps1{costs=100};
Using this kind of statements, we define the subcompo-
nent hierarchy in our model, i.e., the partonomy rela-
tions. The cardinality of these relations (i.e., the number
of subcomponents which can be connected to a certain
component) is always finite - we cannot have an unlim-
ited number of components in our model.

• an arithmetic or/and boolean expression:
ps1.power>=sum([as1,gps2,cd1],power);

• a conditional block:
if(sum([ps1,as1,gps1,cd1],costs)
<= max cost)

cost=sum([ps1,as1,gps1,cd1],costs);
else cost=100;

• a forall block:
forall(AS1){ power=10 W; costs={1..10};}

• an exist statement, e.g.:
exist(at most(1),GPS1,costs=30);.

We also mention the built-in functions min, max,
sum, product, meant to ease the manipulation of large
sets of component instances.

Adopting a clear Java-like syntax, SiMoL is a
functionality-based, declarative language, creating a

good environment for simulation, and, at the same time, it
provides many embedded functionalities specially designed
for configuration purposes.

Semantics of SiMoL: Because of space reasons we only
briefly define the semantics of the language SiMoL where we
rely on mathematical equations. In particular, we map ev-
ery statement to a mathematical equation, and combine these
equations for a component, taking care of component inheri-
tance and component instances.

For each component defined in SiMoL we have a set of
equations that is defined within the constraints { . . .
} block. Moreover, a component also receives equations
from its super components and the instances used in the
component definition. For example, when specifying GPS1
gps; in the variable declaration a new instance of GPS1
is generated. All constraints of GPS1 are added to the con-
straints of the component. The semantics of SiMoL is now
nothing else than the union of all constraints defined includ-
ing inherited constraints and constraints coming from com-
ponent instances.

We discuss the expressiveness of the language by classify-
ing its capabilities with respect to the framework offered in
the chapter on configuration from [Rossi et al., 2006]. In the
context of the successful integration of constraint program-
ming in solving a large variety of configuration problems, the
author defines several distinguishing constraint models, each
corresponding to a specific type of configuration problem. To
set up the constraint model, the appropriate variables and con-
straints are deduced from the given configuration knowledge.
The author states that this knowledge may have three differ-
ent forms: the component catalogs, the component structure
and the component constraints.

The catalog knowledge, as defined in [Rossi et al., 2006],
is modeled in SiMoL by means of the generic components
(correspondent to the term of technical types in [Rossi et al.,
2006]) and the concrete components(derived (extended) from
generic component/s or from other concrete component/s, in
our case, and correspondent to the term of concrete or func-
tional types in [Rossi et al., 2006]). Both generic and concrete
components have a set of attributes, mapped to variables in
the constraint model. Based on this kind of knowledge, we
build the catalog constraints ([Rossi et al., 2006]), which are
stated over the set of variables and formulated by means of
Cattr val and Cattr attr constraints.

The structural knowledge of a SiMoL model is determined
by the component instances declared in the current model.
In this manner, we generate for our system the set of sub-
components, that are either generic or extended components.
The logic behind this mechanism has been previously de-
tailed, when presenting the semantics of the language. We
recall that the SiMoL model is in fact a component, which
describes the configuration problem. The connection ports
defined in [Rossi et al., 2006] have no correspondent term in
SiMoL yet, but the connection between component instances
is possible through Cattr attr constraints. Also the statement
in [Rossi et al., 2006] according to which ”the sets of direct
subtypes of two types are mutually disjoint” does not hold in
our approach, because we accept multiple inheritance.

Finally, the configuration constraints are divided into com-
patibility constraints, requirement constraints and resource
constraint. The first ones specify which value combina-
tions are legal for the attributes given in the model and
they are modeled in SiMoL through Cattr val and Cattr attr

constraints. The requirement constraints describe a rela-
tion between two component attributes ([Rossi et al., 2006]),
which is best depicted by combining Ccond with Cattr val or
Cattr attr. Moreover, the resource constraints on numerical
attributes were intensively addressed throughout this paper.

Consequently, we find the expressive power of the lan-
guage sufficient for modeling the discussed configuration
knowledge forms. As also stated in [Rossi et al., 2006], the
configuration problem complexity may vary from very sim-
ple option selection problems to complex cases, but they all
appear as combinations of the specified knowledge forms.

5 Conclusion
In this paper, we have presented SiMoL- a new functional-
based, declarative modeling language, that serves simulation
and re-configuration purposes. The novelty of our approach
is designing a language that is easy to learn and capable of
modeling large and complex systems. SiMoL can cope with
large models and be also efficient with respect to computa-
tion time (simulation). Although re-configuration is not fully
implemented for the SiMoL language, several ideas are cur-
rently analyzed and implemented, such that in the near future
a fully working re-configurator can be used for SiMoL mod-
els. In future research we mainly focus on providing a sound
and complete configuration algorithm that takes SiMoL mod-
els and requirements as input and computes valid configura-
tions as output.

References
[Fleischanderl et al., 1998] Gerhard Fleischanderl, Ger-

hard E. Friedrich, Alois Haselböck, Herwig Schreiner,
and Markus Stumptner. Configuring large systems using
generative constraint satisfaction. In IEEE Intelligent
Systems & their applications, pages 59–68, 1998.

[John and Geske, 1999] Ulrich John and Ulrich Geske. Re-
configuration of Technical Products Using ConBaCon. In
Proceedings of WS on Configuration at AAAI99, Orlando,
1999.

[Junker and Mailharro, 2003] Ulrich Junker and Daniel
Mailharro. The logic of ILOG (J)Configurator: Combin-
ing Constraint Programming with a Description Logic. In
Proceedings of IJCAI-03 Configuration WS, pages 13–20,
2003.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and
Toby Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science
Inc., New York, NY, USA, 2006.

[Stumptner et al., 1994] Markus Stumptner, Alois
Haselböck, and Gerhard Friedrich. COCOS - a tool
for constraint-based, dynamic configuration. In Proceed-
ings of the 10th IEEE Conference on AI Applications
(CAIA), San Antonio, March 1994.

