
XQuery Optimization

Philippe.Michiels@ua.ac.be

University of Antwerp, Belgium

Abstract

We take a closer look at the optimization problems
that are associated with the XQuery language.
We discuss the research that has been done and
some open problems along with potential solu-
tions. XQuery is a quite young standard and many
issues with respect to optimization remain unre-
solved. This work will focus on three aspects of
optimization in XML databases being: duplicate
removal, XML algebras and indices. It is done in
close cooperation with the development team of
the Galax XQuery Engine from AT&T Labs and
Lucent - Bell Labs. Eventually, we aim to imple-
ment our optimization results into the Galax en-
gine.

1 Introduction
Over the past five years, XML has gained great popularity
as a universal data exchange format. As it grows towards
becoming the standard for e-business, the amount of
exchanged XML-data grows exponentially. Along with
this, the requirement to store and query XML efficiently
increases rapidly. In this context, many query languages
for XML such as Lorel, Quilt, XQL, XML-QL, XPath and
XQuery have appeared [4].

The two most popular among these query languages are
XPath and its superset, XQuery.
XPath/XQuery is being developed by the XML Query
working group at the World Wide Web Consortium (W3C)
in an effort to provide users with a powerful means to query
and transform XML. There are two important groups that
have influenced the development of XPath/XQuery.

• The first group, the document community is mainly in-
terested in XML as a humanly consumable exchan-
ge format. They are continuously looking for the de-
velopment of new tools that allow the easy manipula-
tion and transformation of relatively small XML doc-
uments.

• The second group, the data community is mainly in-
terested in XML as a data storage format. Their pri-
mary focus is the design of query languages and stor-
age methods to select data from vast amounts of XML
data efficiently.

Until quite recently, there wasn’t much interest in the opti-
mization problems posed by XPath and XQuery. The rea-
son for this was that XML was primarily used as a human
consumable exchange format rather than a large scale data
storage format. The optimization of queries on small doc-
uments seems not very useful. But as the usage of XML
shifts towards the data-oriented paradigm, more efforts are
done to allow the efficient evaluation of XPath/XQuery.

2 Existing Work

XQuery is a strongly typed functional language that
supports both the transformation and querying of XML
documents. It allows the extraction of data through XPath
expressions, the joining of several documents, and the
construction of completely new documents. Despite
being a strongly evolving language, there are various
implementations around these days. Depending on the
context of every implementation (document oriented vs.
data oriented) various implementation and optimization
techniques are used and there is active debate about which
techniques are the best for an XQuery implementation.

XPath Complexity The bulk of the research in optimizing
query languages for XML has been done in XPath. This
seems evident since XPath is a simpler, older and more
stable subset of XQuery. In observing existing implemen-
tations of XPath, there is clear evidence that most of them
are inspired by the document community as their execution
times show exponential behavior. However, it is possible
to compute the result of an XPath query in polynomial
time and fragments of the language exist where evaluation
can even be done in linear time [7]. Research has shown
that XPath query evaluation is P-hard [8, 18].

Pipelined evaluation Other research projects focus on the
parallel execution possibilities of XPath. One approach
would be to translate XPath into algebraic expressions
parameterized by programs that are mainly built to per-
form navigational primitives like accessing the first child,
etc. This approach allows the pipelined evaluation of the
queries. Therefore, the generation of duplicate nodes must
be avoided because duplicate removal is a pipeline breaker
[11]. As an illustration of the problem we take a look at the
example from [11]. Because every location step results in
an ordered set of nodes, a simple UnnestMap operation is

an appropriate algebraic operator for representing it.

UnnestMap$i:l(e) := {x ◦ [$i : y]| x ∈ e, y ∈ x/l}

where $i is an attribute name of the table in which results
are stored, l is a step expression, e a general XPath ex-
pression and ◦ denotes tuple concatenation. This operation
does not eliminate duplicates, it uses bag semantics. If we
look then at the translation of the path expression //A//A
into UnnestMap operations:

UnnestMap$2:desc::A(UnnestMap$1:desc::A(.)),

it is clear that if this expression is applied to the root of an
XML document that is a binary tree of only A elements, the
result will contain duplicates. This is a common problem
with straightforward translation of XPath expressions.
Removing duplicates after every UnnestMap operation
avoids unnecessary work but jeopardizes pipelining. Also,
inserting unnecessary duplicate removal operations may
also have a bad influence on the evaluation time. One
possible solution to this problem is to avoid duplicate gen-
eration in the first place. This can be achieved by applying
rewriting rules to duplicate generating XPath expressions
and translating them into step functions [17, 11].

Schema-Based Optimizations Many XML-documents
follow a schema. We can use this schema-knowledge to
perform some optimizations on XPath expressions by try-
ing to eliminate impossible path expressions (i.e. expres-
sions that are know to be always empty) or to remove re-
dundant conditions, etc. For instance, when looking at the
following DTD excerpt:

<!ELEMENT Students (Student*)>
<!ELEMENT Student (Name, Address, Birthday)>
<!ELEMENT Address (Street, City, Zip,

(Tel|Email))>

and if we would like to query the document for all students
that provided their birthday and phone or email contact,
then our query would look as follows:

//Student[Birthday]/Address[Tel|Email]

According to the DTD, however, Birthday is a required
child element of Student and an Address always requires
a Tel or Email child element. So the query is equivalent
to

//Student/Address

To make such optimizations possible, [15] proposes to
compute so-called path equivalence classes (PEC) from
DTDs. PECs represent path dependencies that hold for
any XML document that conforms to the DTD. Path
dependencies basically are statements about admissible
occurrences of pairs of paths with regard to a DTD. At
query compile time, this information is used to (a) remove
redundant conditions, (b) simplify conditions, and (c)
detect contradictory conditions and satisfyability.

Formal Semantics Another approach for optimization of
both XPath and XQuery is to start from their core mapping,

<?xml version ="1.0"?>
<PersonList Type="Student">

<Title Value="Student List"/>
<Contents>
<Person>

<Name>John Doe</Name>
<Id>111111111</Id>
<Address>

<Number>123</Number>
<Street>Main St</Street>

</Address>
</Person>
<Person>

<Name>Joe Public</Name>
<Id>666666666</Id>
<Address>

<Number>666</Number>
<Street>Hollow Rd</Street>

</Address>
</Person>

</Contents>
</PersonList>

Figure 1: An example XML document.

defined by the formal semantics [2] . This translation into
the functional language that the XQuery Core is, causes
both XPath and XQuery to benefit from the many optimiza-
tions that exist for functional programming languages and
for other database languages [1].
We illustrate the formal semantics’ core mapping with an
expression that queries the example document in fig. 1:

//Person[Address/Street = "Hollow Rd"]

After normalization [2], the query (roughly) looks as given
in figure 2.

ddo(
for $glx:dot in ddo(document("example1.xml"))
return
ddo(for $glx:dot in

ddo(desc-or-self::node()) return
ddo(for $glx:dot in ddo(child::Person)
return
if (some $v3
in fn:data(

ddo(for $glx:dot
in ddo(child::Address)
return child::Street))

satisfies fn:boolean(
some $v5
in fn:data("Hollow Rd")
satisfies fn:boolean(

op:equal(
cast as xsd:string (data($v3)),
cast as xsd:string ($v5))

)))
then ($glx:dot)
else ()

)))
;

Figure 2: Example core mapping

The ddo function calls are the distinct-docorder operations
used in the formal semantics to guarantee that (intermedi-
ate) results are in document order and contain no duplicate
nodes.
We see that there is not much left of the original XPath ex-
pression, which is torn apart in several for loops iterating
over the result of the several axes.
In the course of the standardization process of XQuery, a
reference implementation called Galax [3] is being devel-
oped. Galax features a portable lightweight XQuery imple-
mentation which has the great advantage of being strongly

related to the XQuery Formal Semantics [2] which provides
us with a solid base for researching possible optimization
techniques [1].

3 Open Problems
Duplicate elimination We earlier discussed the pipelining
problem where the eventual goal was to prevent the gen-
eration of duplicates, because their elimination breaks the
pipeline. However, it is not always possible to rewrite ev-
ery expression so that no duplicates can occur [11]. Since
the semantics require the result of any XPath expression to
be in document order and free from duplicates, we will al-
ways have to provide some kind of duplicate elimination.
The XQuery Formal Semantics try to enforce this property
by providing an explicit mapping to the XQuery core lan-
guage, inserting distinct-doc-order meta-instructions (see
example core mapping). By mapping queries to their core
representation, we do ensure correctness. But a new prob-
lem arises: the elimination of duplicates after every inter-
mediate result can be very time consuming, which causes
performance problems. In Galax [3], it even has proved to
be one of the major bottlenecks.
Our current research focuses on finding an algorithm or a
set of rules, that can be used to find out whether or not
the elimination of duplicates at some point in the query is
necessary. For instance, the query

/child::*/descendant::*

is mapped to the core as follows:
ddo(for $glx:dot in ddo(input()) return

ddo (for $glx:dot in ddo(child::*) return
descendant::*))

Within Galax, this is equivalent to the expression without
any of the ddo meta instructions since the implementation
of its axes does not generate duplicates for this query, no
matter on what document it is used.
In a first attempt – and to get a clear understanding of the
problem – we are looking at a subset of the XPath language,
hoping to find a complete set of rules for avoiding the un-
necessary elimination of duplicates. Naive approaches that
only take the properties order and duplicate freeness into
account have failed at the completeness level. For instance,
the following inference rule for order causes a problem for
completeness:

a ∈ {self,child} ∧ path ` order

path/a :: nt ` order

There are path expressions whose result is always ordered,
even when they are normalized without inserting explicit
sorting and duplicate removal operations. This property
however, is not derived by this rule. The following path ex-
pression always returns an empty result and therefore this
result is always ordered:

/child::*/parent::a/child::*/parent::b

But the rule given above does not derive this property. We
will have to take additional properties into account. Possi-
ble candidates are:

• emptyness - indicating that the result of the subquery
will always be empty;

• singleton (at-most-one) - indicating that the result
of the subquery will always contain exactly (or at
most) one element and therefore is always sorted and
duplicate-free;

• unrelatedness - indicating that the result of a sub-
query contains related nodes (i.e. nodes that have an
ancestor-descendant relationship);

• generation - indicating that the result of a subexpres-
sion contains only nodes that are of the same gene-
ration (i.e. nodes that are at the same level in the tree
hierarchy).

After studying this XPath subset, we will move on to
extend our approach to the full XQuery syntax. The
algorithm will eventually be implemented in the Galax
XQuery engine.

An XQuery algebra Just as there are many query lan-
guages for XML, there are also quite a lot of algebras for
it. Defining the right algebra is feeding an ongoing debate
in the XML Query community that started a few years ago.
However the formal semantics1 provide a good base for op-
timization, there are some disadvantages in that approach
too. Mapping XQuery to its core representation makes it
harder to perform some optimizations. For instance, deter-
mining the need for removing duplicates or sorting the re-
sult inside XPath expressions may prove to be much easier
from the surface syntax then from the core mapping. On
the other hand, some typical database optimization tech-
niques like join reordering are easier to achieve when we
have an algebra that has explicit (join-)operators. During
the development of Galax, the need for a fully fledged al-
gebra became clear as the limits of the XQuery Core got
closer.
There are many different approaches in designing an al-
gebra for XML query languages. One approach, which is
discussed in XAL [5], defines a set of logical operations
closely matching the XQuery operations. The query is then
represented as a tree, on which algebraic operations are per-
formed to optimize the query plan. Since the XQuery Core
expressions can be translated to an abstract syntax tree that
closely matches this algebra (as is done in Galax), this ap-
proach could be usefull in query engines based on the for-
mal semantics.
On the other hand, it is well accepted that a set-oriented
algebra is essential for effective query processing in a
database system. This is why TAX (Tree Algebra for
XML)[12, 5] proposes a natural extension of the relational
algebra, with a small set of operators. The result is a logical
tree algebra, which uses tree patterns to represent queries.
For example, the following query selects all persons whoes
name starts with ‘John’ and that have an Id child element.

1There is discussion about the status of the formal semantics as an
algebra.

//Person[name="John*" ˆ Id]

This query’s tree pattern looks as follows:

pc pc

ad

$1.tag = PersonList
$2.tag = Person
$3.tag = Name
$3.content = "John*"
$4.tag = Id

$1

$2

$3 $4

The tree pattern’s edges are labeled with the relationship
between the two nodes. This can be pc for a parent-child
relationship or ad for an ancestor-descendant relation. The
corresponding algebraic expression looks as follows:

πP,PL(C),

where P is a pattern tree, C is the input collection and PL is
the projection list, which is a list of node labels appearing
in the pattern P (ie {$1, $2}). As in the relational al-
gebra, identities are used to consider alternative execution
plans. However, while this algebra is very powerful with
respect to optimization possibilities, it does not cover the
full expressive power of XQuery (yet).
Finding the ideal algebra for XML has already proven to
be very hard. It is clear that the algebra should take XML-
order into account and be powerful enough to cover the full
expressive power of XQuery. Moreover, it should enable
us to use a broad variety of optimization possibilities in
order to find better query plans. Most current algebras
have problems with one of these requirements.

Indexing XML Another well-known way to improve
query execution time is to build indices. A great effort
has already been done in the research for indexing semi-
structured data and XML. Various indexing schemes can
be found in specialized literature [6, 16, 14, 13, 9, 10] . We
discuss a few of them.
The most simple kind of index is the name index. Name
indices use tag names to link a list of matching nodes to a
corresponding index entry. This index has more advantages
than its simplicity alone. It is easy to maintain and because
one can choose which element names are indexed, there is
always a possibility to control the size of the index. There
are, of course, disadvantages too. For instance, in XML a
tag can occur as a subelement of two different parent tags,
so additional efforts will have to be done if only the subtags
of one of these two parent tags are requested. Very similar
to this index, is the value index, which uses the values in-
side elements as an indexing key.
More advanced techniques use the document structure for
building indices. This structure describes the XML doc-
ument by a so called ‘minimal schema’, which is nothing
more than a list of allowable node interconnections. There
are few different kinds of structural indices:

• Dataguides [6] are a short description for semi-struc-
tured databases. They describe every labelpath of

PersonList

Title Contents

Person

Id

Name Address

Street Number

Figure 3: A minimal schema can be used to construct struc-
tural indices.

a document exactly once and there is no path in a
dataguide that is not in the XML database. The prob-
lem with dataguides is that they lack the notion of doc-
ument order, which rules out a wide range of queries.

• Template Indices [16] are used to accelerate the eval-
uation of path expressions that match a certain tem-
plate. A secondary goal of template indices is to re-
duce the size of the index by making sure that every
node in the indexed document appears only once in
the index, which is not always the case with data-
guides. In general, template indices use backward
bisimulation to arrange document nodes into equiv-
alence classes. Nodes in the same equivalence class
are reachable through the same template path. A dis-
advantage of such an index is that it can get very large.

• A(k)-indices [14] Indexing very long paths that are
rarely accessed, makes the index unnecessarily big.
A(k)-indices avoid these kinds of problems by index-
ing only paths that have a length which is less than
k. An approximation is used for answering longer
queries.

• Forward & Backward indices [13] are built to cover
all possible queries that fall inside a subset of XPath,
called branching path queries. The biggest problem
with these kinds of indices is their size. A solution for
this is to consider infrequently accessed tags as having
the same label, giving priority to tree-edges over idref
edges or exploiting local similarity as in A(k)-indices.

Most of the above indexing approaches focus on providing
efficient support in the evaluation of sequences of child,
descendant and descendant-or-self axes, which de-
notes an extremely limited subset of XPath. This is why
[9] proposes an entirely different database index structure
for XML, which supports all axes evaluated from arbitrary
context nodes. The latter establishes support for efficient
evaluation of XPath queries that are embedded in XQuery
expressions. The index can be implemented using only re-
lational techniques but it takes advantage of R-tree support
in some database systems.

The problem with most of the indices is that upon an up-
date, the index has to be reconstructed partly or entirely.
With the exception of dataguides, most of the indexing
techniques are not really practical due to the cost of in-
dex maintenance. Many of the indexing systems discussed
here, do not take order into account because they were orig-
inally designed to operate in semi-structured environments.
Interesting research topics in this area are the determina-
tion of optimal indexing schemes, the search for efficient
algorithms to keep indices up-to-date and the comparison
of different indexing schemes.

4 Conclusion

Solving the duplicate removal problem is a hard nut to
crack. There are two goals that are somewhat contradic-
tory: we want to avoid expensive duplicate removal or sort-
ing operations as much as possible but by doing this we al-
low the amount of duplicates in the intermediate results of
an XPath/XQuery expression to grow exponentially. Cur-
rently the Galax engine implements sorting and duplicate
removal after every step expression in an XPath subquery,
which results in a bottleneck upon querying larger doc-
uments. A selective elimination of a large part of these
distinct-docorder operations is a serious optimiza-
tion. We are currently working on this problem.
Currently Galax is using a variant of the XQuery core with
support for tuples as an algebra. Using an algebra that is
more adequate for certain optimizations is desirable, but
what is the right algebra for XML Query processing is still
largely an open issue. There are a couple of good candi-
dates but most of them have a few important shortcomings
such as not counting in the fact that XML is an ordered data
structure or being not powerful enough to cover the full ex-
pressive power of XPath/XQuery.
Indices are an efficient way to speed up query evaluation in
database systems. There are various indexing systems for
use with XPath, but only a few of those seem very useful
in XQuery. Adjusting XPath indexing schemes for XQuery
and extending them is an interesting research topic.

References

[1] B. Choi, M. Fernández, and J. Siméon. The XQuery
formal semantics: A foundation for implementation
and optimization. http://www.cis.upenn.
edu/˜kkchoi/galax.pdf, 2002.

[2] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery
1.0 and XPath 2.0 formal semantics, 2002. http:
//www.w3.org/TR/query-semantics.

[3] M. Fernández and J. Siméon. Galax, the XQuery
implementation for discriminating hackers. AT&T
Bell Labs and Lucent Technologies, v0.3 edition,
2003. http://www-db-out.bell-labs.
com/galax.

[4] M. Fernández, J. Siméon, P. Wadler, S. Cluet,
A. Deutsch, D. Florescu, A. Levy, D. Maier,
J. McHugh, J. Robie, D. Suciu, and J. Widom. XML
query languages: Experiences and exemplars, 1999.

[5] F. Frasincar, G.-J. Houben, and C. Pau. XAL: An
algebra for XML query optimization. In ADC 2002,
Melbourne, Australia, 2002. ACS.

[6] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In VLDB 1997, pages 436–445. Morgan
Kaufmann, 1997.

[7] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithms for processing XPath queries. In VLDB 2002,
Hong Kong, 2002.

[8] G. Gottlob, C. Koch, and R. Pichler. The complexity
of XPath query evaluation. In ACM SIGMOD (PODS)
2003, San Diego (CA), 2003.

[9] T. Grust. Accelerating XPath location steps. In ACM
SIGMOD 2002, pages 109–120, Madison, 2002.

[10] T. Grust, M. van Keulen, and J. Teubner. Staircase
Join: Teach a Relational DBMS to Watch its (Axis)
Steps. In VLDB 2003, 2002.

[11] S. Helmer, C.-C. Kanne, and G. Moerkotte. Opti-
mized translation of XPath into algebraic expressions
parameterized by programs containing navigational
primitives. In WISE 2002, pages 215–224, Singapore,
2002.

[12] H. Jagadish, L. Lakshmanan, D. Srivastava, and
K. Thompson. Tax: A tree algebra for XML. In DBPL
2001., 2001.

[13] R. Kaushik, J. F. Naughton, P. Bohannon, and H. F.
Korth. Covering indexes for branching path queries.
In ACM SIGMOD 2002, pages 133–144, 2002.

[14] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for efficient indexing of
paths in graph structured data. In ICDE, 2002.

[15] A. Kwong and M. Gertz. Schema-based optimization
of XPath expressions. Technical report, Univ. of Cal-
ifornia, dept. of Computer Science, 2001.

[16] T. Milo and D. Suciu. Index structures for path
expressions. Lecture Notes in Computer Science,
1540:277–295, 1999.

[17] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In XMLDM 2002, volume 2490 of
LNCS, pages 109–127. Springer, 2002.

[18] L. Segoufin. Typing and querying XML documents:
Some complexity bounds. In ACM SIGMOD (PODS)
2003, San Diego (CA), 2003.

