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Abstract

In this paper we will present a new framework for
the retrieval of XML documents. We will describe
the extension for existing query languages (XPath
and XQuery) geared toward ranked information
retrieval and full-text search in XML documents.
Furthermore we will present language models for
ranked information retrieval applied to the XML
and describe the ultimate goal of our research.

1 Introduction

Information Retrieval (IR) theory is developed to overcome
the task of searching for information in flat unstructured
documents. The theory and the tools used in conventional
IR systems usually completely disregard the structure of a
document. However, with rapid proliferation of structured,
and especially semi-structured documents (i.e. XML), a
new research area for the IR community has been drawn.
It can be defined as follows: formalizing a broad powerful
query language that can be used for querying XML docu-
ments both, on structure and content, and building a power-
ful execution engine, that will be able to retrieve a (ranked)
list of XML documents or fragments of XML documents,
given the query.
The definition of XML as a structured (mark-up) language
[5] implies the presence of structure information, besides
content. Therefore, the data in XML can be displaced into
two broad categories: (1) data that represents information
about XML document structure, and (2) data that repre-
sents content information in XML documents. Further-
more, content of XML documents is much more complex
than the content of a flat text documents. This is because
each content word has its scope which is defined by XML
structure, and bears a different kind of information depend-
ing on its position in XML document. Thus, XML brings
more opportunities for modeling information in XML doc-
uments, as well as querying and searching tasks. It also
enables more precise definition of search intentions of a
user, in terms of defining the search space for computing
relevance score and defining the retrieved portions of XML
document. In other words, richer query languages have to
be formalized, in respect to standard (flat-file) IR systems,
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to enable above mentioned functionalities.
The structure queries can be expressed using XQuery [8]
and XPath [7] (which is an integral part of XQuery) ca-
pabilities. Queries in the traditional IR style or Full-Text
Search (FTS) [11, 9] queries are currently gaining more
popularity in the research community. However, most of
the proposed XML query languages and retrieval engines,
or XML database management systems, are oriented to-
ward single aspect of XML documents (even XPath and
XQuery are focused on structure part). Only few of them
try to treat structure part in conjunction with ranked re-
trieval and FTS. For example in [12, 13] FTS in semi-
structured documents is used, while in [2] authors try to
support the retrieval of relevant parts of a document us-
ing containment queries. In [16, 14] another approach is
presented which mostly supports IR-like query execution
over XML databases, using XQL and predefined index ob-
jects for term weighting. This approach uses extra infor-
mation to query XML documents (DTD or XML Schema)
and does not support powerful FTS queries.
Recently, a proposal for XML full-text search was drafted,
consisting of requirements [11] and use-cases [9]. Together
with already developed structured query languages and cur-
rent IR state of the art, the icon of the future query lan-
guage has been established. Therefore, our aim will be to
develop a powerful complex query language on top of a
database that will enable us to define database operators.
Moreover, these operators will be able to execute all three
types of queries, and provide the user with the desired in-
formation. For ranking we will use statistical Language
Models (LM) from the IR, extended with new capabilities
to enable modeling of complex query expressions and the
structure of XML documents.
The goal of the complex query syntax is to enable composi-
tion of proximity and Boolean queries performed on simple
or distinct parts of XML documents. As an illustration we
will give three examples, namely for: (1) proximity search,
(2) Boolean search on different parts of XML documents,
and (3) combination of the previous two cases. To form
queries we will use XPath-like syntax that we will explain
in details in next section:

//par[IR(boat near shark near teeth)] ;
/book[IR(title:(man and sea)

and .//par:shark)] ;
/book/title[IR((old adj man)

or (bell near tolls))] .



Here we will define some terms that we will use in this pa-
per. Following the conventional IR theory ([10]) we can
define XML documentsas separate XML files, and XML
collection as a set of XML documents (files), with addi-
tional meta-indexes stored in the database.1 At the lowest
level of granularity, we can definecontentof an XML doc-
ument which represent all the words in the document that
are not mark-up (i.e.text() nodes). On a higher level we
can define XMLelementsthat correspond to one of XML
tags and all the encompassed information in it (includ-
ing other descendant tags, their attributes and content infor-
mation, as well as processing instructions and comments).
Since there might be more than one sibling element with
the same tag name in an XML tree model, we addition-
ally introduce the concept of XMLfragmentswhich cor-
responds to thenode-set construct in XPath. Using the
notion of XML fragment we can define XML documents
and even XML collection as “high level” XML fragments.
For query formulation we will use XPath and extend it with
complex IR query facilities, as we will see in the next sec-
tion. In section three the language models used for XML
fragments relevance score computation will be explained.
Finally, the closing section will summarize the benefits of
the proposed complex query language (CIRQuL) and give
a notion of future work.

2 Structured Query Language Extensions
for IR-like and FTS Queries

We will start from the XPath syntax, since we consider
XPath as a good base for introducing the complex query ex-
tension. Furthermore, XPath is included in the XQuery def-
inition, and therefore the complex query language we pro-
pose can be easily incorporated as an extension to XQuery.
For the notation we will use Syntax Graphs (SG) as a
graphical representation of Extended Backus-Naur Form
(EBNF).

2.1 XPath Capabilities

The expressions defined in XPath [7] are evaluated against
a tree model which represents the logical structure of an
XML document. The basic types of expressions in XPath
are location paths, while it’s main goal is to enable travers-
ing the tree model of an XML document to find a so called
node-set . The notion ofnode-set represents nodes
that are obtained by XML tree model traversal, and is one
of the basic data types in XPath. Other data types that are
supported in XPath are described in Table 1.
The basic definition of XPath is depicted in Figure 1. Part

of the syntax that is marked by the dashed rectangle repre-
sents what can be done in each XPath step. Furthermore,
there is a clear distinction between the structure part of the
XPath expression (axis ), tests performed on the fragment

1In some cases distinction between XML documents stored into a
database cannot be established due to the fact that XML documents are
stored as a part of a large XML collection with one extra global root node,
like in [3] for example.

Data type Description
node-set A collection of nodes (no duplicates)
boolean true or false
number A floating point number
string A sequence of characters

Table 1:XPath data types
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Figure 1: Syntax graph for XPath query definition

of XML document structure obtained by structure part of a
query (node test ), and a content part for data manipu-
lation andnode-set filtering within the XML fragment
(predicate ).
The result of each XPath step is an XML fragment which
represents acontext node(s)for the following XPath steps
(if any). In explaining the new complex query language
syntax we will start frompredicate , since we consider
it as a proper place for the complex IR query extension.

− constant_value

XPath_query

core_function

expression

predicate

( )expression

expression

rel_operator

Figure 2: Syntax graph forpredicate

The aim of thepredicate (see Figure 2 for syntax speci-
fication) is to enable some basicnode-set filtering using
content of XML elements. Predicates can contain a num-
ber of expressions whose syntax is roughly described in the
bottom part of Figure 2. The syntax ofcore function ,
as a part of anexpression syntax, is given in Figure 3.2

Relational operators used for combining core functions and
XPath expressions are given in EBNF below:

rel operator := or|and|=|!=|<=|>=|<|>
|+|-|div|*.

The constant value parameter, depicted in Figure 3,
represents the constant value of a type defined by one of
the basic XPath data types.

2Here we generalized the complex syntax ofexpression to be able
to represent its functionality. For full coverage of theexpression sym-
bols refer to [7].
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Figure 3: Syntax graph forcore function

2.2 Extending XPath Toward IR Capabilities

Although some query capabilities that are highly related
to content retrieval exist in XPath (e.g. string functions
like contains , starts-with , substring ), they
are hardly sufficient for powerful information retrieval.
This especially stands for proximity queries (e.g. queries
on near and adjacent terms) and the need for ranking of
retrieved XML fragments.
Furthermore, XPath (XQuery) is impotent for expressing
queries on word order (exceptstarting-with clause),
or queries that use thesaurus and stemming. Since these
queries form the base for a ranked IR and FTS, in this
paper we introduce an extension for XPath to enable the
formulation of queries in a Complex Information Retrieval
Query Language (CIRQuL).
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XPath_query

,
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function_name

core_function

IR
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Figure 4: Syntax graph for complexcore function

We will start from the syntax graph of core functions de-
picted in Figure 4. Comparing it with the Figure 3 it can be
noticed that the only difference is in yet another path with
syntax nodes namedIR and IR query . We introduce
an additional core function to XPath syntax, namedIR ,
which returns a ranked fragments of XML documents
(collection). The fragments are ranked according to the
score functions that are defined in the next section.

XPath_query :

complex_expression
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IR_query

Figure 5: Syntax graph for complexIR query

As depicted in Figure 5, to enable more expressive power
for the task of ranked IR we introduced a recursive call of
XPath query in the complex query formulation. Thus,
we enabled combination of more complex IR expressions
on different XML fragments that are typically contained

inside XML fragment defined by the XPath part of an
IR query . The combination of complex expressions can
be expressed usingand or or operators, and as we will see
later, these operators have similar functionality as operators
with the same name inside thecomplex expression .
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Figure 6: Syntax graph forcomplex expression

The syntax of complex expression is given in
Figure 6. The complex expression consists of one or
more basic expressions combined with brackets, inclusion
(+) and exclusion (- ) operators, and animportance
attribute. Brackets are used to group terms in a simple
expression. The inclusion and exclusion operators are
used for specifying that the XML fragment must or must
not contain basic expression , respectively. The
importance attribute is used to define the importance
of an expression among all the other expressions. In cases
where the expressions’ importance is not specified it is
equally distributed to everybasic expression (e.g.
1/#(basic expression)).
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Figure 7: Syntax graph forbasic expression

A Basic expressions is formed using traditional boolean
IR operators: and and or , and proximity operators:
adj (adjacent) andnear . Additionally, to enable full
power of full-text search as defined in [9, 11] we introduce
operators, operator attributes and term attributes. The
syntax of a basic expression is depicted in Figure 7, where
theterm x is defined as:

term x := term [’[’term attributes’]’] .
The function of operators+ and - and attributeimpor-
tance is the same as described for complex expressions,
except its scope, which is now translated to query terms,
instead of basic expressions. For example, the query:

//par[IR(+(old adj man) and -shore)



should find all the paragraphs which contains the phrase
‘old man’ and do not contain term ’shore’, while the query:
//par[IR((old adj man)[0.2] and shark[0.8])]
stresses the importance of a term ’shark’ against a phrase
’old man’.
For the operators we introduce next attributes:

adj attributes := word order[,skip elem]
and attributes :=

distinct element[,skip elem]
near attributes :=

win[,word order[,skip elem]]
or attributes :=

distinct element[,skip elem]
Operator attributeword order defines whether query
word order should be used as a criteria foradj andnear
search, while attribute nameddistinct element
defines whether theand or or search should be performed
in all the sibling elements (distinct ) or each of them
separately (same). For example we can compose next
complex query:
/book/[IR(author:(Ernestadj[order]
Hemingway) and .//par:(big and[same] shark))]
This query will search for all the books whose author is
Ernest Hemingway and which contain paragraphs such
that inside some of the paragraphs terms big and shark can
be found. If we use thedistinct attribute instead of
thesame attribute for theand operator we will obtain all
the books where ’big’ and ’shark’ can be found in distinct
paragraphs of a book element.
We use the operator attributewin to define the window
for near search (e.g.boat near[10] shark ), and
skip elem attribute is introduced to cover FTS use-cases
described in chapter 14 of [9].
Furthermore, to enable most of the FTS use-cases [9], we
introduce next set of term attributes:
{case sensitive, diacritics support,
stemming, word division, position,
term expansion, term prefix, term infix,
term suffix, skip tag }.

Each one of the term attributes will have values, defined to
support FTS use-cases. For example:

case sensitive :=
exact case|lower case|upper case|any case ;

term expansion :=
no semblance|thesaurus narrow
|thesaurus broad|pronunciation|spelling ;

term suffix := suffix ’(’ max [,min] ’)’ .
We can exert that almost every term attribute can be
resolved using a complex lexicon (thesaurus). As an
illustration for the usage of complex lexicon we can give
next example query:

IR(boat near anchor[use thesaurus]) ,
which can be expanded to:

IR(boat near (anchor or kedge or grapnel)) .
Here termskedge andgrapnel represent terms with the
same meaning asanchor term, captured by the complex
lexicon (thesaurus).

Using the complex lexicon and database accessories, query
expansion and rewriting can be performed in order to
avoid adding unnecessary complexity in logical operators
for explicitly expressing term attribute values. Due to the
space limit we will not elaborate more on this.

3 LM for IR in XML documents
The basic idea behind the language modeling approach to
information retrieval is to assign probabilities to relevance
of each document (D) when the queryQ is specified us-
ing query terms (Q = q1, q2, ..., qn). Here, we will con-
sider XML elements (E) instead of documents as a basic
retrieval unit. Thus, using Bayes’ rule we can express the
relevance score like ([1]):

P (E|q1, q2, ..., qn) =
P (q1, q2, ..., qn|E)P (E)

P (q1, q2, ..., qn)
(1)

where the value of a denominator depends only on query
formulation and thus might be ignored for a single query
relevance score computation. Furthermore, if we assume
uniform prior for all the elements in a collection, the prior
P (E) should be ignored. In other words we assumed that
the elements are equally likely to be relevant in absence of a
query. Since this is not usually the case, we must use some
computations and estimate or learn the value ofP (E). For
this purpose the relative size of an element in an XML col-
lection might be used (similarly to relative document size
in a collection in [10]). Furthermore, if we assume that the
query terms are independent we can isolate the single terms
of a complex expression in the numerator and express the
probability that a query termq is drawn from a single ele-
ment (e ∈ E): P (q|E).
In defining LMs for complex CIRQuL expressions we will
start from the simple query consisting from one single
query termq. Following the traditional statistical LM for-
malism we can define the relevance assessments of an ele-
mente given the query termq as:

P(q |e) =
tf (q , e)∑
t

tf (t , e)
(2)

Here, tf (t , e) denotes term frequency of a termt in an
XML elemente, and

∑
t tf (t , e) represents the total num-

ber of terms in an XML elemente, while the equation (2)
define the probability that a term in elemente is q. How-
ever, considering the hierarchical organization of XML
documents we might alternatively define this expression
as:

P (q|e) =
1∑

t
tf (t , e)

∑
ei∈dsc(e)

tf (q, content(ei ))
∑

t
tf (t , ei )∑

t
tf (t , content(ei ))

(3)

In this equation we compute the term frequency of a term
inside the content of each descendant node of a current con-
text node(tf (q , content(ei))/

∑
t

tf (t , content(ei))), multi-
ply it by a bias factor

∑
t

tf (t , ei)/
∑

t
tf (t , e) (similar to

augmentation factors in [2, 16] and mixture parameters in
[10]), and sum the resulting values.
Using equations (2) and (3) as a starting point we can define
more complex models for operators. Thus, for operators



or , and , near , andadj , that form the basic expressions
we will use next equations:

P (q1 or q2 or ... or qn|e) =
1

n

n∑
i=1

P (qi|e) (4)

P (q1 and q2 and ... and qn|e) =

n∏
i=1

P (qi|e) (5)

P (q1 near q2 near ... near qn|e) =

= P (q1|e)P (q2|q1, e) ... P (qn|qn−1...q1, e)

=
P(q1 |e)∑

t
tf (t,e)

P(q1 near q2 ) ... P((qn−1 , ..., q1 ) near qn )) (6)

P (q1 adj q2 adj ... adj qn|e) =

= P (q1|e)P (q2|q1, e) ... P (qn|qn−1...q1, e)

=
P(q1 |e)∑

t
tf (t,e)

P(q1 adj q2 ) ... P((qn−1 , ..., q1 ) adj qn )) (7)

HereP ((qn−1, ..., q1) near qn) represents the number of
occurrences of a termqn near other terms(qn−1, ..., q1)
divided by the size of the window defined innear
operator attributes and the relative position of previous
terms (qn−1, ..., q1) inside the elemente. Similarly,
P ((qn−1, ..., q1) adj qn) denotes the number of occur-
rences of a termqn adjacent to one of the previous terms
({qn−1, ..., q1}) divided by 1 or 2 in respect to the values
of adj operator attributes (word order ).
Furthermore, to enable execution of operatoror or and
with distinct attribute value, we will use weighted
(augmented) sum over all the sibling elements (ei) that are
in a fragmentf (∈ F ):

P(Q |f ) =
∑
ei∈f

(P(Q |ei)
∑

t

tf (t , ei))
1∑

t
tf (t , f )

(8)

Since in our complex query syntax we allowed the usage
of or andand terms for forming complex expressions, we
will support their representation in a logical algebra in the
same fashion as for their counterparts defined in equations
(4) and (5). However, instead of single query termsqi de-
picted in these equations we will use termQi which stands
for basic query expression. Using LMs defined in equations
(2) - (8) we will try to develop all the operators in a logical
algebra. Together with the rewriting rules defined for the
query language we will be able to perform score computa-
tion for all the XML fragments in a database collection.3

4 Conclusions and future work
In this paper we presented a Complex Information Re-
trieval Query Language (CIRQuL) whose goal is to enable
ranked retrieval and full-text search in XML documents.
The language is proposed as an extension to XPath, with
the introduction of IR operators, and operator and term
attributes. Furthermore, we explained how statistical lan-
guage models can be used to support the relevance score

3At current stage of the development we can not give the estimation
for the complexity of CIRQuL query evaluation when using equation (2)
or equation (3).

computation for the simple one-term queries, as well as for
the complex queries composed withadj , and , near , and
or operators.
The ultimate goal of our future research will be to build a
stable database management system with a powerful logi-
cal algebra based on language models that will support the
execution of complex queries defined in CIRQuL. Further-
more, we will use scalable storage schema (similar to [3])
on physical level to support fast execution of logical alge-
bra operators.
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