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Abstract 

The abundance of errors in genome databases is 
a well-known fact. Major problems are errors in 
genome annotation. Performing biological ex-
periments to eliminate them is time consuming 
and expensive. As a viable alternative, we intro-
duce novel data cleansing methods for (semi-) 
automatic detection and correction of erroneous 
entries. Using a simple example we show the ap-
plicability of this cleansing approach. Our ap-
proach forms a sound basis for the solution of 
many open questions such as the efficient identi-
fication of erroneous entries, the specification of 
the cleansing process, management of alternative 
solutions until the correct one is identified, and 
efficient management of dependencies to react 
on changes to base data and avoid outdated data. 

1.   Genome Data is Dirty 

1.1   Problems in Genome Databases 

Increasing interest in genome data has lead to the avail-
ability of a multitude of public available genome data-
bases today1. By genome data we mean nucleic acid 
(DNA and RNA), amino acid (protein) sequence data, and 
their structural and functional classification (annotation). 
The process of assigning meaning to sequence data by 
identifying regions of interest and determine function for 
them is defined as genome annotation [MGMB+03]. Two 
of the most daunting problems within this process are the 
integrated access of multiple sources and the quality of 
the retrieved data. The former problem is common to all 
integrated databases and is regarded elsewhere [SL90]. 
The latter problem, on the other hand, has so far been 
studied only marginally in the context of genome data, 

                                                           
1 for a comprehensive listing see 
http://nar.oupjournals.org/cgi/content/full/31/1/1/DC1 

despite of the importance of high data quality for ongoing 
genome research. 

Errors in genome data can result in improper target se-
lection for biological experiments or pharmaceutical re-
search, in turn resulting in loss of money. Missing, in-
complete or erroneous information hinders the automatic 
processing and analysis of data. This leads to a loss in 
confidence and a rise in effort and frustration for the bi-
ologist. Fuzzy or incomplete knowledge in conjunction 
with erroneous base data makes annotation a highly error 
prone process. In [Bor00] it is stated that an average of 
70% accuracy in predicting functional and structural fea-
tures must be considered a success! 

Several studies show the existence of errors in genome 
databases, e.g. [Bre99, ITAE+03]. In [Bre99] the error 
rate is estimated to be over 8% by comparing analysis 
results of three independent research groups annotating 
the proteome of Mycoplasma genitalium and counting the 
number of discrepancies between them. In [ITAE+03] the 
authors generate a highly reliable set of annotations by 
carefully using automatic methods and experimental evi-
dence. They compare their results with existing annota-
tions and with the results of solely automatically per-
formed annotations. For the original annotations only 
63% of functional assignments within both datasets are in 
total agreement, while for the solely automatic annota-
tions the precision is estimated to be 74% for the most 
reliable set of predictions. 

1.2   Errors in Genome Data Production 

Producing incorrect data is intrinsic to the current process 
of generating genome data. The main causes for poor data 
quality in genome databases are 

- Experimental errors due to unnoticed experi-
mental setup failure or systematic errors. These 
errors are hard to detect by observation because of 
the diminutiveness of samples. 

- Analysis errors due to the absence of fixed rules 
and knowledge guiding the annotation process 
which leads to misinterpretations and incomplete 
or invalid information (miss-annotation). 



- Transformation errors while performing trans-
formations of information from one representation 
into another or one medium to another, e.g., data 
input or translation of DNA sequences into pro-
tein sequences. 

- Propagated errors, when erroneous data is used 
for the generation of new data, e.g., within the 
process of functional annotation of proteins. 

- Stale data, i.e., unnoticed changes to base data on 
which a data item depends and that falsify it. Ge-
nome databases often contain integrated or de-
rived data. Changes to the original data often re-
main unnoticed hindering the update of the de-
rived information, leading to stale (outdated) data. 

Propagation of errors is considered to be the major 
problem in genome data production, because existing data 
is very often used within the production process. In 
[GADTO02] a dynamic probabilistic model for error 
propagation in data annotation is developed. The authors 
show that the iterative annotation approach leads to a sys-
tematic deterioration of database quality. Concluding, 
there is a great need for data cleansing in genome data-
bases to prevent loss of money in pharmaceutical research 
due to decisions based on erroneous data and to avoid 
further source pollution by error propagation. 

2.   State of the Art 
Data cleansing comprises the identification and removal 
of errors in existing data sets to enhance the overall data 
quality. In most of the existing work [ACG02, GFSSS01, 
HS95, LLL00, ME97, RH01, VVSKS01] the focus is on 
data transformation, enforcement of simple integrity con-
straints, and duplicate elimination. Also, most of the pa-
pers describe how to identify errors but leave it to the 
domain expert to choose the right method of correction. 
This is due to the domain dependence of this task. Exist-
ing cleansing approaches are mainly concerned with pro-
ducing an unified and consistent data set, i.e., addressing 
primarily syntactical problems and ignore the semantic 
problem of verifying the correctness of the represented 
information. There also exists statistical approaches 
[BS01] intending to detect and eliminate errors using sta-
tistical methods and for filling-in missing values. 

Most of the existing work covers the domains of ad-
dress or publication databases. These domains benefit 
from a clear definition of the semantics of the concepts 
used. Also, there exists only a small set of well defined 
rules and constraints as well as standardized lookup tables 
usable to identify and correct certain data, e.g., cities with 
their ZIP-Code, country names, etc. See [MF03] for a 
detailed classification and comparison of state-of-the-art 
data cleansing methods. 

In the area of genome data there has been little work 
regarding data cleansing. In [GZK01] the semi-automated 
cleaning of RNA alignment databases is described. Here, 
programs that search for inconsistencies in RNA align-

ments reduce the number of potential annotation errors. 
The correction or database update is performed manually. 
There is also work reported on complete re-annotation of 
genome data to verify and correct annotation errors, the 
so-called second-generation annotation. For an overview 
on re-annotation projects see [OK02]. A complete re-
annotation has the disadvantage of being time consuming 
because entries that are not erroneous are re-annotated as 
well. Also, the process of re-annotation has to be per-
formed each time there is an update to some of the base 
data used within the re-annotation process. 

3.   Cleansing of Genome Data 

3.1   Genome Data 

Genome data comprises genome sequences and their an-
notations. Each annotation can be determined by biologi-
cal experiments. Despite being determined experimen-
tally, annotations are also derived automatically from se-
quence data by means of results generated using standard 
or specific bioinformatics algorithms, possibly operating 
on additional data sources. The results are interpreted with 
expert knowledge in form of annotation rules. The need 
for automatic annotation arises because manually annota-
tion cannot keep up any more with the huge amounts of 
sequence data produced every day. By assigning putative 
annotations the sequence data is available for further re-
search as quickly as possible. 

For each sequence s we define the annotation as a list 
of annotation values ai, denoted by A = <a1, …, an>. The 
tuple (s, A) is called sequence annotation. Each annotation 
value is the output from applying an annotation function fi 
to s, fi(s) = ai. The annotation function fi in turn is com-
posed of evidence functions hij displaying certain features 
of the sequence using additional data sources qik, 

fi = hi1 ° hi2 °…° him(qi1, …, qik). 

An example for such an evidence function is a se-
quence similarity search calculating a similarity value for 
a pair of sequences. The choice of evidence functions in fi 
and the specification of their combination currently lie 
solely within the responsibility of a domain expert. 

3.2   Semantic Cleansing of Genome Data 

The common problems within genome data are format 
inconsistency, duplicates (synonyms), homonyms and 
syntax errors in textual annotation, as reported in [BB96]. 
They can be handled using the known cleansing ap-
proaches listed in [MF03]. 

We regard the problem of semantic errors in annota-
tion, caused by analysis errors, error propagation, and 
stale data, as the most pressing problem hindering genome 
data quality. This conforms to the importance ranking of 
errors in genome annotation, the Transitive Annotation-
Based Scale (TABS) [OK02], which describes seven ma-



jor cases of errors in genome annotation and ranks them 
according to their effects on error propagation. In TABS 
semantically wrong annotation has the highest impact 
value while syntax errors having the lowest. Annotation 
error means that 

fi(s) = hi1 ° hi2 °…° him(qi1, …, qik)(s) = ai 

does not reveal the same result as an experimental setup 
would do. 

Semantic cleansing of genome data aims at generating 
for each given sequence s an annotation A describing as 
exactly as possible structural and functional characteris-
tics, i.e., providing the same results as an experimental 
setup would do. The most reliable way to achieve this is 
to perform the biological experiments. This is also the 
most time consuming and expensive way and is therefore 
impracticable. Another solution is the complete re-
annotation, which has the above-mentioned disadvan-
tages. Therefore, we want to choose in advance the subset 
of sequences and annotations that are erroneous and then 
correct them individually. 

3.2.1   Error Detection 

There are two common methods for selecting sequences 
and their annotations as candidates for re-annotation. The 
first is to check biological integrity constraints on the 
given annotations. An integrity constraint c is a function 
associating with each sequence annotation (s, A) a Boo-
lean value. The function c(s, A) returns true if the con-
straint is satisfied by the given sequence annotation, oth-
erwise it returns false. An example for such a constraint 
would be “The translation of mRNA always starts at the 
codon ‘ATG’” (see Section 4). Constraint violating se-
quence annotations are the candidates for re-annotation. 
From our current point of knowledge, there are only few 
of these hard constraints that allow such a Boolean classi-
fication or erroneous annotations. 

Another way for selection of erroneous annotations is 
to verify the correctness of the original performed annota-
tion. Unfortunately, most of the existing genome data-
bases contain only sequence data and their annotations 
omitting detailed information about the annotation proc-
ess. This hampers reproduction and validation of the gen-
erated results. We therefore need to define a re-annotation 
function fi’ to verify the correctness of the annotation. 
Given such a function fi’ a Boolean function t is used to 
decide whether given annotation value ai is correct. The 
function t(s, ai, fi’) returns true if fi’(s) = ai, otherwise it 
returns false. A simple implementation would require re-
annotation of all entries with the above-mentioned disad-
vantages. To reduce processing cost we need to imple-
ment efficient methods to identify erroneous entries with-
out complete execution of fi’ by exploiting knowledge 
about the evidence functions used in the specification of 
fi’. 

3.2.2   Error Correction 

The correction of erroneous entries is performed by re-
annotation. Within the re-annotation process manipulating 
sequences or data in the additional sources used can be 
necessary. Often several different changes can yield in the 
same result and it has to be decided which is the correct 
one. As this is not always immediately possible the result-
ing alternative solutions have to be managed. The avail-
ability of additional or updated information may then al-
low choosing the correct solution. Evidence functions can 
be used to collect arguments for or against each of the 
alternative solutions. The resulting evidence values indi-
cate the confidence in the correctness of values. These can 
then be used for decision support or to exclude alterna-
tives in advance. 

3.3   Annotation Lineage 

We define the annotation lineage for an annotation value 
fi(s) = ai according to [CW01] as union of the actual sub-
set of items qik

* from each of the sources qik used in fi that 

contributed to the derivation of ai. Annotation lineage 
comprises those items that contribute to the original anno-
tation value or to the correction or verification of an 
annotation value during data cleansing. 

Defining and managing annotation lineage enhances 
documentation of annotation and enables effortless identi-
fication of candidate annotations that have to be checked 
when data entries within their lineage are updated. Anno-
tation lineage is also of importance for those cases where 
alternative corrections are managed. Upon identification 
of the correct alternative, the now incorrect values have to 
be deleted and with them all further annotations that are 
based on them have to be re-annotated. 

4.   Experiments 
Using the MySQL load files for ENSEMBL database 
[HBBC+02] (Release 7.29) we installed a local copy of 
the relational database in our IBM DB2 database system 
and checked the biological constraint “All translations 
start with the codon ‘ATG’”. Error detection is done using 
a simple SQL query filtering those translations starting 
with a codon different from ‘ATG’. Using protein se-
quences imported from the Oracle dump-file release of 
SWISS-PROT/TrEMBL [BBAB+03] (released July 15, 
2002)2 as additional data, we defined a re-annotation 
function which calculates the correct start codon using 
automatic processing. 

For re-annotation of miss-annotated translations we 
first translated the upper end of the corresponding tran-
script into the according protein sequence. We then 
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ftp://ftp.ebi.ac.uk/pub/contrib/swissprot/oracle/README.
html for more details 



aligned protein sequences starting with the amino acid 
Methionine from SWISS-PROT/TrEMBL against the 
translated transcript. If such an alignment exists for the 
translated transcript the left end of this alignment marks 
the position of the new start codon. In some cases one of 
the sequences had to be modified to obtain an exact 
alignment. 

About 30% of the translation entries in the ENSEMBL 
release violated this constraint. For nearly 15% of these 
violating entries a new start codon was proposed by our 
re-annotation function. A first survey of the ensuing re-
leases of ENSEMBL and SWISS-PROT/TrEMBL 
showed that the database curators have also updated some 
of the identified corrections, enabling us to validate our 
methods. 

5.   Future Work and Conclusions 
We defined semantic cleansing of genome data as the 
process of assuring correctness of annotations for genome 
sequences. This is performed by identifying erroneous 
annotations and re-annotating them. Using a simple ex-
ample we validated the applicability of this approach and 
identified open problems and challenges for reliable 
cleansing of genome data. 

Semantic cleansing of genome data is closely related 
to genome annotation. Both require domain dependent 
evidence functions. The definition of a set of general evi-
dence functions for the domain of genome annotation will 
enable us to build a formal model to specify the annota-
tion and cleansing process. Several additional challenges 
arise for the management of high quality genome data in 
database management systems. These challenges are 
metadata management for annotation rules, annotation 
lineage, and evidence values as well as management of 
alternative solutions (versioning). 

The management of annotation rules and annotation 
lineage enable effective correctness verification. In those 
cases where the original annotation process and the data 
lineage are unknown the intrinsic properties of the evi-
dence functions within the re-annotation specification can 
be used to detect erroneous annotations without the neces-
sity of complete re-annotation. Including annotation line-
age further enables efficient detection and re-annotation 
of affected annotations when changes in external data 
sources occur. 

In those cases where alternative solutions and evi-
dence values for them are managed it is desirable to in-
clude them within the annotation and cleansing process to 
receive results of higher quality. Some of the genome 
databases are also beginning to manage such evidences 
for their entries. Excluding invalid or unreliable entries 
from the processing can derive credible annotations. The 
formal model for genome annotation has to take evidence 
values and alternative solutions into account. Annotation 
lineage in conjunction with versioning enables identifica-

tion of those items becoming invalid when alternative 
solutions are dismissed. 
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