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Abstract
Today’s storage interfaces hide device-specific details, simplifying sys-
tem development and device interoperability. However, they prevent
database systems from exploiting devices’ unique performance char-
acteristics. Abstract and device-independent annotations to existing
storage interfaces can cleanly expose key device characteristics that
improve performance and simplify manual tuning. By automatically
matching access patterns to device strengths, a database storage man-
ager can achieve robust performance even with workloads competing
for the same storage resource. For example, disk-optimized accesses
result in simultaneous improvement of up to 3x for DSS workloads and
7% for a competing OLTP workload. As another example, accesses
to relational tables can take advantage of MEMS-based storage paral-
lelism to achieve order of magnitude improvements in selective scans.

1 Introduction

Database storage managers employ sophisticated algo-
rithms attempting to exploit the performance available
inside today’s storage systems. However, because the
communication between the storage manager (SM) and
a storage device is limited by a high-level protocol, both
the SM and the device make decisions largely in isolation
and do not realize the device’s full potential. Based on a
few implicit assumptions, a SM guesses device charac-
teristics to improve I/O performance. Similarly, a stor-
age device observes I/O access patterns coming from the
storage manager (but not the queries themselves) and
tries to adapt its behavior to satisfy requests more effi-
ciently. This absence of communication leads to ineffi-
cient utilization of storage device resources and degraded
performance especially under workloads that change dy-
namically.

Exposing key storage device performance characteris-
tics in a well-defined (small) set of attributes will allow
SMs to realize the performance potential hidden behind
today’s high-level storage interfaces. With explicit in-
formation, provided by the storage device and encapsu-
lated in these performance attributes, a SM can ensure
more efficient use of storage devices. Being close to the
queries being executed, the SM can make its decisions
within the context of the true query access patterns.

Combining detailed knowledge of access patterns of cur-
rently executed queries with explicit performance hints
provides three major benefits. First, a storage manager
can make more informed decisions that result in shorter
query execution times. Even when several queries ex-
ecute in parallel and contend for the same storage de-

vice, a SM can automatically tune each query’s access
patterns, resulting in more efficient execution. Second,
this automatic adjustment simplifies a difficult and error-
prone task of manual performance tuning. With devices
explicitly providing key characteristics, there is no need
to expose a set of hard-to-understand manually-set con-
figuration parameters. Instead, the SM can automatically
tune its performance to dynamically changing workloads
without administrator’s intervention.

As demonstrated by our implementation of a database
storage manager [3], two attributes can effectively cap-
ture characteristics of different storage devices (e.g., disk
drives, disk arrays, and MEMS-based storage) to bring
about significant performance improvements. For ex-
ample, running compound workloads of decision sup-
port system queries (DSS) and on-line transactional pro-
cessing (OLTP), we can achieve up to a 3× performance
improvement on DSS queries, while simultaneously im-
proving OLTP throughput by 7%. Most importantly,
these improvements do not break the abstractions within
a storage manager and require only minimal changes to
existing data structures.

The research described here presents a new, more ro-
bust approach to database storage management, which
automatically adjusts query access patterns to unique
strengths of different storage devices and dynamic work-
load changes. This results in better and more predictable
performance for workloads competing for the same stor-
age resources. This approach also eliminates the need for
manual performance-tuning knobs, which simplifies the
configuration of database systems.

2 Storage Model

Virtually all of today’s storage devices use an interface
(i.e., SCSI or IDE) that presents them as a linear space of
equally-sized blocks. Each block is uniquely addressed
by an integer, called a logical block number (LBN),
which grows from 0 to LBNmax. This view offers a sim-
ple programming model and does not require a storage
manager to include any device-specific knowledge. Un-
fortunately, it hides important non-linearities in access
times to different LBNs.

The access time non-linearities stem from the combina-
tion of access history and device properties. To work
around the non-linear access time, there exists an un-
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Figure 1: Two approaches to conveying performance attributes.
(a) illustrates a host and a storage device that communicate via the ex-
tended interface that conveys the necessary performance attributes. (b)
shows an alternate apporach where the storage device speaks a con-
ventional SCSI. A device-specific discovery tool extracts performance
chatacteristics and exports them to the SM. Note that the same SM
works with either approach. In database systems, the depicted applica-
tion corresponds to the query optimizer and the execution engine.

written contract between storage managers and storage
devices, which states that (i) logical blocks near each
other can be accessed faster than those farther away and
that (ii) accessing logical blocks sequentially is generally
much more efficient than random access. Rather than
working on these loose assumptions, explicitly stated de-
vice characteristics via a well-defined interface allow a
storage manager to take advantage of the unique storage
device strengths and avoid access patterns that are ineffi-
cient.

Encapsulating these characteristics into a few attributes
that annotate the device’s address space will maintain to-
day’s abstractions and does not require code modifica-
tions to the storage manager with each introduction of a
new device. When a new device is plugged into a system,
a storage manager can simply query the device to obtain
the values of these performance attributes.

Performance attributes can be provided to a storage man-
ager by two different approaches, as illustrated in Fig-
ure 1. In the first one, specialized tools automatically
determine device’s characteristics without any additional
support beyond current standardized interfaces [4]. This
tool then encapsulates the explored characteristics into
the set of performance attributes. In the second approach,
the storage device itself encapsulates its performance
characteristics and exports them directly to the storage
manager.

2.1 Performance Attributes

ACCESS DELAY BOUNDARIES: This attribute denotes
preferred storage request access patterns i.e., the block
groupings into units that yield most efficient accesses.
These groupings, called ensembles of contiguous LBNs,
are a manifestation of variable-sized disk track bound-
aries [5] or stripe unit sizes in RAID configurations. The

ensemble sizes may be different at different parts of the
device’s address space.

This attribute captures the following notions: (i) requests
that are exactly aligned on the reported boundaries and
span all the blocks of a single unit are most efficient,
(ii) requests smaller than the preferred groupings, should
be, if possible, aligned at the boundary. If they are
not aligned, they should not cross a boundary. In a
striped RAID configuration, for example, a stripe-unit-
sized READ request that spans two stripe units because
it is not aligned, will be split into two requests issued to
two different disks. These two smaller requests will be
less efficient and, if one of the disks is very busy, the
overall request latency will be high.

PARALLELISM: Given a device’s linear address space,
this attribute describes how many LBNs can be accessed
in parallel. The device interface provides to the storage
manager an equivalent set of non-contiguous LBNs that
can all be accessed simultaneously.

For example, a a logical volume of a storage array which
has n mirrored replicas can access n different pieces of
data in parallel. Another example is a MEMS-based stor-
age device (under development at IBM, HP, and Carnegie
Mellon University), called MEMStore, which can access
data in parallel by a subset of the thousands of available
read/write heads. Using this parallel access, even data
that are not laid contiguously, can be accessed efficiently.
Thus, both a row-major and column-major order access
to a two-dimensional database table can be efficient.

2.2 Acquisition of Storage Characteristics

Today’s storage interfaces cannot convey performance
attributes directly. However, they can be discovered via
specialized tools that encapsulate the discovered charac-
teristics into these performance attributes. These tools
are tailored to a particular storage device as they make
assumptions about the device’s inner-workings and work
seamlessly within the proposed architecture as depicted
in Figure 1(b).

The discovery tool that we build, called DIXtrac, assem-
bles test vectors of READ and WRITE commands which
are individually timed [4]. These test vector requests can
be either interjected into the stream of requests coming
from the storage manager or the discovery can be done
off-line as a one-time cost during device initialization.
The former approach has the advantage that the discov-
ery tool can dynamically tune the performance charac-
teristics attributes at a cost of interfering with the normal
stream of requests. The latter approach does not slow
down the device, but depending on the type of the de-
vice, its characteristics can change over time.
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Figure 2: Measured advantage of accesses with explicit perfor-
mance attributes. Disk efficiency is the fraction of total access time
spent moving data to or from the media. The conventinal and with
attribute hints lines show disk access efficiency for random, constant-
sized reads. with attribute hints access takes the same stream of ran-
dom requests, but aligns them on disk track boundaries (a manifesta-
tion of the ACCESS DELAY BOUNDARIES attribute). The peaks are the
device’s ensemble unit sizes and correspond to multiples of the track
size. Point A highlights the higher efficiency of access with perfor-
mance attribute hints (0.73, or 82% of the maximum). Point B shows
where conventional efficiency catches up to to efficiency at Point A.
The maximum streaming efficiency is less than 1.0, because no data is
transferred when switching from one track to the next.

2.3 Quantifying I/O Access Efficiency

Because of disk drive characteristics, random small ac-
cesses to data are much less efficient than larger ones.
As shown in Figure 2 by the line labeled conventional,
the disk efficiency increases with increasing I/O size by
amortizing the positioning cost over larger data transfer.
To take advantage of this trend, storage managers buffer
data and issue large I/O requests.

With explicit information about access delay boundaries,
the same set of random requests can be aligned within
these (track) boundaries to achieve much higher effi-
ciency as illustrated in Figure 2 by the line labeled with
attribute hints. The difference between the with attribute
hints access and the maximum streaming efficiency is
due to an average seek of 2.2 ms. Moreover, the access
with attribute hints consistently provides this level of ef-
ficiency across disks from at least the past 10 years, mak-
ing it robust choice for automatically sizing efficient disk
accesses.

The increased efficiency of the track-aligned disk access
comes from a combination of three factors. First, a track-
aligned I/O whose size is one track or less does not suffer
a head switch, which, for modern disks is equivalent to
a 1–5 cylinder seek. Second, a disk firmware technology
known as zero-latency access eliminates rotational la-
tency by reading data off the track out-of-order as soon as
the head is positioned. The on-board disk cache buffers
the data and sends them to the host in ascending order.
Third, with several requests in the disk queue, seeking
to the next request’s location can overlap with previous
request’s data transfer to the host.

3 Robust Storage Management

With I/O operations being the dominant cost in query
execution, the focus of query optimization, both at the
optimizer and the storage manager levels, has tradition-
ally been to achieve efficient storage access patterns. Un-
fortunately, two problems make this difficult. First, the
many layers of abstractions between the optimizer and
the storage manager, together with high-level storage in-
terfaces, make it difficult to quantify the efficiency of
different access patterns. Second, when there is con-
tention for data or resources, the resulting access pat-
tern is less efficient. For example, an efficient sequential
access assumed during query planning stage is now in-
terleaved with other requests, introducing unplanned-for
seek and rotational delays. Combined, these two factors
lead to loss of I/O performance and longer query execu-
tion times.

Transforming query plans into individual I/O requests re-
quires the storage manager to make decisions about re-
quest sizes, locations, and the temporal relationship (i.e.,
scheduling) to other requests. While doing so, a stor-
age manager considers resource availability and the level
of contention for them caused by other queries running
in parallel. This balance is quite sensitive and prone
to human errors. To tune its performance, DBMS rely
on generic parameters set by a database administrator
(DBA). This, however, makes it difficult to adapt to the
device-specific characteristics and dynamic query mixes,
resulting in inefficiency and performance degradation.

We promote an alternate approach that (i) does not ex-
pect DBAs to get tuning knobs right and (ii) does not
rely on crude SM built-in methods for dynamically de-
termining the I/O efficiency of differently-sized requests
be correct. Instead, the storage manager understands a bit
more about underlying device characteristics by receiv-
ing hints explicitly from the storage device. It can thus
automatically adjust its access patterns to generate I/Os
that are most efficient for the device. Most importantly,
this provides guarantees to the query optimizer that ac-
cess patterns are as efficient as originally assumed when
the query plan was composed.

With explicit information about access pattern efficiency,
the storage manager can focus solely on data alloca-
tion and access. It groups pages together such that they
can be accessed with efficient I/Os prescribed by the
storage device characteristics. Such grouping meshes
well with existing storage manager structures, which call
these groups segments, or extents. Hence, implementing
these changes requires only minimal changes; our im-
plementation within a Shore prototype database storage
manager [1], called Lachesis, modified only 680 lines of
C++ code of a total of quarter million. The clean high-
level performance attribute abstractions leave the current
interfaces between the storage device, the storage man-
ager, and the query optimizer unchanged.
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Figure 3: DB2 TPC-H query execution. This graph shows four
different trends in query I/O time improvements for our Lachesis sys-
tem normalized to the runs on the original system . Queries 5, 10, 13,
15, 18, 19, 20, and 22 have the same profile as the graphed query 1,
queries 6 and 16 as query 12, queries 2, 3, 7, and 8 as query 9, and
queries 11 and 14 show the same limited improvement as query 17.

3.1 Compound Workload Results

To demonstrate that with explicit performance storage
characteristics, a storage manager can execute queries ef-
ficiently even in the face of competing traffic, we ran a
compound workload of OLTP and DSS queries. We mea-
sured the runtime of DSS queries of the TPC-H bench-
mark and modeled competing device traffic by simulta-
neously running a TPC-C random transaction mix.

We ran all experiments on a uni-processor system with
the TPC-C and TPC-H data instances stored on a single
disk. The TPC-H instance included a 1 GB database and
ran one query at a time. The TPC-C instance run one
transaction at a time to allow fine-grain of control the I/O
activity. We varied the amount of the competing traffic to
the DSS queries by changing the keying/think time of the
TPC-C benchmark transactions to achieve a target rate of
0 to TpmCMAX transactions per minute.

We also evaluated the benefits on a commercial database
system. Since we did not have access to the IBM DB2
source code, we ran all 22 queries of the TPC-H bench-
mark in DB2 and captured their device-level I/O traces.
We simulated the effects of Lachesis adjusting request
sizes in the original traces and replaying these modified
traces. We simulated the competing OLTP traffic by in-
jecting 8 KB random I/Os during the TPC-H trace replay
and varied their I/O arrival rate. The results obtained
from our modified Shore prototype implementation and
the DB2 trace replay experiments show identical trends.

Figure 3 shows the execution time of representative TPC-
H queries with Lachesis storage manager. The times are
normalized to the original unmodified system. For each
query, the left bar, labeled DSS only, shows the run time
of the given TPC-H query in isolation. The middle bar,
labeled DSS+Occasional OLTP, shows the case when
the TPC-H query experiences a small amount of com-
peting traffic from OLTP activity. The third bar, labeled
DSS+Max OLTP, shows the case when the OTLP is run-
ning at maximal transactional throughput while a TPC-H
query executes.
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Figure 4: Shore TPC-H query 12 execution. The graph on the
left shows the amount of time spent in I/O operations as a function of
increasing competing OLTP workload. The I/O inefficiency in the basic
case is due to extraneous rotational delays and disk head switches when
running the compound workload. The two bars illustrate the robustness
of our Lachesis design; at each point, both the TPC-H and OLTP traffic
achieve their best case efficiency. The Mixed workload bar in the right
graph corresponds to the λ = 150 Lachesis-Shore datapoint of the left
graph. The Separate bar adds the total I/O time for the TPC-H and the
OLTP-like workloads run separately.

Lachesis shows modest improvements in the DSS only
scenario since we hand-tuned the configuration of our
original system for efficient sequential accesses that
dominate TPC-H query execution. However, there are
substantial improvement in the face of competing traf-
fic. Further, the relative improvement grows as the
amount of competing traffic increases, indicating the ro-
bustness of our system to competing traffic. On average,
the improvement for the DSS+Occasional OLTP and
DSS+Max OLTP scenarios was 21% (or 1.3× speedup)
and 33% (1.5× speedup) respectively.

Figure 4 compares the execution of the TPC-H query
12 on our prototype system as a function of increas-
ing competing traffic. First, with no competing traffic,
we achieve shorter run time by 11%. However, as the
amount of competing traffic increases, the difference be-
comes larger, and results in a 1.5× speedup of execu-
tion when the OLTP workload is running at full speed.
Second, the two Shore implementations achieve different
TpmCMAX . While for the Basic-Shore implementation
TpmCMAX =426.1, Lachesis-Shore achieved 7% higher
maximal throughput of 456.7 transactions per minute.
Thus, Lachesis not only improves the performance of the
TPC-H queries alone, but also offers higher peak perfor-
mance to the TPC-C workload.

4 Efficient DB Scan Operator

The page layout prevalent in commercial DBMS, called
NSM, stores a fixed number of records for all n attributes
in a single page. Thus, when scanning a table to fetch
records of only one attribute (i.e., column-major access),
the scan operator still fetches pages with data for all at-
tributes, effectively reading the entire table even though
only a subset of the data is needed.



Operation
Data Layout

NSM PAR
entire table scan 22.44 s 22.93 s
a1 scan 22.44 s 2.43 s
a1 + a2 scan 22.44 s 12.72 s
100 records of a1 1.58 ms 1.31 ms

Table 1: Database access results. The table shows the runtime of
the specific operation on the 10,000,000 record table with 4 attributes
for the NSM and PAR stored on a simulated for MEMStore device. The
rows labeled a1 scan and a1 +a2 represent the scan through all records
when specific attributes are desired. the last row shows the time to
access the data for attribute a1 from 100 records.

With proper allocation of data that utilizes the PARAL-
LELISM attribute, an arbitrary subset of attributes of a
single record can be accessed in parallel (i.e., row-major
access). Thus, the records are fetched in lock-step, elim-
inating the need for a join required in the vertically parti-
tioned page layout. Furthermore, our parallelism-aware
layout ensures that sequential streaming of one attribute
(i.e., column-major access) is realized at the device’s
full bandwidth by engaging the parallelism to read more
records of the same attribute in parallel.

Our parallel-aware layout puts data into pages that span
non-contiguous LBNs that belong to the same equivalent
set, ensuring that they can be accessed in parallel. Ad-
jacent pages are laid next to each other such that records
of the same attribute in two adjacent pages are mapped
to sequential LBNs. For each page, the storage manager-
maintains its starting LBN from which it can determine
the disjoint LBNs of all attributes in the page by calling
the get equivalent() function provided by the storage de-
vice interface.

4.1 Results for Selective Scan with MEMStore

Our sample database table consists of 4 attributes a1, a2,
a3, and a4 sized at 8, 32, 15, and 16 bytes respectively.
The NSM layout consists of 8 KB pages that include 115
records. The DSM layout vertically partitions data into
9 separate tables. The PAR layout produces pages of 9
LBNs (each 512 bytes) with a total of 60 records. The
table size is 10,000,000 records (694 MB of data).

Table 1 summarizes the table scan results for the NSM
and PAR cases using a simulated MEMStore device [2].
Scanning the entire table takes approximately the same
time for both NSM and PAR cases. The small run time
difference is because the NSM packs records into a page
slightly more efficiently. Our storage manager is highly
efficient when only a subset of the attributes are required.
A table scan of a1 or a1 + a2 in the NSM case always
takes 22.44 s, since entire pages including the undesired
attributes must be scanned. The PAR case only requires
a fraction of the time corresponding to the amount of
data occupied by each attribute e.g., one-ninth (2.43 s
vs. 22.93 s) of the full table scan for the a1 scan.

The DSM case (not shown in the table) exhibits similar
results for individual attribute scans as the PAR case. In
contrast, scanning the entire table is much more expen-
sive as it requires reading several disjoint regions, each
containing one vertically partitioned attribute, and addi-
tional joins on the attributes.

Comparing the latency of accessing one complete ran-
dom record under the three different scenarios shows an
interesting behavior. The PAR case gives an average ac-
cess time of 1.385 ms, the NSM case 1.469 ms, and the
DSM case 4.0 ms. The difference is due to different ac-
cess patterns. The PAR access includes a random seek
to the page’s location followed by access to one equiva-
lence class proceeding in parallel. The NSM access in-
volves a random seek followed by a sequential access to
16 LBNs. Finally, the DSM access requires 9 accesses
each consisting of a random seek and one LBN access.

5 Summary of Contributions

This work makes three contributions. It identifies what
performance characteristics information should be ex-
posed, demonstrates how they can be used by storage
managers, and quantifies the performance benefits to ap-
plications e.g., query executions for different workloads.
The performance attributes exposed to a SM are abstract
from details about a storage device, device-independent,
and yet specific-enough to allow a SM to tune its access
patterns to the given device. These attributes do not break
established abstractions between the storage device and
the SM; they simply annotate the current abstraction of a
storage system, namely the linear address space of fixed-
size logical blocks (LBNs).
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