
 Abstract

Almost over the last 20 years grid technology has
been developed to exploit unutilized computing
capacity around the world. The two major appli-
cation areas are solving computing intensive pro-
blems having less data (computational grid) or
operating on large volumes of data (data grid).
From a database perspective it is advisable to
replicate data sets at different nodes in the grid
before executing a single query. The query proces-
sor assigns a query to those nodes, which do not
operate at full capacity and which have stored the
appropriate replica. As the replica may be outda-
ted usually a synchronization mechanism is
necessary. This may be extremely expensive if full
consistency between original data and replica is
required. To avoid synchronization we follow the
approach to store multiple versions of static
snapshots. New versions of local data sets are dis-
tributed to the different nodes in the grid and
added to the set of locally stored snapshots. Hol-
ding multiple versions of snapshots, the user has
the possibility to combine snapshots taken at dif-
ferent points in time to get a more globally consi-
stent, but possibly older view. The access to out-
dated snapshots is acceptable, if the user has
knowledge about the degree of staleness or the
degree of inconsistency if unsynchronized repli-
cas are combined for a global view. This paper
focuses on the quantification of the inconsistency
and the snapshot management at inidividual mem-
bers of a global data grid.

1. Introduction

On the one hand statistics show that in the average only
5% of the CPU time of a desktop computer is used
([Bers02]). On the other hand many applications (e.g.
SETI@Home Project SETI: Search for Extraterrestical
Intelligence, http://setiathome.ssl.berkeley.edu/) need tre-
mendous computing time to solve their specific problems.
The internet consists of millions of computers and provides
an infrastructure for pure data exchange. The idea of a grid
([FoKe99a]) as the new technology for the advanced Web
([Gent01]) is to build a network between computers with
unutilized machine time to solve computing (computa-
tional grid, [FoKe99b]) or data (data grid, [MBM+99])
intensive problems. The Global Grid Forum (http://
www.gridforum.org/) coordinates the standardization efforts
(e.g. Open Grid Service Architecture (OGSA, http://
www.globus.org/ogsa/)) and develops toolkits (e.g. The
Globus Toolkit ([FoKe99c], http://www.globus.org/toolkit/)
for an easier development of grid applications.

In the context of a data grid, applications operate on
huge quantities of data, which are located on several usu-
ally geographically distributed nodes ([FoKe99a]). To be
able to use unutilized computing power at run time, data is
replicated before executing a single query ([Bers02]). The
necessary infrastructural prerequisite is a high data transfer
rate (> 10GB/s, [FoKe99a]), which becomes available
nowadays (gigabit network over fibre). Data replication
reduces data access latency by avoiding data shipping at
run time and increases the performance and robustness.
However, two major problems arise: One problem is loca-
ting and managing of replicated data sets. The other topic
concerns maintaining the consistency between updated
original data and replicas.

CONSISTENCY BASED SNAPSHOT MANAGEMENT
IN DATA GRIDS

Lutz Schlesinger

University Erlangen-Nuremberg
Department of Database Systems

Martensstr. 3, 91058 Erlangen
Germany

schlesinger@informatik.uni-erlangen.de

Wolfgang Lehner

Dresden University of Technology
Database Technology Group
Duererstr. 26, 01069 Dresden

Germany
lehner@inf.tu-dresden.de

Related Work

Related work in the area of replica management pro-
poses mostly high level concepts for distributing and loca-
ting replicas. For example [GLK+02] describes general
requirements for a replica management service in the grid.
[BCC+02] presents an overview of necessary functions in
general and introduces a gridOpen()-command for locating
replicas in more detail. A framework for a replication ser-
vice and a prototypical implementation, named Giggle, is
presented in [FIR+02]. [GLK+02] introduces the idea of a
master copy in combination with a two-stage update pro-
cess implemented in the Reptor project. In this approach
the master copy is modified and the replicas remain in an
old state leading to an inconsistency between master copy
and replicas. In a second step the replicas are asynchro-
nously updated by using the changed master copy. Finally
Cameron ([Came02], the Optor project) locates the replicas
on those nodes where they are most probably used. Finding
a replica with lowest transfer costs is based on an auction.
Common to all is an enhanced version of FTP ([ABB+02])
as protocol for efficient data transport, e.g. GridFTP, as
well as replica catalogues (e.g. [StHa02]).

Contribution

In this paper we focus on the problem of avoiding the
extremely expensive synchronization process by extending
the idea of [GLK+02]. The main idea is to locally store the
replica as snapshots, which are not synchronized with the
master copy. To establish global consistency from time to
time a snapshot of the master copy is locally stored once in
a while, which avoids the complex process of asynchro-
nously updates. If the new snapshot is added to the set of
existing snapshots instead of replacing an old one, a version
history of snapshots is set up. This enables the user to build
an almost global, but possibly older consistent view by
selecting different snaphots in time, if an access to outdated
replicas is acceptable. To quantify and to compare different
possible selection methods of snapshots a specification of
the inconsistency is introduced in section 2. As the local
storage for the snapshots is limited a management mecha-
nism with regard to the inconsistency is introduced in
section 3. Section 4 closes with a short summary.

2. Specification of Data Set Inconsistency

To provide the service of distributed query execution
with lowest cost and to pick snapshots with different age
algorithms for a parameterized selection of snapshots and
operations between the selected snapshots are needed. At
each node the existing snaphots can be illustrated in an
object-time-diagram as shown in figure 1, where the time
represents the valid time of the snapshots.

Historic Cut

In a classical database middleware approach the snap-
shots reflecting the current state are selected and joined
together. The selected snapshots are the closest snapshots
to the horizontal line tNOW reflecting the current time in the
object-time-diagram. In our approach, where an arbitrary
number of snapshots of the same data source exists, a selec-
tion at any time tc (tc ≤ tNOW), called the historic cut, is pos-
sible. In the optimal case all snapshots are valid at the same
time (figure 2a) while in our data grid scenario the snap-
shots may have different valid times. Therefore, the con-
necting line tc is no longer a straight line (figure 2b). The
curve reflects the inconsistency relating to the different
valid times. A metric to quantify the inconsistency is
defined in the following. Algorithms for selecting the snap-
shots under consideration of the metric and the age of the
snapshots are discussed in [ScLe02].

Quantifying the Inconsistency

Basically the inconsistency metric considers the time
and the data change rate of a set of snapshots. Disregarding
the second aspect for a moment, the time inconsistency for
a single data source is defined as the distance between the

valid time

data sourcesD1 D2 Dn...

tc
S1

1

Sn
1

S2
1

S2
2

Sn
2

data

tNOW

Si
2

Di ...

Fig. 1: Example for an object-time-diagram at a single node

S1
2

time

data sourcesD1 D2 Dn...

S1
3

Sn
1

Sn
3

S2
1

S2
2 Sn

2

data

S2
3

S1
1

S1
2

time

data sourcesD1 D2 Dn...

S1
3

Sn
1

Sn
3

S2
1

S2
2

Sn
2 data

S1
1

S1
2

(a) optimal case (b) real case
Fig. 2: Selection of snapshots in the optimal case and in comparison to the real case

tNOW tNOW

valid time of the snapshot and the time point of the historic
cut. For k selected snapshots the inconsistency I is defined
on the basis of the Lp-metric:

The example of figure 3 shows snapshots of three data
sources in an object-time-diagram (figure 3 left) with
p = 1. According to the formula the inconsistency at point
13 is 1 and 0 at point 7 (figure 3 right). This simple exam-
ple illustrates the conflict between age and inconsistency:
At point 7 the inconsistency is lower than the inconsistency
at time point 13, but the age is much higher.

While the above inconsistency formula is based on the
distance in time, the formula may be extended to additio-
nally consider the data change rate. For each data source i
we introduce a data change rate ∆di reflecting the data
changes of the object. This signature considers existential
changes (insertions and deletions of objects) and has values
between 0 and 1 (0-100%). This data change rate is a
parameter of the reusage rate ρ at a time point t with ts as
the time point of the globally oldest snapshot:

At time point tNOW, ρ has a value of 100% indepen-
dendly of ∆di and at time point ts the value is 0. The value
pattern between these points is determined by ∆di and illus-

trated in figure 4. The combination of the distance in time
and the reusage degree leads to an extended inconsistency
formula, where αk denotes weights for each single data
source and are the selected snapshots:

The following two cases are very interesting:

• ρ = 1, ∆t = 0 and ρ ≠ 0, ∆t = 0 (for all snapshots)
Since the time of each snapshot is equal to the time of
the historic cut, the selected snapshots are always most
up-to-date and the inconsistency is equal to 0 inden-
pendendly of the reusage degree.

• ρ = 1, ∆t ≠ 0 (for all snapshots)
The snapshots are older than the historic cut. Since the
reusage degree is 100% (no data changes), an access to
old snaphshots corresponds to an access to snapshots,
which have the time of the historic cut. Therefore, the
inconsistency value is 0.

I time Si
j() tc–()

i 1=

k

∑p

p
=

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3

✧ ✧

✧

✧

✧

✧

✧ ✧ ✧

✧

✧

✧

✧ ✧

✧

✧ ✧

✧

✧

data source

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time

inconsistency

Fig. 3: Example for the selection of historic cuts and the resulting inconsistency curve

0 ∆di 0 5 :ρ t(),≤< 1–

t tNOW tS–()– 1–

1
2∆di
------------ 1–

-- •=

 1
tNOW tS–
----------------------- t tNOW tS–()–() 1+•
 • 1+

0 5, ∆di≤ 1:ρ t()< 1

t 1+()

1–
2 ∆di 1–()
-------------------------- 1–

-- 1–
tNOW tS–
----------------------- t 1+•
 •=

Fig. 4: Dependency of reusage degree and age

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

re
us

ag
e

de
gr

ee

increasing age of the data sourcetNOW tS

0,1

0,8

0,5

0,2

0,4

0,6

Sk
jk

I time S1
j1() … time Sk

jk(), ,() =

 αk time Sk
jk() tc–() 1 ρk time Sk

jk()()–()••()

k 1=

n

∑=

3. Local Snapshot Management

As the local buffer for the snapshots is limited to a maxi-
mum size Bmax a replacement strategy considering the
inconsistency is presented in this section. On the basis of
the inconsistency graph a probably user behaviour may be
recognized. This influences strongly the proposed strategy.
It removes snapshots in an iterative manner until the cur-
rently used buffer Bcur plus the size of the new snapshot
Bnew is smaller or equal to Bmax (buffer constraint:
Bcur + Bnew ≤ Bmax). After each step the buffer constraint is
checked and the algorithm stops if the condition holds.

In the first step the existence of a lower bound for selec-
ting the historic cut is used because a user would never
select a historic cut being older than the lower bound. This
bound is determined by the global minimum mg of the
inconsistency graph. If more than a single time point exists
with the same inconsistency value, then the point with the
higher timestamp is selected. The reason for mg as the
lower bound is caused in the fact that a user would never
choose a historic cut which is older and more inconsistent
than a more up-to-date and more consistent point mg.
Therefore, all snapshots being older than mg and not con-
tributing to mg may be freely removed. Continuing the
example of figure 3 in figure 5 right, the time point 7 is the

global minimum and all snapshot in the shaded area of
figure 5 left are eliminated except of the snaphots marked
by a circle.

The second step starts with finding the local minimum
ml most current. The inconsistency is denoted with I(ml) at
ml. All snapshots with the following property are no longer
of any interest for the user: Either the snapshots are older
than ml or they contribute to an inconsistency value higher
than I(ml). This is caused by the assumed user behaviour in
two directions: A user selects a newer historic cut than ml
and accepts a higher inconsistency value. Alternatively a
much older historic cut is only selected if the inconsistency
value is smaller than I(ml). The area involved being of no
interest for the user is determined by the points ml and bl.
The point bl is older than ml, but closest to ml and the incon-
sistency I(bl) is equal to I(ml). This point can be determined
only algorithmically, because the function for computing
the inconsistency is not reversible. In figure 6 right the grey
shaded area marks the range of the inconsistency curve
between bl and ml. The snapshots in the grey shaded area of
figure 6 left are the corresponding candidates. From this set
those snaphots are eliminated which are selected snapshots
at historic cuts ml and bl. These snapshots are marked by a
circle. The remaining snapshots can be removed.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3

✧ ✧

✧

✧

✧

✧

✧ ✧ ✧

✧

✧

✧

✧ ✧

✧

✧ ✧

✧

✧

data source

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time

inconsistency

Fig. 5: Example of removing snapshots during the first step
mg

mg

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3

✧ ✧ ✧

✧

✧

✧

✧ ✧

✧

✧ ✧

✧

✧

data source

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time

inconsistency

Fig. 6: Example of removing snapshots during the second step
bl ml

I(ml)

bl

ml

If Bcur is still too small to store the new snapshot, snap-
shots are stepwise eliminated in the following manner: As
for each data source at least the newest snapshot should be
kept, the remaining snapshots are removed in ascending
order of their benefit, which is the quotient of age and size
of the snapshot. The final step depends on the data source
of the new snapshot: If the new snapshot is from a data
source where no old snapshot is available then the snapshot
is stored. Otherwise an existing snapshot of the same data
source is replaced by the new snapshot. In both cases, the
buffer must have a capacity to store this snapshot, other-
wise the buffer is too small and the storage size is automat-
ically extended or the system administrator is informed.

In comparison to traditional buffer replacement algo-
rithms ([GrRe93], [RaGe02]) this incremental algorithm
removes possibly more than one snapshot in the first and
second step and extends automatically the buffer in the
third step. The selection of snapshots is similiar to the pro-
blem of generating the optimal combination of aggregates
resulting in lowest costs in the context of materialized view
selection ([HaRu96], [BaPT97]).

4. Summary and Future Work

In data grids, data sets are replicated and stored at diffe-
rent nodes to use unutilized computing power during query
processing. As the data from different data sources are dis-
tributed before query processing it might be possible that
they reflect different points in time. If old replicas are
replaced by new replicas and stored as snapshots the user
can select different snapshots at the same node. The quan-
tifying of the appearing inconsistency by selecting older
snapshots and the buffer management of the snapshots is
discussed in this paper. The proposed concept and algo-
rithm are currently under implementation within the SCIN-
TRA (semi-consistent integrated time replicated approach)
project. Future work in the area of snapshot management
deals with the extension of the replacement algorithm by
considering semantic connections as well as referential
integrities between the snapshots of different data sources
and the availability of data sources as well as the restoring
of old snapshots.

References

ABB+02 Allcock, B.; Bester, J.; Bresnahan, J.; Chervenak, A.
L.; Foster, I.; Kesselman, C.; Meder, S.; Nefedova,
V.; Quesnel, D.; Tuecke, S.: Data Management and
Transfer in High-Performance Computational Grid
Environments. In: Parallel Computing 28(5)2002,
pp.749-771

BaPT97 Baralis, E.; Paraboschi, S.; Teniente, E.:
Materialized Views Selection in a Multidimensional
Database. In: 23rd International Conference on Very
Large Data Bases (VLDB’97, Athen, Greece,
Aug. 25.-29.), 1997, pp. 156-165

BCC+02 Bell, W. H. ; Cameron, D. G. ; Capozza, L.; Millar,
P.; Stockinger, K; Zini, F.: Design of a Replica
Optimisation Framework. Technical report,
DataGrid-02-TED-021215, Geneva, Switzerland,
December 2002

Bers02 Berstis, V.: Fundamentals of Grid computing. IBM
Redbooks Paper, IBM, 2002
(electronic version: http://www.redbooks.ibm.com/
redpapers/pdfs/redp3613.pdf)

Came02 Cameron, D.: Replica Management and
Optimisation for Data Grids. Graduate Report,
University of Glasgow, UK, September 2002

FIR+02 Foster, I.; Iamnitchi, A.; Ripeanu, M.; Chevernack,
A.; Deelman, E.; Kesselman, C.; Hoschek, W.;
Stockinger, H.; Stockinger, K.; Tierney, B.: Giggle:
A Framework for Constructing Scalable Replica
Location Services. Case Study, University of
Manitoba, Winnipeg, Canada, 2002

FoKe99a Foster, I.; Kesselman, C. (eds.): The Grid:
Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999

FoKe99b Foster, I.; Kesselman, C.: Computational Grids. In:
Foster, I.; Kesselman, C. (eds.): The Grid:
Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999, pp. 15-51

FoKe99c Foster, I.; Kesselman, C.: The Globus Toolkit. In:
Foster, I.; Kesselman, C. (eds.): The Grid:
Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999, pp. 259-278

Gent01 Gentzsch, W.: Grid Computing: A New Technology
for the Advanced Web. In: Advanced Environments,
Tools, and Applications for Cluster Computing,
NATO Advanced Research Workshop (IWCC01,
Mangalia, Romania, September 1-6), 2001, pp. 1-
15

GLK+02 Guy, L.; Laure, E.; Kunszt, P.; Stockinger, H.;
Stockinger, K.: Replica management in data grids.
Technical report, Global Grid Forum Informational
Document, GGF5, Edinburgh, Scotland, July 2002

GrRe93 Gray, J.; Reuter, A.: Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993

HaRu96 Harinarayan, V.; Rajaraman, A.; Ullman, J.D.:
Implementing Data Cubes Efficiently. In:
Proceedings of the 25th International Conference
on Management of Data (SIGMOD’96, Montreal,
Quebec, Canada, June 4.-6.), 1996, pp. 205-216

MBM+99 Moore, R.W.; Baru, Ch.; Marciano, R.; Rajasekar,
A.; Wan, M.: Data-Intensive-Computing. In: Foster,
T.; Kesselman, C. (eds.): The Grid: Blueprint for
a New Computing Infrastructure. Morgan-
Kaufmann, 1999, pp. 105-129

OGSA Open Grid Service Architecture web page, http://
www.globus.org/ogsa/

RaGe02 Ramakrishnan, R.; Gehrke, J.: Database
Management Systems. McGraw-Hill, 2002

ScLe02 Schlesinger, L.; Lehner, W.: Extending Data
Warehouses by Semi-Consistent Database Views.
In: Proceedings of the 4th International Workshop
on Design and Management of Data Warehouses
(DMDW'02, Toronto, Canada, May 27), 2002, pp.
43-51

StHa02 Stockinger, H.; Hanushevsky, A.: HTTP
Redirection for Replica Catalogue Lookups in Data
Grids. In: ACM Symposium on Applied Computing
(SAC2002, Madrid, Spain, March 10-14), 2002

