
AmbientDB: Complex Query Processing for P2P
Networks

Caspar Treijtel

CWI
Kruislaan 413

1098 SJ Amsterdam
The Netherlands
C.Treijtel@cwi.nl

Abstract

This paper describes the project AmbientDB
done at CWI which is the focus of my PhD
track. The goal of the AmbientDB project
is to provide a data management platform
for multiple devices interconnecting with each
other in ad-hoc ways. The platform is in-
tended to be a crucial building block to Am-
bient Intelligent (AmI) applications. In this
paper I will give an overview of AmbientDB
project and present my PhD work associated
with it in terms of what progress has been
made so far and directions for further research.

1 Introduction

For several years now continuing advances in hardware
have made handheld devices more powerful and attrac-
tive. They are likely to become ever more popular and
will integrate more in our daily lives. The forthcom-
ing of these devices leads to interesting opportunities
for creating user-friendly ambient intelligent (AmI) ap-
plications that make the networked devices cooperate
in a proactive manner. The AmI vision is being pro-
moted by the IST Advisory Group (ISTAG) and aims
to achieve proactive functionality in all kinds of elec-
tronic devices with intuitive human-computer inter-
faces [2].

One of the challenges for the development of AmI
applications lies in the field of data sharing among
devices. AmI applications, having proactive and in-
telligent functionality, should make use of available
(meta)data and react to data changes in any ad-hoc
connected device. Therefore we think that the AmI ap-
plication will benefit from a transparent data storage
and recall platform, where every device in the ambient
environment may provide data and request data from
other devices.

The development of an ambient DBMS is an ambi-
tious goal and several problem domains can be identi-

fied that need investigation and development of novel
database techniques. During my PhD track I will con-
centrate on the problem of providing complex querying
facilities in heterogeneous P2P (peer-to-peer) environ-
ments. We believe the P2P paradigm to be suited
to the ad-hoc behavior of connected devices. We as-
sume the network to be heterogeneous in the sense
that various classes of devices cooperate in the envi-
ronment, from small resource poor devices to powerful,
high bandwidth workstations.

This paper is organized as follows. Section 2 focuses
on the problem of complex query facilities in a P2P
network, where an architecture for a relational query
processor is presented. Following, Section 3 describes
work that we plan to do in the near future and contains
some ideas on future research directions. Finally in
Section 4 some concluding remarks are presented.

2 Complex query processing in P2P
networks

The P2P paradigm has been a hot topic ever since the
introduction of Napster [7] and Gnutella [3]. One of
the subjects that has been studied for quite some time
is item lookup queries in a P2P network, where sys-
tems based on Distributed Hash Tables (DHT) provide
very scalable solutions for locating data objects based
on keywords [9, 10]. So far little effort has been put in
providing complex querying facilities over structured
data (tabular, XML) in a P2P network. Harren et al.
have investigated complex query facilities on top of a
structured, DHT-based P2P system [5]. We focus on
designing a relational query processor that functions in
a P2P network that is not restricted to hashing data
based on keywords [1].

The AmbientDB architecture for complex dis-
tributed query processing in an ad-hoc P2P network is
shown in Figure 1. One of the modules of the architec-
ture is a P2P networking layer. This layer should con-
tinuously provide an efficient overlay network topol-

AmbientDB

XML schema
integration

Local
DB network

P2P

Query Processor

RDBMS
other AmbientDB instances

Local DB is a wrapper around any (external) data store

Figure 1: AmbientDB Architec-
ture

data model, expressions concrete global algebra
Column(String name; int type) (T1, T2 ∈ {DT, PT})
Key(bool unique; List<Column> columns; Table table) selectlocal(LT)→LT
Table(String nme;List<Column> cols;List<Key> prim,forgn) selectdist(T1)→T1
Expr(int type) aggrlocal(LT)→LT
Expr::ConstExpr(String printedValue) aggrdist(PT)→DT
Expr::ColumnExpr(String columnName) orderlocal(LT)→LT
Expr::OperatorExpr(String opName, List<Expr>) orderdist(T1)→T1

joinlocal(LT,LT)→LT
joinbroadcast(LT,T1)→T1

abstract global algebra joinforeignkey(T1,X)→T1
Select(Table t; Expr cond; List<Expr> result)→Table joindist(DT1,DT2)→LT
Aggr(Table t; List<Expr> groupby, result)→Table projectlocal(LT)→LT
Order(Table t; List<Expr> orderby, result)→Table projectdist(T1)→T1
Join(Table left,right;Expr cond;List<Expr> result)→Table unionmerge(T1)→LT
Project(Table t; List<Expr> key,result)→Table unionelim(T1)→LT

partition(DT)→PT

Union(T1 t; List<Expr> key, result)→LT # create LT from DT/PT by distributed union
Partition(DT t; List<Expr> key)→PT # create PT from DT by finding duplicates

Table 1: The Global AmbientDB Query Processing Model

ogy, with nodes joining and leaving the network at will.
The XML schema integration component is embedded
in the architecture to support both schema evolution
and schema heterogeneity among nodes.

2.1 A relational query processor for Ambi-
entDB

For the moment we make the following assumptions.
First, we assume that during the execution of a sin-
gle query, the network of participating nodes is stable.
At the start of the execution of the query, a span-
ning tree is constructed where the query node is the
root of the tree. Second, we assume the existence of a
globally known database schema. We think that this
assumption may be defended for application specific
database schema needs. Third, the union of tables
stored on the nodes in the network may contain tu-
ple replicas, but they are considered to be consistent
(thus we assume some data synchronization scheme to
be present). These assumptions are meant to focus
our work on distributed query processing in a hetero-

T2

T1

T2 A
m

bientD
B

 global table abstraction

T1

Distributed Table (DT) T

Partitioned Table (PT) Tq

node 1

node 2

node 2

node 1

Local Tables (LT) Tx

partition bitmap indices Tx.q

Figure 2: LT, DT and PT

geneous P2P network. Future work, as well as parallel
research tracks in AmbientDB will address some of the
research issues that arise when loosening the assump-
tions (see also Section 3).

The model makes a distinction between three types
of tables, which are Local Table (LT), Distributed Table

(DT) and Partitioned Table (PT). We define a DT to be
a table that is stored at multiple nodes, but not nec-
essarily fully replicated. From the DT we can derive a
partitioning scheme were all replicas are filtered out,
leaving a set of disjunct partitions of the table. This
we define as a PT, which has the advantage over a DT

that some queries can be implemented more efficiently
by broadcasting the query and letting each node cal-
culate their local results. AmbientDB supports the
on-line definition and computation of PTs, because on
a set of ad-hoc connected nodes it may be uncertain
beforehand which tuples are replicated where. See Fig-
ure 2 for a schematic view of the three types of tables.

In the AmbientDB platform, nodes may pose
queries expressed in a standard relational algebra (see
Table 1). In our definitions, we denote lists types
(List<Type>), list instances (<a,b,c>) and list concate-
nation (L1|L2). In the table, the “abstract global al-
gebra” contains the standard operators familiar in the
relational model. Additionally it contains the oper-
ators Union and Partition, which take the union of
sets of tuples and create a partitioning scheme, respec-
tively. The translation of the global algebra queries is
schematically shown in Figure 3 and will be described
next.

Abstract
 global algebra

Parallel dataflow
execution model

Concrete
 global algebra

AmbientDB algebra translation

Figure 3: Translation of Algebra to Execution Model

Dataflow Algebra Operators

n scan(Buf b)→Dataflow
s select(Dataflow d; Expr cond; List<Expr> result)→Dataflow
a aggr(Dataflow d; List<Expr> groupBy,aggr)→Dataflow
o order(Buffer b; List<Expr> orderby,result)→Buffer
j join(Dataflow dl, dr; List<Expr> keyl,keyr,result)

merge-join on dataflows ordered on key
p project(Dataflow d; List<Expr> key,result)→Dataflow

outputs subset of input tuples such that all keys occur once
m merge(Dataflow dl,dr; List<Expr> key)→Dataflow

merges key-ordered dataflows, of ordered tuples
adds t.#nr sequence in merge chunk, and t.#cnt chunk size

t split(Dataflow d;List<Buf><b1..bn>;List<Expr><f0..fn>)→Dataflow

#
(
f0(t) = true → propagate t into pipeline

)
∧

(
∀i : 1 ≤ i ≤ n : fi(t) = true → copy t into bi

)
Table 2: Local query algebra operators

2.2 Concrete global algebra

The right side of Table 1 shows the “concrete global
algebra,” which consists of the abstract global algebra
operators that are defined on specific types of tables
(instantiated into LT, DT or PT). Additionally, the con-
crete operators are annotated with the keyword local
or dist. A local operator is only performed at the query
node whereas for a dist operator the query is propa-
gated throughout the network.

Not all combinations of instantiations into LT, DT

and PT are defined for the operators. The set of con-
crete operators supported provide a rich set of query
functionality, where operators can be viewed in isola-
tion or in the context of a more complex query plan.

2.3 Parallel dataflow execution

The implementation of the concrete global operators is
based on each node’s local algebra dataflow operators
as listed in Table 2. The local algebra uses a dataflow
execution model [11], with streams of tuples processed
“in-network” throughout the spanning tree, analogous
to the aggregation of tuples in a sensor network [6].
Our model is based on the assumption that all streams
of tuples are ordered. This makes an efficient imple-
mentation of the algorithms possible, minimizing space
requirements.

Each concrete operator is implemented by one or
more waves working in parallel, in which streams of tu-
ples flow from the query node to descendant nodes or
vice versa. A wave-plan consists of a graph of dataflow
query operators depicted in a graphical formalism.
Each wave-plan is executed by a separate thread and
can be cleanly encapsulated using the Volcano iterator
model [4]. That is, each dataflow operator has multi-
ple input dataflows, but only one output dataflow such
that they can be pipelined in recursive function calls.
Other outputs are written to buffers (queues). Such
buffers may be local tables (LT), network connection
buffers or be used for inter-wave communication.

In Figure 2.3 some of the concrete global algebra
operators are depicted in the wave formalism. Each
operator in the figure is executed in a single wave-plan.
A distributed query originates a query flood which is

indicated by the hexagon. An interesting characteris-
tic of the operators is that they can be interconnected
to result in more complex operators.

Two important operators from the dataflow alge-
bra are the merge and the split operators. The merge

operator merges two dataflows into one, augmenting
each tuple with extra information that can be used by
other operators like the select and the split operator.
Specifically, for each tuple an extra attribute is added
specifying the number of replicas (#cnt) and the se-
quence number (#seqnr) for this tuple (thus ranging
from 1 to #cnt). The split operator copies tuples that
satisfy specified rules to specific buffers which may be
read by other operators.

3 Future work

The query processor described in Section 2 is based
on algorithms that provide correct answers under the
assumptions taken and thus can be seen as a starting
point for performing query processing in an ad-hoc
manner. A lot of improvements, additions and fine-
tuning will be necessary in order to face the complex-
ity of the real world and thus provide a lot of inter-
esting research questions. In the next sections I will
discuss a research plan that should bring us somewhat
closer to the goals of the AmbientDB project. On a
short term, building a prototype for AmbientDB and
defining experiments are part of the research agenda.
Some thoughts on research directions may be useful
for a more long term planning.

3.1 Prototyping AmbientDB

Currently we are working on a first prototype imple-
mentation in Java that implements all operators in
the algebras. The goal of this prototype is twofold;
first of all we want the prototype to serve as a start-
ing point for coming to a reference implementation of
the P2P query processor. Second, we want the pro-
totype to serve as a tool for running simulations that
actually make use of our defined algorithms. Figure 5
contains a schematic overview of the prototype, where
the AmbientDB query processor is able to process its
own data from the local data store, connect to other

buffer

network
connection

local operator
(split)

executing
thread

local table

Legenda

LT

q query flood

node participating
in a wave

t

node

child child child child

parent parent

m
q

LT

o

m

s

union

union

elim

merge

child child

parent

LT

x

{

q

child child

parent

LT

j q

select
dist

aggr
dist

order
dist

{ join
broadcast

o

child child

parent

LT

j q

join
foreignkey

o

LT

select
local

aggr
local

order
local

{x= x=

joinlocal
query flood

o

x j

(LT)->DT

(LT)->DT

(LT)->DT

st

select(<#nr=1>)

select(<#nr=1>)

split(<true,true,true>,<c1,c2>)

c1 c2 c1 c2

t|j={join
split

split(<nodeId==#ME,ROUTE(nodeId)==c1,ROUTE(nodeId)==c2>,<c1,c2>)
(broadcast)

(split)

Figure 4: Wave-plans for some of the concrete global algebra operators

AmbientDB peers (assuming a network layer is avail-
able) and connect to a network simulator for running
simulations on different topologies, simulating network
congestions, etc.

Opportunities for optimizing the algorithms in
terms of network bandwidth consumption are certainly
available. First, some initial optimizations can be real-
ized by gathering statistics on tuple locations for deter-
mining the set of tuples that participate in the query.
Using these statistics, algorithms may use heuristics
based on gathered information to choose which tuples
participate in the query. This can be done on a per-
query basis. Second, the algorithms as they are defined
currently do not use any knowledge on data locations
in the network. Obviously a lot of network bandwidth
may be spared when some knowledge on data loca-
tions is available. Third, the streams of tuples may
be compressed, significantly reducing network band-
width. Fourth, when we find that a nearly complete
answer to our query suffices, we can define a time-
to-live (TTL) counter of to be visited hops to reduce
bandwidth consumption. This will be based on the as-
sumption that for a given network with uniformly dis-
tributed tuples, we can estimate the number of nodes
to visit to account for a minimum percentage (e.g.
95%) of available results. On a short term we want
to run simulations to gain more insights in this prob-
lem domain. Currently we are investigating the use of
the ns-2 simulator [8] to embed it in our simulations.

AmbientDB
prototype

AmbientDB
peer

P2P
 network

Local
data store

Network
simulation

Figure 5: AmbientDB prototype

3.2 Experiments

Due to the complexity of the ambient environment we
want to workout a number of specific user environment
scenarios. Not only will this be valuable for keeping
in touch with real world applications but also create
opportunities for focusing on subproblems in a wealth
of tunable variables. Already the AmbientDB project
is involved in a cooperation with the home mobile con-
sumer electronics division of Philips Research, to gain
more insight in the requirements for the AmbientDB
platform in light of real world applications.

The scenarios also allow us to define costmodels and
benchmarks that can be used to experiment with all
kinds of possible strategies for the query processor.
Examples of application scenarios may be a shared
agenda application running on a set of PDAs, or a
multimedia home environment setting where multime-
dia data (images, sound) are stored in the user’s home.

3.3 Future research directions

In our model we have assumed the network to be stable
during the execution of a single query. This assump-
tion may not hold in a real world scenario and therefore
the query processor and the P2P network layer have
to work closely together to cope with the dynamics
of the network. The network layer should try to pro-
vide a network topology that suits the needs of queries
being executed. For example, the construction of the
(overlay) spanning tree for execution of a query may
be done in multiple ways, where not all possibilities
will be equally efficient.

We acknowledge the fact that in the AmI applica-
tion domain users make their own choices regarding
data placement. Despite of this the AmbientDB plat-
form will benefit from proactive data replication and
caching of query results at different levels of the ar-
chitecture. The network layer may proactively cache
efficient routes through the network with a certain ex-
piration time. A dynamic load balancing scheme is
needed at the data level. The query processor may
cache query results for query intensive nodes, and data
may be replicated for improving data availability.

4 Conclusions

In this paper I have described the AmbientDB project
which is the subject of my PhD track. We have de-
signed a framework for a relational query processor
that is able to operate in a P2P network of nodes. The
framework may serve as a starting point for improving
and fine-tuning the implementation of database opera-
tors. I have outlined a research agenda to get closer to
the realization of the goals of AmbientDB, being the
development of a prototype and defining experiments
in terms of real world scenarios. For future research
there are many tunable parameters may lead to some
interesting research problems.

References

[1] P. A. Boncz and C. Treijtel. AmbientDB: rela-
tional query processing in a P2P network. Tech-
nical Report INS-R0306, CWI, Amsterdam, The
Netherlands, June 2003.

[2] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Lei-
jten, and J.C. Burgelman. Scenarios for Ambi-
ent Intelligence in 2010. European Commission,
Brussels, 2001.

[3] Gnutella, http://www.gnutella.com/, July 2003.

[4] G. Graefe. Encapsulation of Parallelism in the
Volcano Query Processing System. In Proceedings
of the 1990 ACM SIGMOD international con-
ference on Management of data, pages 102–111,
Atlantic City, New Jersey, United States, 1990.
ACM Press.

[5] M. Harren, J.M. Hellerstein, R. Huebsch, B.T.
Loo, S. Shenker, and I. Stoica. Complex Queries
in DHT-based Peer-to-Peer Networks. In First
International Workshop on Peer-to-Peer Systems
(IPTPS ’02), Cambridge, MA, USA, March 2002.

[6] S. Madden, M.J. Franklin, J.M. Hellerstein, and
W.Hong. TAG: a Tiny AGgregation Service for
Ad-Hoc Sensor Networks. In Proceedings of the
5th Symposium on Operating Systems Design and
Implementation (OSDI’02), December 2002.

[7] Napster, http://opennap.sourceforge.net/, July
2003.

[8] The Network Simulator – ns-2,
http://www.isi.edu/nsnam/ns/, July 2003.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Schenker. A Scalable Content-Addressable
Network. In Proceedings of the 2001 conference on
applications, technologies, architectures, and pro-
tocols for computer communications, pages 161–
172. ACM Press, 2001.

[10] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Inter-
net Applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

[11] A.N. Wilschut and P.M.G. Apers. Dataflow
Query Execution in a Parallel Main-Memory En-
vironment. Distributed and Parallel Databases,
1(1):103–128, 1993.

