
A Space Efficient Persistent Implementation of an Index
for DNA Sequences

Gabriele Witterstein

Technische Universität München
Boltzmannstr. 3

D-85747 Garching b. München
Germany

gw@appl-math.tu-muenchen.de

Abstract

In the field of molecular biology the handling
of large string data is a great challenge.
Hereby the most important string operation is
the approximate substring match. Suffix trees
have been established as the most successful
in-memory data structure supporting approx-
imate substring matches on DNA sequences.
They belong to the wider class of suffix struc-
tures.
The central issue of this paper is the theoret-
ical study of suffix structures with the aim to
reveal the most suitable structure for a persis-
tent implementation on disk. I show that this
optimal structure is a variant of a suffix tree.
Further, the paper addresses the question in
which way this data structure can be stored
on disk, and how fast access can be achieved.
In this connection I introduce a space efficient
representation by using a tree coding scheme
which optimizes disk saving and therefore pre-
vents unneeded disk access.
I show, as a first evaluation step, that this
implementation compares favourably to other
implementations.

1 Introduction

In the field of genome research very large strings
appear. For example, the human genome contains
roughly 3 GB consisting of 22 words, each in size
of about 220 MB. As a result of newly developed
high-throughput technologies for DNA sequencing, the
number of fully sequenced species increase. The statis-
tic shows that the size of databases holding these se-
quences, like GenBank, has doubled every 15 months.
At present, GenBank has the size of approximately
30 GB. To deal efficiently with such data, the idea is
to develop index structures which are able to process
very large string data. In particular, it is necessary to

support approximate substring matches. Nowadays, in
bioinformatics, this is the most fundamental operation
which in future will become even more important.

The managing of string data in databases appears
in various application fields. There are two kinds of
such string data. Firstly, string data can be held in
tables as values of attributes. They are very short.
One task could be the approximate joining of columns.
Secondly, string data could be very long, for example,
text or web documents as well as DNA sequences. In
databases they are stored as data type CLOB. The
predestinated approximate match in most cases is a
substring match. One has to distinguish texts which
can be broken in words, and those which cannot. The
wide class of suffix structures is the most suitable data
structure on the top of an unstructured text which can-
not be broken in words. This special case appears in a
DNA sequence databases. This situation also appears
in video database or in large texts for spell-checking.

Let me give an introductory example from func-
tional genomics in order to expresse the situation in
bioinformatics. In a typical functional genomic anal-
ysis, one may start with an expressed sequence tag
(EST) with the aim to find out the presumable func-
tion of the corresponding gene. In a first step a request
for a specialized genome database has to be formu-
lated to retrieve the corresponding gene. Here the nu-
cleotide sequence is used to trigger a BLASTX query
into a protein database getting homologous protein se-
quences. For this, the proteins are exported from the
database.

That means, in functional genomics one tries to re-
veal similar pieces of a DNA sequence from different
species. Very popular tools such as BLAST, FASTA
and newer BLAT [6] are mostly used. These tools
run outside the database engine where the sequences
are stored. Moreover, these widely used methods are
based on heuristic filter algorithms and work with-
out indices. They just process flat files. Today’s
algorithms have not the necessary performance for

all biological tasks, for example, not for all-versus-all
queries. Further, if one sends to the BLAST server
90 queries, then the processing time can be more than
70 hours. Another point is, that for approximate sub-
string matches one always has to export the sequences,
because the above algorithms run outside the database
engine. This approach is undesirable in general. The
goal is to develop structures in which the algorithms
could be executed near the data.

In order to performe the approximate substring
match exact and very fast, I want to concentrate on
filter algorithms. Filter algorithms are based on exact
searches at the core. To obtain a high performance, I
use index strucutres instead of flat files. For the index
structure, I use a variant of suffix trees instead of other
suffix strucures. Hereby, the great advantage lies in
the following: With a suffix tree the complexity of an
exact search of substrings depends only on the length
of the query string and its appearances. Definitly, it
does not depend on the length of the whole coded text
as it is the case, for example, for the suffix array.

Due to its large space requirements, for several
genomes or whole DNA sequence databases, a suffix
tree cannot be created and held in main memory. The
construction of a persistent suffix tree is needed and a
storage on disk in a manner that makes fast access
possible. To achieve this, I describe a logical data
structure most suitable for a persistent implementa-
tion. This data structure is a variant of a suffix tree.
For the physical implementation, I introduce a coding
scheme of the tree which saves disk space and enables
fast access by avoiding unnecessary disk access.

The paper is organized as follows. Section 2 sum-
marizes previous work on the field. It contains an
introduction to suffix structures and a discussion of
those which have been already implemented persis-
tently. Section 3.1 introduces a new variant of a suffix
tree and section 3.2 presents how this variant can be
stored efficiently on disk, including exact matching.
Section 4 contains some implementation aspects, and
finally, I present first results of a performance study.

2 Related Work

2.1 Related Work - Logical Suffix Structures

The predestinated persistent data structure for string
searching is the suffix array. A suffix array is just a
lexicographically ordered array of all suffixes of the
text. These suffixes are represented by their starting
positions. String location is performed by making a bi-
nary search. The search complexity of a binary search
depends logarithmically on the length of the indexed
text. If the indexed text is very large, this fact is a
main drawback. For the most kinds of texts, practical
investigations have shown that the average search time
is comparable with the search time of a suffix tree. But
this is not the case for DNA sequences.

Based on this, great efforts have been made in or-
der to further reduce the theoretical search complex-
ity. Here, the one-dimensional structure of the suffix
array has been augmented. This approach is called
augmented or enhanced suffix arrays (cf. [5], [1]). All
these kinds of suffix arrays deals with the introduc-
tion of additional array dimensions standing for lcp
(longest common prefix) values or skip factors.

In contrast, a suffix tree is a compressed digital trie.
It is built by joining each non-branching node with its
child. Here, each edge is labeled by substrings of the
text. The most detailed logical data structure is the
suffix tree. The most sporadic the suffix array.

For all these structures, the primary text must be
accessed by each search operation. For texts stored on
secondary memory, this is very time expensive. In all
cases, DNA strings with a size of about 280 MB per
chromosome (chromosomes are regarded as words) or
circa 3, 3 GB per genome have to be kept on the disk.
Here, suffix structures which work for coding of the
suffix strings only with references are inappropriate.
Regarding the search performance in a persistent in-
dex, it is expected as better, to code the letters of the
suffix in the index itself. Also, data structures working
with backtracking, such as Patricia tries, are unsuit-
able in the observed case.

Therefore, one have to find an optimal data struc-
ture in relation to both, its theoretical search com-
plexity, and the possibilities of its practical implemen-
tation. But a closer look shows, that these two aspects
intertwine.

2.2 Related Work - The Possibilities of the
Persistent Implementation

There is a large literature about transient suffix trees.
But even, the most space efficient implementation uses
13 bytes per indexed letter. Therefore, as pointed out
in [4], a transient suffix tree for very large strings can-
not be created in-memory and cannot be held there.
A construction algorithm of a persistent suffix tree is
needed as well as an efficient storing mechanisms.

A partitioning algorithm has been introduced in [4],
where a large tree is divided in partitions, each of them
created in-memory and then written on disk. PJama
is used, which makes the in-memory structure auto-
matically persistent. In [4] it has been mentioned that
a space efficient implementation is needed.

In [8] this partitioning algorithm has been improved
by introducing variable length of the prefixes deter-
mining the partitions, and therewith preventing the
failure of the algorithm in [4]. This approach is
adapted to the blocksize of the disk, and avoids the cre-
ation of many low occupied partitions. Among other
things these small partitions support the big size of
the index on the disk.

1 4

3 2 5 6

7

root

A G A A G G $
2 3 4 5 6 71

2,2

7,7

3,7 7,7

3,7

4,7

1,1 2,2

6,7

6,7

Figure 1: Normal suffix tree

A G A A G G $
7654321

1 4

3 2 5 6

7

root

$

G A G $

A G

A

GA

Figure 2: The variant of a suffix tree

3 The new Approach

3.1 The Logical Tree Structure

Clearly, if one has the aim to use an index structure
lying on disk, one has to minimize the disk access.
Therefore a structure like a suffix array, which depends
in its search complexity on the length of the indexed
string, is not appropriate. The same holds for struc-
tures working with backtracking, unless one is able
to controll the backtracking behaviour. Therefore, a
data structure supporting the straight forward search
is needed. This, for example, is guaranted for a suf-
fix tree. Such trees permit string searchs like ”Is s
a substring of the text T?” to be answered in O(|s|)
time.

A normal suffix tree is a compressed digital trie. A
trie is a tree for storing strings, in my case all suffixes,
in which there is one node for every common prefix. A
compressed trie is built by joining each non-branching
node with its child. An example is shown in Figure 1.
Here, each edge is labeled by substrings of the text.
Thus, it can be represented by two references into the
text. Therefore the space requirement for each edge
is constant. And the size of the suffix tree depends
linearily on the length of the text.

In order to find the proper child node during a
search, one has to jump to the DNA file, to seek the po-
sition and to match the characters. Usually the DNA
letters are not coded on the edges of the tree. This
causes a bottleneck which lies in the random access
to the text being indexed. To avoid this it is useful

A T G C
1111

A G C
1011

A T G
1110

, , ,

Figure 3: Treecode

to code the letters of the suffixes in the index itself.
Algorithms, which traverse repeatedly the tree from
bottom to top and reverse, profit from this advantage.

But for an exact match only that prefix of the suf-
fix is needed which characterizes the position of the
suffix uniquely. Therefore, I store only such parts of
the suffix, which are defined by its starting position
and continue to the right as far as necessary to make
the string unique. In order not to claim needless disk
space, it is traced back, in the case of uniqueness, to
the primary sequence file. Therefore, the tree I intro-
duce is more a compacted suffix trie ending with leaves
making the suffix unique. Theoretically the transition
from a trie to a tree reduces the storage requirements
from O(n2) to O(n). But in my case, since the alpha-
bet size is only 4, one can code each letter with 2 bits.
Therefore in practice, my variant shouldn’t constitute
a considerably loss of storage space. In Figure 2 one
can see my variant of a suffix tree.

3.2 The Physical Representation - The Tree
Coding Structure

Since the partitions of the tree are stored on disk,
a space efficient implementation is needed. Hereby,
data structure engineering is necessary. As example,
one wants to index two complete genomes, the human
genome (3 GB) and the mouse genome (3 GB).

The small size of alphabet enables an efficient cod-
ing of both, the tree topology and the letters of the
DNA. In order to code the local tree topology one can
use a lookup table. Since one knows, that the size
of the used alphabet is 4, every node of the tree can
have at most 4 child nodes. First one should fix a
preferred order of the letter, for example the lexico-
graphical order or anything else. Then one can code
each branching configuration of the tree in a manner
demonstrated in Figure 3.

Because one has specified an exclusive order of
the letters, one can reconstruct the letters from the
treecode. Note that in this way only maximal 4 bits for
each node is necessary in order to code the branching
node as well as the branching letter. Now the treecode
is stored linearly in an array traversing the tree from
left to right. In this way, the array represents the en-
tire tree. The leaves can be expressed by 0000. In that
way one has stored the local tree topology.

In my application, it is necessary to be able to tra-
verse the tree selectively, i.e. to extract a subtree of
the suffix tree. Since the edges are arranged in one
large array, one needs to know the number of edges
which are skipped in order to find the right branching

Table 1: Data type of variable sized record structure

Node Treecode Pointer Pointer
Mode Number Size
2 bits 4 bits 2 bits 2 bits ...

Pointer Skip Skip
Size Pointer Pointer

2 bits variable sized ... variable sized

node. One can solve this problem by additional stor-
age of relative branch pointers. For each node in the
tree these pointers are exactly the number of nodes
in the subtree below. Thereby the expensive storage
of absolute pointers is avoided, which usually requires
more memory than the data itself. But also, some of
the relative pointers can get quite large. Therefore,
in the topmost node the maximal number of 4 Bytes
are needed. But, for the most nodes the numbers are
small, e.g. on finest level they are 2 and on the second
finest level they are at most 4.

Therefore it is useful to allocate variable sized mem-
ory for the pointers and for the number of pointers. I
use a bit code for the allocated size. Here one can,
for example, use 2 bits for the size, i.e. 00 for 1 byte,
01 for 2 bytes, 10 for 4 bytes and 11 for 8 bytes. Of
course, since we use variable sizes, the branch pointer
is now not the number of nodes in the subtree, but the
number of bytes allocated for all the nodes in the sub-
tree. It can be computed in the top to down traversal
of the tree. This way, the average storage requirement
for a branch pointer is less than two bytes independent
of the depth of the suffix tree.

Since each node has at most 4 subtrees it leads to a
data type shown in Table 1. By this way, in average for
each node about 3 bytes are necessary. This scheme
allows a very fast and efficient tree traversal, since only
a few bit operations are necessary to find subsequent
data values.

Taking the various structure of different branching
nodes into account, one could introduce different node
sorts, e.g., 00 specifies compacted records with only
one child pointer.

In order to accommodate further the different struc-
ture of a suffix tree, one can introduce different types
of records for different suffix lengths.

The node type indicates whether it concerns a
record with sister nodes or a record, where several
nodes with only one child can be summarized to one
single node.

4 Implementation and Experimental
Results

4.1 Implementation

In principle, there are different ways to make the index
persistent. One can use a relational DBMS, an object-
oriented DBMS or persistent programming languages,
such as persistent C++ or PJama.

Regarding the first approach, one can try to map
the suffix tree structure into a relational database.
Then, the index would be implemented on the top of
the DBMS lying on the same level as the data itself.
The relational database concept doesn’t consider re-
cursive data structures. Today’s commercial systems
are in practice strongly optimized concerning their sec-
ondary storage managment.

A commercial object-oriented DBMS or persistent
object-oriented programming languages comes to meet
the tree structure more strongly. Since the object-
header of the persistent objects would be substantially
larger than it’s content, it is not clever to make an
object out of each node. The index would be further
enlarged.

As described above, I have developed my own data
format and have written it to index files on operating
system level. All the code is written in the C pro-
gramming language. The implementation has been
done exactly in a manner, that I have described in
section 3.2. The main implementation advantage lies
in the strongly compressed physical representation of
the nodes on disk. It ensures that as many nodes as
possible fit in one disk page. Therefore one can group
together the nodes of an entire subtree.

4.2 Practical Results

Because I want to perform the approximate substring
matching with filter algorithms, like q-grams (see [2],
[7]), and these techniques are based at their core on ex-
act substring matches, I have optimized the introduced
data structure for a fast exact match. Consequently,
I first focus on the evaluation of the structure for ex-
act substring matches. I present the average query
response time for large batches of randomly generated
query patterns of different length. All experiments
were processed on a 1200 MHz AMD Athlon PC with
256 MB RAM, running under the Linux operating sys-
tem. For my experiments I have used a 33, 4 MB DNA
sequence, consisting of pieces of chromosome 22 of the
human DNA. The construction time for this DNA text
is about 4,5 hours. The needed storage space is about
838 MB.

I have examined tests for the exact match, see Table
2 and 3. Table 2 shows the cold store query behaviour.
All new disk pages needed for the search have to be
loaded into main memory. Therefore, for large batches
the average response time per query reduces, because
following queries use index disk pages cached in previ-

Table 2: Cold Store Query Behaviour

size query average total hits
of the length response time
batch in bases per query in ms
100 12 40 86.690

1.000 12 19 195.840
10.000 12 18,8 989.802
50.000 12 16,42 4.103.959

100 30 20 885
1.000 30 15 2.765
10.000 30 14,9 17.897
50.000 30 15,24 100.094

100 50 20 118
1.000 50 15 771
10.000 50 14,3 6.874
50.000 50 15,3 34.607

Table 3: Warm Store Query Behaviour

size query average total hits
of the length response time
batch in bases per query in ms
100 12 < 0,1 86.690

1.000 12 0,5 195.840
5.000 12 0,4 543.521
7.000 12 0,29 671.647
100 17 < 0,1 26.113

1.000 17 < 0,1 46.636
5.000 17 0,1 146.656
7.000 17 0,14 1.112.030
100 30 < 0,1 885

1.000 30 < 0,1 2.765
5.000 30 0,1 11.800
7.000 30 0,14 14.247

ous queries. Under the warm store condition, most of
the used disk pages are in-memory, and therefore the
response time is significant smaller.

These results show that this implementation is one
magnitude faster than other results, for example, see
[4]. This result does not come as a surprise, since it has
not been attempted to optimize the tree representation
in previous work. Summing up, a considerable speed-
up of query performance can be achieved using the
technique described above.

5 Conclusion

This paper shows, how explicite persistent memory
management can be performed for large suffix trees.
We have given an answer to the question, which suffix
structure is the most applicable for persistent index-
ing. The runtimes for exact string matches, we have

observed, compare favorably with other implementa-
tions.

Further, we plan to improve the runtime of the con-
struction algorithm in order to obtain a complexity
better than quadratic. The goal is to index whole
genomes of several species simultaneously. And a real
world application would be to reveal all significant
matches between the human, the mouse and the rat
genome. This will require a thoroughly investigation
into approximate pattern searching algorithms. The
aim is to improve their interaction with an index. This
has to be done in the difficult case that this index lies
in secondary memory.

References

[1] M.I. Abouelhoda, S. Kurtz, E. Ohlebusch, The
Enhanced Suffix Array and Its Applications to
Genome Analysis. WABI 2002, pp. 449-463.

[2] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, Using
q-grams in a DBMS for Approximate String Pro-
cessing. IEEE Data Engineering Bulletin, vol.
24, no. 4, December 2002.

[3] D. Gusfield, Algorithms on strings, trees and se-
quences: computer science and computational biol-
ogy. Cambridge: University Press, 1997.

[4] E. Hunt, R.W. Irving, M.P. Atkinson, A database
index to large biological sequences. Proceedings
of the 27th International Conference on Very Large
Databases, pp. 139-148, 2001.

[5] J. Kärkkäinen, Suffix cactus: A cross between suf-
fix tree and suffix array. In Proc. Sixth Sympo-
sium on Combinatorial Pattern Matching (CPM
’95), (eds. Z. Galil and E. Ukkonen), LNCS 937,
Springer, pp. 191-204, 1995.

[6] J. Kent, BLAT - The BLAST-Like Alignment Tool.
Genome Res. 12: 656-664, 2002.

[7] G. Navarro, A Guided Tour to Approximate String
Matching. ACM Computing Surveys, vol.33,
pp.31–88, 2001.

[8] K.-B. Schürmann, J. Stoye, Suffix Tree Construc-
tion for Large Strings. In: Proceedings 14. Work-
shop of Fundamentals of Databases. Rostock, Ger-
many, May 2002.

