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Abstract

The Process Specification Language (PSL) [6] is a first-order logical theory designed to describe
manufacturing or business processes and formalize reasoning about them. It has been developed by
several authors over a period of years, yet it is inconsistent with the simplest axioms that preclude
non-trivial models. We demonstrate several inconsistencies using an automated theorem prover and
attempt to repair the inconsistencies. We conclude that even with our amendments, PSL with its infinite
models remains inadequate to represent complex industrial processes. We propose an alternative
axiomatization that admits finite models, which may be better suited to automated theorem provers
and model finders than the current version of PSL.

1 Introduction

The Process Specification Language (PSL) [6] is an ontology designed to formalize reasoning about
processes in first-order logic. The ontology has been developed by several authors over a decade or
more and has become an ISO standard [1]. PSL is a modular theory where individual modules formalize
specific aspects of processes and their activities. The full PSL consists of about a thousand axioms in 75
subtheories that build upon the central PSL Outer Core subtheory that includes about ninety axioms in
seven modules.1 Although PSL itself is a domain-independent ontology, it can be tailored to a specific
application by adding domain-specific axioms. Statements constructed from predicates and terms defined
in the Outer Core constrain the possible models of the theory and therefore can be used to characterize the
valid processes and their execution sequences.

One of the underlying cornerstones of PSL is the idea that applications can be made interoperable by
exchanging sentences formalized in PSL in order to share information about process specifications and
concrete process executions. Formal theorem proving technology can then be employed to reason about
processes and validate concrete executions in order to answer Competency Questions [9] of interest to the
application domain. However, this requires a consistent theory.

The semantics of PSL are formulated using the notions and vocabulary of trees. These are Activity
Trees, representing activities generically, and Occurrence Trees representing particular activity occurrences
temporally, with activity trees intended to be subtrees of Occurrence Trees. However, as it stands no
subset of PSL can consistently demonstrate the existence of any nontrivial Occurrence Trees. What is
missing is a proof of consistency of PSL with simple axioms asserting the existence of a few activity
occurrences. Without an intuitively comprehensible model, it will be difficult indeed to use PSL for actual
process specifications.

Since its inception, PSL has undergone several revisions. As of April, 2011, the most recent version
posted on the NIST website [6] is the May 2008 revision. We will refer to that version as PSL 2008. We
also worked with a revision we call PSL 2010, supplied to us by Conrad Bock of NIST [7]. Unless stated
otherwise, we use the term “PSL” to refer to PSL 2010.

In this paper we show that the version of PSL 2008 and its revision PSL 2010 contain flaws that
lead to inconsistency even for the simplest process instances. We identify the responsible axioms and
propose further revisions that resolve the inconsistencies. Although the resulting ontology can consistently

1The modules are: PSL Core, Subactivity Theory, Occurrence Tree Theory, Discrete State Theory, Atomic Activity Theory,
Complex Activity Theory, and Complex Activity Occurrence Theory.
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Figure 1: Example Process and PSL Trees

represent non-trivial processes, significant challenges remain to be addressed. In particular, it is difficult
to obtain possible concrete (finite) models from the theory, whose axioms admit only infinite non-trivial
models. We propose an alternative axiomatization that is based on Backofen et al.’s first-order theory of
finite trees [2] that may be better suited to automated model construction.

First, we summarize the fundamental modeling primitives of PSL. Second, we describe inconsistencies
we found in the course of our experiments and propose revisions to the axioms we believe are responsible
for the inconsistency. Third, we outline where PSL may need to be strengthened in order to eliminate
unwanted models. Fourth, we summarize our observations gathered from our experiments. Fifth, we
introduce our Finite Tree PSL axiomatization before concluding the paper.

2 The PSL Outer Core Ontology

The PSL Outer Core formalizes basic properties of processes and the sequences of activities that may
appear in a process execution, along with related objects and time points. The Outer Core is based on the
following core concepts: Activities specify the actions and events that can appear in a process. Activities
are partitioned into atomic activities and complex activities that consist of a number of sub-activities. An
Occurrence of an activity represents an execution of the activity. Occurrences and activities are related via
the binary occurrence of predicate. PSL does not specify any concrete activities and occurrences; these
must be introduced when tailoring the ontology to a specific application.

The Occurrence Tree contains all (infinite) sequences of occurrences of atomic activities starting from
an initial state. This model is inspired by the Situation Calculus [10], where different branches in the
situation tree represent alternative “worlds” where different sequences of actions apply. For each atomic
activity X , the successor function maps each occurrence to its unique successor occurrence of X . Nodes
in the tree are associated with timestamps and propositions that describe the process state before and after
the occurrence. In addition, the occurrences in the branch of the tree must conform to the earlier predicate
that embeds the sequence of occurrences in each branch into a totally ordered sequence of time points.
One may be tempted to use successor or earlier to prune the Occurrence Tree; however, this may lead to
inconsistency with the axioms of PSL. Instead, occurrences in branches that are admissible for a particular
application domain are marked using the legal predicate.

Figure 1a shows a visual representation of a process specification where a composite activity ABC
consists of activities AB and C, and activity AB consists of subactivities A and B. In any execution of AB,
an occurrence of A must be followed by an occurrence of B. Within any occurrence of ABC, occurrences
of AB and C may occur in any order. The relationship between complex activities and their subactivities is
captured in the subactivity relation in PSL. Let activities A, B, and C be atomic, primitive activities that
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have no subactivities. A PSL formalization in Prover9 syntax is available at [ABC.in].
The corresponding PSL Occurrence Tree is shown in Figure 1b. We use xi to denote an occurrence of

activity X , where i is an index that distinguishes different occurrences of an activity. Assume further that
the activity occurrences a1,b1,b2,b3,c1,c2 are the only legal occurrences. Each node in the tree represents
an occurrence of an atomic activity, and edges connect the occurrences to their direct successors. Bold
edges represent legal branches, thin edges illegal branches, and dotted triangular edges denote subtrees
that have been omitted for brevity (the tree has infinite depth and arbitrary branching factor). The tree
contains two legal sequences of atomic activities: (a1,b1,c1,b2) and (a1,c2,b3).

Occurrences of complex activities are defined by their atomic activities and are not part of the
Occurrence Tree. Three complex activity occurrences abc1,2,3 of activity ABC are drawn as hyperedges
in Figure 1b. The complex occurrences of AB have been omitted. Occurrences of unrelated activities
may appear in between activities of a complex occurrence. For example, b1 is between a1 and c1 yet
it does not belong to abc2. The composition relationship between occurrences of complex activities
and occurrences of their subactivities is formalized in the subactivity occurrence, root occ and leaf occ
predicates in PSL. For example, the complex activity abc1 in Figure 1b is represented by the facts
subactivity occurrence(x,abc1) for x ∈ {a1,b1,c1,abc1}, root occ(a1,abc1) and leaf occ(c1,abc1).

Activity Trees for a complex activity specify the possible orderings of atomic activity occurrences
within a complex activity. Each Activity Tree is characterized by the min precedes partial order between
its occurrences and its root and leaf occurrences (all axiomatized as predicates). Each complex activity
occurrence corresponds to a branch in an activity tree, which orders its subactivity occurrences. By
imposing constraints on the activity trees, the models of PSL can be restricted to the complex occurrences
that are legal in a particular application domain. For example, the branches in the left activity tree in
Figure 1c are represented by root(a1,ABC)∧min precedes(a1,b1,ABC)∧min precedes(b1,c1,ABC)∧
leaf (c1,ABC)∧min precedes(a1,c2,ABC)∧min precedes(c2,b3,ABC)∧ leaf (b3,ABC).

A complex activity may have multiple activity trees—one for each occurrence in the Occurrence Tree
that initiates a complex occurrence. Figure 1c shows two possible Activity Trees for our example. The
tree on the left has branches for abc1 and abc3, whereas the right tree has abc2 and abc3. Note that the
axioms of PSL prohibit us from constructing a single tree with branches for all three complex occurrences,
as leaf (c1,ABC) and min precedes(c1,b2,ABC) are mutually incompatible.

3 Inconsistencies in the PSL Outer Core

In order for PSL to be used effectively, it must be consistent in a suitable sense. This “suitable sense” is
not just the logical consistency of the pure theory. Because there are no axioms asserting the existence
of any objects, activities, or activity occurrences, the entire theory is satisfied by the one-element model
containing a single time point [trivial.model]. Although PSL 2010 without individual constants is
consistent, this observation does not preclude the possibility that the theory becomes inconsistent as soon
as one adds constants for specific activities, objects, and activity occurrences. If we add some constants
(or, equivalently, add additional existential axioms for PSL predicates), then if all is well, we should
expect the theory with those constants to have a “ground model”, in which the elements of the model
correspond to objects “constructed from the constants by the axioms”, i.e. given by the values of terms
built up from the constants and Skolem functions.

The third author first reported [11] that this was not the case for an earlier version of PSL 2008.
There were several errors in the axioms that resulted in inconsistency as soon as there are two activity
occurrences! Specifically, introducing three constants and the axiom min precedes(b,c,a), he found
contradictions using Prover9. He traced these problems (“after a tedious debugging process”) to three
axioms, and he suggested changes to these axioms, which would prevent the specific inconsistencies he
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(forall (?a1 ?a2)
(if

:::
(and (subactivity ?a1 ?a2)

::::
(not

::::::::
(atomic

:::::
?a2))

::::
(not

:::
(=

::::
?a1

::::::
?a2)))

(not (exists (?s)
(and (activity_occurrence ?s)

(subtree ?s ?a2 ?a1))))))

Figure 2: Mayer’s revisions to Axiom 11 of the
Complex Activity Theory.

(forall (?s1 ?s2)
(if (earlier ?s1 ?s2)

(exists (?a ?s3)

::::
(and

:::::::::
(arboreal

:::::
?s3)

:::::::::
(generator

::::
?a)

(= ?s2 (successor ?a ?s3))
:
))))

Figure 3: Revised successor Axiom 11.

discovered. Although some of the problematic axioms have been revised in PSL 2010, not all sources of
inconsistency have been eliminated.

The first two authors conducted further experiments regarding the consistency of the PSL Outer Core.
Unless stated otherwise, we used a simplified version of PSL 2010, where the time-point axioms and
the successor axioms that require infinite models were removed, and Axiom 11 of the Complex Activity
Tree was revised as shown in Figure 2. The input and output files are available at http://dl.dropbox.
com/u/20534396/papers/ATE2011-PSL/index.html in Prover9, Mace4 or Paradox3 format. The
resulting subtheory of PSL admits the construction of a finite non-trivial ground model. The theory and a
Mace4 model file can be found at [PSL_work.in] and [PSL_work.model]. However, even with those
revisions, we will show that PSL is still inconsistent when a few existential axioms or individual constants
are added to the theory.

We also found PSL 2010 to be inconsistent with some very simple assumptions about two activity
occurrences. Specifically, we assumed a scenario where the occurrence a is immediately followed by an
occurrence b of activity B within the occurrence ab of a complex activity AB [PSL.contra1.in]:

activity(B)∧ subactivity(B,AB)∧
activity occurrence(b)∧occurrence of (b,B)∧activity occurrence(a)∧occurrence of (a,A)∧

root occ(a,ab)∧occurrence of (ab,AB)∧ earlier(a,b)∧next subocc(a,b,AB)

In the proof of inconsistency [PSL.contra1.proof], Axiom 11 of the Complex Activity Theory indeed
fails because of the superfluous not and the missing hypothesis as described below. However, we have
difficulties in understanding the intended meanings of both Axiom 8, which formalizes properties of root
occurrences of atomic activities, and Axiom 11, and hence we cannot say definitely whether the proposed
changes discussed below will resolve the problem in general.

We propose revisions to the theory that will eliminate the specific inconsistencies that we have
seen. The revised PSL Outer Core theory in Prover9 format is available at [PSL_revised.in]. We
have shown that this theory has non-trivial finite models if the axioms requiring infinite models are
omitted [PSL_revised_finite.in][PSL_revised_finite.model]. However, we cannot claim that
these revisions will eliminate all inconsistencies that may arise when posing different ground assumptions.

3.1 Complex Activity Theory Axiom 11

Prior to our modifications, Axiom 11 of the Theory of Complex Activities, which relates the activity tree
of a complex occurrence to the subtrees corresponding to its subactivities, still has an incorrect negation
and needed an extra hypothesis. Figure 2 shows the axiom and the proposed revisions. The formulas
in Figure 2 and subsequent figures are written in KIF notation, which uses question marks to indicate
variables and LISP-style parentheses. For example, ∃xP(x) would be written as (exists (?x) (P ?x)).

Intuitively, the inconsistency arises because subactivity is reflexive (and can be used with atomic
activities), but subtree is not (and its second argument must be a complex activity).
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(forall (?a1 ?a2)
(iff (subtree ?s1 ?a1 ?a2)

(and (root ?s1 ?a1)
(exists (?s2)

(and (root ?s2 ?a2)
(or (= ?s1 ?s2) (min_precedes ?s1 ?s2 ?a1))
(forall (?s3)

(if (min_precedes ?s2 ?s3 ?a2)
(min_precedes ?s2 ?s3 ?a1))))))))

Figure 4: Revised subtree definition.

3.2 Complex Activity Theory Definition 4: Subtree

The contradiction found in the previous section can in part be attributed to the definition of
subtree(o,a1,a2). Contrary to most other predicates named sub in PSL, subtree is irreflexive in the sense
that (∀o,a)¬subtree(o,a,a). This mix of reflexive and irreflexive predicates can easily lead to confusion,
and missing hypotheses, as demonstrated earlier.

With the current definition one cannot establish that a concrete subtree actually exists in a given
ground model. For example, if one asserts that A is a subactivity of AB, which is in turn a subactivity of
ABC, and that occurrence a1 of A is a root of AB and ABC, then subtree(a1,ABC,AB) is not entailed by
PSL because (∀x,a)¬min precedes(x,x,a) is a theorem of PSL.

Furthermore, the axiom is not strong enough to ensure that the subtree is indeed com-
pletely embedded into the activity tree of the superactivity. PSL has a model where both
trees overlap at the root r of the subtree, yet not all occurrences in the subtree are also
in the supertree: (∃x,a1,a2,r,y)subtree(x,a1,a2) ∧ min precedes(x,r,a1) ∧ min precedes(r,y,a2) ∧
¬min precedes(x,y,a1) is satisfiable [subtree_overlap.tptp][subtree_overlap.model]. This is
at best counterintuitive.

We propose to revise this axiom and base the subtree property on the relationship between the
min precedes ordering in the sub- and supertree. Our revisions ensure that the activity tree of the
superactivity embeds the tree of the subactivity. Figure 4 shows the new axiom. Our definition is reflexive
such that (∃x,a)subtree(x,a,a) is satisfiable in PSL. The new subtree definition allows us to omit the
extra hypotheses introduced earlier from Figure 2; the negation must still be removed.

However, even with these corrections, inspection of models of simple occurrence trees such as
the overlap model above reveals that unintended elements are introduced into the models by PSL’s
initial predicate, which represents the first occurrence of an activity. This points to another critical
incompleteness in PSL. Generator activities are those which have initial occurrences in the occurrence
tree: (∀a)generator(a)→ (∃s)initial(s)∧occurrence of (s,a). Introduction of these initial occurrences is
not explicitly constrained in PSL by any definition, and is only loosely constrained by earlier relations
and by the undefined PSL successor function. Moreover, the earlier relation, which orders primitive and
complex occurrences in branches of the occurrence tree, seems unable to consistently express the notions
of initial and final activity occurrences during finite temporal intervals, or of possibly unique occurrences,
like the assassination of Abraham Lincoln. We return to this in discussing Finite Tree PSL.

3.3 Complex Activity Theory Definition 5: Sibling

PSL informally defines two subactivity occurrences s1 and s2 of a complex activity occurrence A to be
siblings iff s1 and s2 either have the same immediate predecessor in the activity tree for A, or if both s1
and s2 are roots of activity trees for A and both are immediate successors of the same occurrence in the
Occurrence Tree. For example b1 and c2 are siblings within A in Figure 1b. Intuitively one would expect
that sibling(s1,s2,A) implies that s1 6= s2. However, the axioms allow that sibling(s1,s1,A) holds.

The subexpression formalizing the successor constraint is incorrect: it admits models where s1 and

13

subtree_overlap.tptp
subtree_overlap.model


Inconsistencies in the Process Specification Language (PSL) M. Beeson, J. Halcomb, W. Mayer

(forall (?s1 ?s2 ?a)
(iff (sibling ?s1 ?s2 ?a)

:::
(and

:::::
(not

:::
(=

::::
?s1

:::::
?s2))

(or (exists (?s3)
(and (next_subocc ?s3 ?s1 ?a)

(next_subocc ?s3 ?s2 ?a)))
(and

(root ?s1 ?a)
(root ?s2 a)
(or (and (initial ?s1) (initial ?s2))

(exists (?s4 ?a1 ?a2)
(and

(= ?s1 (successor ?a1 ?s4))
(= ?s2 (successor ?a2 ?s4))

:::::::::
(arboreal

:::::
?s4)

::::::::::::::
(occurrence_of

:::
?s1

:::::
?a1)

::::::::::::::
(occurrence_of

:::
?s2

:::::
?a2))))))

:
)))

Figure 5: Revised sibling definition.

(forall (?s1 ?s2 ?a)
(iff (iso_occ ?s1 ?s2 ?a)

(exists (?a1 ?a2 ?a3)
(and (atomic ?a1) (atomic ?a2)

(atomic ?a3)
(subactivity ?a3 ?a)
(occurrence_of ?s1 (conc ?a1 ?a3))
(occurrence_of ?s2 (conc ?a2 ?a3))
(all (?a4)

(if
(and

(subactivity ?a4 (conc ?a1 ?a3))
(subactivity ?a4 (conc ?a2 ?a3))
(subactivity ?a4 ?a))

:::
(or

:::
(=

:::
?a3

:::::
?a4)

(not (subactivity ?a3 ?a4))
:
)

)))))))

Figure 6: Revised iso occ definition.

s2 are equal to successor(xi,y) where xi and y are arbitrary terms and not necessarily activities and an
activity occurrence, respectively. This stems from the axiomatization of the Occurrence Tree, where the
arguments of the successor function are constrained only if the entire term successor(x,y) is known to be
an occurrence of activity x. Therefore, by choosing x to be a term that does not represent an activity, the
existential clause can always be satisfied. Figure 5 presents our attempt to resolve both problems.

3.4 Complex Activity Occurrence Theory Definition 1: iso occ

Two occurrences s1 and s2 are said to be “occurrence isomorphic” with respect to a complex activity
A if both occurrences contain a common subactivity of A. The axiom has recently been revised to
restrict the common subactivity to be “maximal” (such that no common superactivity exists), yet the
formalization implies a contradiction with the remaining axioms of PSL if the existence of two occurrence
isomorphic activities is asserted [iso_occ.contra.in][iso_occ.contra.proof]. The deficiency in
the formalization stems from overlooking that subactivity is reflexive. Figure 6 shows the repaired axiom.
We are unsure whether the predicate is intended to be reflexive. If the relation should be irreflexive, an
additional clause demanding that s1 6= s2 must be added to the definiens. We have not verified if this extra
assumption can be consistently made.

3.5 Complex Activity Occurrence Theory Definition 5: same grove

Two occurrences of a complex activity are said to be in the “same grove” if they are in alternative branches
in the Occurrence Tree. More formally, occurrences o1 and o2 of activity A satisfy same grove(o1,o2,A)
iff their root occurrences are siblings in the Occurrence Tree. The formal axiom does not make use
of the sibling predicate defined earlier but duplicates part of it, including the problematic existential
quantification discussed earlier. The axiom implies that either all complex activities share a common root
occurrence, or no root of a complex occurrence may be a successor in the activity tree [same_grove.
in][same_grove.cont.proof]. We propose to correct this problem by using the sibling predicate
instead (see Figure 7). Curiously, this definition is almost identical to that in an earlier version of PSL
presented by Bock and Grüninger [5].

4 Incompleteness of PSL Outer Core
Although PSL includes axioms that are too strong and results in inconsistency, certain axioms needed to
exclude undesirable models are absent or not strong enough. In the following we identify some of these
axioms. Because one cannot efficiently enumerate the possible models for given assumptions, we are far
from claiming that our analysis has successfully identified all problematic axioms.
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(forall (?o1 ?o2)
(iff (same_grove ?o1 ?o2)

(exists (?a ?s1 ?s2)
(and (occurrence_of ?o1 ?a)

(occurrence_of ?o2 ?a)
(root_occ ?s1 ?o1)
(root_occ ?s2 ?o2)

:::
(or

:::
(=

::::
?s1

::::
?s2)

::::::::
(sibling

:::
?s1

::::
?s2

:::::
?a))))))

Figure 7: Revised same grove definition.

(forall (?a ?b0 ?b1)
(if (and (atomic ?a)

(atomic ?b0)
(atomic ?b1)
(subactivity ?a (conc ?b0 ?b1))
(not (primitive ?a)))

(exists (?a0 ?a1)
(and (subactivity ?a0 ?a

::
?b0)

(subactivity ?a1 ?a
::
?b1)

(= ?a (conc ?a0 ?a1))))))

Figure 8: Revised distributivity axiom.

4.1 Atomic Activity Theory Axiom 8: Distributivity

As pointed out by Mayer [11], distributivity of the lattice of atomic activities is formalized incorrectly, in
that the axiom is actually a tautology. Therefore, it will eliminate models that do not satisfy this property.
The correct formalization of distributivity is given in Figure 8.

4.2 Occurrence Tree Axiom 11: successor

Axiom 11 of the Occurrence Tree Theory should express that every non-initial activity occurrence is
the successor of another activity occurrence. Unfortunately, the formalization suffers from the same
problem as described in Section 3.3, in that the arguments of the successor function are not sufficiently
constrained. Our solution is to amend the axiom as shown in Figure 3. The definition of the poss predicate
that represents the legal successor activities in the occurrence tree requires similar amendments.

5 Observations from Experiments

5.1 Scalability

The axiomatization of PSL is not particularly amenable to applying automated theorem proving technology.
We have already pointed out that constructing models is hindered by having only infinite models. Although
removing some of the axioms yields a theory that has finite models, findings such models remains difficult.
Even with state of the art model finders like Mace4 and Paradox3, we could not consistently find models
of 13 or more elements (within generous limits of 4GB memory and 12h CPU time). Furthermore, the
resulting models may not satisfy all axioms of full PSL (for example, certain tree properties) and must
be inspected and/or post-processed to ensure the results are meaningful. Finding proofs of contradiction
is equally challenging, due to the large number of clauses generated from Skolem functions. We expect
that considerable tuning and adaptation of PSL will be necessary if the theory is to be used for reasoning
about non-trivial processes.

5.2 Compositionality

The treatment of composite activities, such as concurrent aggregation and complex activities, is not
transparent in PSL and must be anticipated by the modeler.

Occurrences of concurrent activities must be considered explicitly when defining complex activ-
ities. As both the Activity Tree and the Occurrence Tree specify an ordering between atomic activ-
ities, and PSL distinguishes conc activities from primitive (i.e., non-concurrent) activities, concur-
rent occurrences must be allowed explicitly in the specification of complex activities. For example,
asserting that ¬((∃s1,s2)occurrence of (s1,A)∧ occurrence of (s2,B)∧min precedes(s2,s1,NotBA)) is
insufficient to ensure that no occurrence of B is before an occurrence of A within complex activity
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NotBA. Instead, one must write ¬((∃s1,s2,x,y)atomic(x)∧atomic(y)∧occurrence of (s1,conc(A,x))∧
occurrence of (s2,conc(B,y))∧min precedes(s2,s1,NotBA)).

Similarly, one must anticipate which activities will eventually be expressed as complex activities. For
example, PSL precludes us from writing

(∀x,y,z)occurrence o f (x,A)∧occurrence of (y,B)∧occurrence of (z,AB)

∧ subactivity occurrence(x,z)∧ subactivity occurrence(y,z)→ min precedes(x,y,AB)

to express that occurrences of A must precede occurrences of B within each occurrence of AB if A or B
are complex activities. Instead, we must amend the antecedent with leaf occ(u,x)∧ root occ(v,y) and
substitute u for x and v for y in the consequent. Furthermore, mixing complex activities with concurrent
ones is not admissible in PSL. Writing such explicit specifications is error prone, and the resulting axioms
may be difficult to read.

5.3 Complex Activity Occurrences and Fluents

PSL is tailored to expressing constraints on trees in order to define the intended process models for a
particular application domain. Although the axioms allow one to impose constraints on complex activities
to eliminate impossible occurrences, the axioms are not complete enough to prove that a complex activity
actually occurred given a sequence of atomic activity occurrences that conform to the complex activity.
This is for a number of reasons. First, PSL does not include closure axioms that state that no other
activities and occurrences than those in the activity trees occur in a complex activity [5]. Second, the
axioms do not entail that a complex activity occurred even if all the occurrences in a branch of an activity
tree occurred. These must be added when the ontology is tailored to an application. We have not verified
that this can be done consistently.

Moreover, the modeling of objects and state in PSL is incomplete. The first and second authors
observed that the axioms pertaining to fluents and their propagation in the Occurrence Tree are not
sufficient to handle composite expressions like conjunction and implication. It seems that a clear distinction
between fluents and other objects in combination with a powerful reflection principle is needed to tackle
these challenges. Detailed treatment of such extensions is beyond the scope of this paper.

5.4 Concurrency Model

PSL uses atomic activities formed from the conc constructor to represent the aggregate of multiple
activities occurring concurrently. For example, conc(a1,a2) represents an activity where subactivities a1
and a2 are executed concurrently. Occurrences of such aggregate activities can be part of the Occurrence
Tree. This model can express some form of concurrency, however, it is limited in that the concurrent
activities must have the same duration (because only the occurrence of the aggregate activity in the
Occurrence Tree is associated with begin and end timestamps). Activities that run concurrently with a
sequence of other activity occurrences cannot be expressed easily, and multiple concurrent instances of
the same activity cannot be expressed [5].

PSL Outer Core lacks axioms that relate the properties of the individual activities to that of the
concurrent aggregate activity. Suitable axioms must be added when activities are defined, and possible
interferences between activities must be anticipated.

6 Finite tree and minimal PSL

The PSL documentation does not directly address questions arising from the differences between modeling
finite and infinite occurrence trees, which is a distinction that cannot be captured in FOL; the compactness
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theorem fails for the class of finite models of trees, and the problem of FOL validity in the class of all finite
models is undecidable [12]. In fact, the class of valid FOL sentences over finite models is not recursively
enumerable but is co-recursively enumerable. Therefore, any useful separation of infinite from finite trees
will be impossible in the current PSL FOL theory. However, it is unclear what that augmentation might
be. Finite model theory is an active field with many open questions, including some bearing directly
upon the infamous P 6=NP problem. Regular tree languages definable in FO and in FOmod (a language
with counting quantifiers) are discussed by Benedikt and Segoufin [4]. Gradel et al. [8] discuss the more
general problem of embedding finite models into “representations” of infinite databases. History and
classical results about finite and infinite models are given in Baldwin [3].

After being informed of contradictions in PSL found the authors, Conrad Bock and Michael Grüninger
defined a “minimal PSL”, which they hoped would be free of contradictions. This is a collection of PSL
axioms taken from the PSL Outer Core subtheories (specifically, from pslcore.th, complex.th, occtree.th
and actocc.th), and some “lemmas” which are theorems of PSL. All axioms that would require infinite
models are omitted. This subset can be found in [psl-1016-618.in]. We could verify using Mace4
that this subset does have finite non-trivial models where some activity occurrences exist. Unfortunately,
this minimal version of PSL lacks substantive axioms bearing upon tree constructions. We came to the
conclusion that, while the Occurrence Tree is fundamental to PSL’s ontology, PSL itself does not contain
enough axioms to reason about finite trees well (let alone to reason about infinite occurrence trees).

One possible way to improve PSL is to modify it so that occurrence and activity trees will be finite,
and to supplement its other theories with appropriate axioms defined from the new tree primitive. If we
modify PSL so that it has finite models, then occurrence and activity trees will be finite trees, which are
more tractable than the infinite occurrence trees of PSL. A good theory of finite trees, which has the
needed definitions, is presented in Backofen et al. [2]. This theory of finite trees has attractive properties:
it is decidable and it permits the use of inductive schema.

We have translated the tree axioms of [2] into the language of PSL, calling it FTPSL and using
earlier for the tree ordering. It was necessary to reverse the order of some of the FTPSL predicates
as axiomatized by Backofen et al. in order to comply with the directionality of PSL axioms regarding
the notion of subactivity occurrence. Besides earlier, the primitives of FTPSL are the binary pred-
icates subactivity occurrence, proper subactivity occurrence and immediate subactivity occurrence.
The translated FTPSL axioms are available at FTPSLRev1.in, and a model is at FTPSLRev1.model.

We are able to demonstrate, using Mace4, that FTPSL plus simple ground axioms constructs an appro-
priate occurrence tree for the seven occurrences of example MGM7, has finite models and is therefore con-
sistent [FTPSLRev1_MGM7.in][FTPSLRev1_MGM7.model]. Adding the transcribed finite tree axioms to
Bock and Grüninger’s minimal PSL, we were able to find a finite model for that theory and establish consis-
tency [FTPSLRev1OCCACTV1_PSL1016Lemmas.in] [FTPSLRev1OCCACTV1_PSL1016Lemmas.model].
However, inspection of the model reveals that activities and occurrences are not always desirably coordi-
nated due to a lack of proper typing in the minimal PSL. We have not attempted to correct this, but by
using FTPSL as a basis for defining other PSL notions, and by extending the theory to include trees for
activities as well as occurrences, it may be possible to define the compositionality of successor axioms for
each activity and for their occurrences (by defining, for each act, successor(act,occ) = occ1). We have
not yet investigated whether this approach can be extended to encompass an adequate treatment of fluents
and the holds predicate as well.

7 Conclusions

We set out to test the hypotheses that (i) PSL is adequate for industrial process definition, and (ii) existing
theorem provers are adequate to support reasoning about process descriptions in PSL. We found that PSL
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is not adequate for industrial process description, for the following reasons:
• PSL contained, and after correction still contains, inconsistencies when simple ground axioms are

added. This precludes the use of model finders and theorem provers.
• PSL lacks a good theory of finite trees, although trees are fundamental to PSL.
• PSL lacks a reflection principle permitting ordinary logical reasoning which coordinates activities

and their occurrences, and hence does not allow one to infer what properties will hold after complex
activities occur.
• PSL is not formulated in a way “friendly” to automated deduction; specifically with respect to its

preference for the use of predicates instead of functions, insufficient “typing” axioms and no clear
distinction between fluents and physical objects.

Our experiments with automated theorem provers helped us to discover these defects of PSL, and
showed that the combination of PSL and existing theorem-proving technology is not adequate for
industrial-strength process engineering. Certainly we saw many cases in which theorem provers could not
reach the desired conclusion; some of those cases were due in our opinion to the inadequacies of PSL.
Clearly, the problems which may lie with theorem proving technology regarding PSL (particularly scaling)
cannot be assessed without first having a consistent process specification language, and in particular, a
substantive theory of finite trees which represents compositionality of complex occurrences.

In our opinion, the reason for the enumerated troubles is that PSL does not have a clear “intended
model”. However, an effective revision to the theory must start with a clear informal description of such a
model, and then include axioms that are true in that model and characterize it, so that the ground model
of the theory plus simple axioms describing an activity should be unique, except possibly for the order
of activity occurrences when those do not matter. Unfortunately, these goals cannot be accomplished by
simple “surgical modifications” or additions to PSL, because the present version of PSL is incoherent, as
we have demonstrated by finding inconsistencies for which there is no obvious repair. Our revisions in
this paper “put some duct tape on PSL”, but it is still broken.

Further issues remain to be addressed before any PSL or any finite version thereof can be considered
ready for industrial use. Foremost, the consistency of the theory must be established for the possible
ground models of interest. While we have shown that our small ground examples have models, formal
analysis and verification must be carried out to lift this result to all “admissible” ground extensions of
the theory. Further documentation is necessary to make the theory more accessible. We have spent many
weeks trying to understand the intended meanings of the axioms, yet considerable uncertainties remain. A
thorough discussion and examples showing the best practice use of the ontology would certainly help.
Furthermore, a collection of Competency Questions [9] and other sentences that are supposed to be
consistent with or entailed by the theory, as well as ones that should not be consistent or provable, would
help in validating any changes made in the future. Currently, tailoring the theory to a particular application
domain is a predominantly manual activity. Automated support in writing and validating additional axioms
would certainly facilitate the adoption of PSL. Similarly, tailoring the ontology to suit a specific theorem
proving technology would immensely benefit from automated supporting tools to analyze performance
bottlenecks, rewrite axioms, and verify consistency and completeness of the resulting theory.
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