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Abstract. Data Warehouse-(DW) logical design often start with a conceptual 
schema and then generates relational structures. Applying this approach implies to 
cope with two main aspects: (i) -mapping the conceptual model structures to the 
logical model ones, and (ii) -taking into account implementation issues, which are 
not considered in the conceptual schema. This paper addresses this second aspect 
and presents a formalism that allows the DW designer to specify design guidelines 
which express design strategies related with implementation requirements. Through 
these guidelines the designer states high level manners to cope with different design 
problems, for example: managing complex and big dimensions, dimension version-
ing, different user profiles accessing to different attributes, high summarized data, 
horizontal partitions of historical data, generic dimensionality and non-additive 
measures. This work is part of a DW logical design environment, where the design 
guidelines are specified through a graphical editor and then automatically processed 
in order to build the logical schema.  

 
Keywords. Data Warehouse design, logical design methods. 

1 Introduction 

It is widely accepted that Relational Data Warehouse logical design is significantly 
different from OLTP database design- [17] [18] [2] [8] [9]. Relational DWs are designed 
to provide simple and expressive meanings to complex queries as well as to optimize 
their execution- [18] [2]. Such requirements have lead to specific design techniques 
and patterns, like the well-known Star, Snowflake and Star Cluster Schemas- [18] [23]. 

Many of the existing DW logical design techniques propose to build the DW logi-
cal schema from a conceptual schema  [13] [6] [3] [15] [29]. This is a traditional data-
base design strategy- [4] [21] which involves two main issues: (i) -map the conceptual 
model structures to the logical model ones, and (ii) take into account implementation-
oriented requirements, which are not considered in the conceptual schema. While the 
first issue is related with the definition of the relational structures to be created, the 
second one concerns the construction of a schema that satisfies performance and 
maintenance requirements. Most of the previously referenced techniques address the 
first aspect by proposing inter-model mapping strategies that lead to different DW-
oriented relational structures. The second aspect has been less studied. In  [13] -the 
authors propose to take as input DW workload information to complement a mapping 
strategy.  

It is important to note that dealing with implementation-oriented requirements is 
not straightforward. Firstly, it is not possible to formalize all the real world implemen-
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tation-related aspects. Second, if these specifications are intended to be automatically 
processed, then they have to be simpler enough to avoid undecidable problems. Fi-
nally, the mechanism to obtain and to manage the specifications should be practical.  

This paper addresses the problem of obtaining a DW logical schema from a con-
ceptual one, and presents a formalism to declare implementation-related requirements 
which may be used in automated logical design methods. The paper follows a similar 
approach to  [13], but proposes the specification of implementation-related guidelines 
instead of workload information in order to obtain an accurate logical schema. 

The proposed formalism consists of three types of design guidelines: (i) aggregate 
materializations, (ii) horizontal fragmentation of facts (or cubes), (iii) vertical frag-
mentation of dimensions. These design guidelines enable the designer to formally 
state some kinds of implementation related characteristics. For example: the degree of 
fragmentation for dimension tables, the degree of fragmentation of fact tables, and the 
materialization of aggregated data. The proposed guidelines are also simple enough to 
be processed by an automated tool.  

The declaration of design guidelines is part of a wider DW design environment, 
which intends to automate most of the DW logical schema generation- [27] [28] [7]. 

The main contribution of this paper is the proposition of a formalism that allows 
expressing implementation-related guidelines in a simple way and which can be used 
to generate accurate DW relational schemas through semi-automated process. 

The rest of this paper is organized as follows: Section 2 studies related work and 
discusses some problems in the mappings between multidimensional and relational 
models. Section 3 presents the formalism to declare design guidelines and discusses 
criteria for their definition. Section 4 present the DW logical design environment and 
section 5 concludes. 

2 Relational Representations for Multidimensional Structures  

This section presents first a brief state of the art on relational DW design techniques 
that take as input conceptual multidimensional schemas, and then discusses some 
problematic cases that would arise when building the DW relational schemas. 

2.1 Existing techniques to relational DW design  

There are several proposals addressing the generation of DW relational schemas from 
conceptual ones- [13] [6] [3] [15] [29].  

In- [6], the MD conceptual model is introduced and two algorithms are proposed in 
order to map conceptual schemas to either relational or multidimensional logical 
models. The former one is straightforward generating a star schema. In- [13], a meth-
odological framework based on the DF conceptual model is proposed. The paper pro-
poses to generate relational or multidimensional schemas starting from a conceptual 
one. Despite not suggesting any particular model, the star schema is taken as example. 
The paper also presents a design strategy based on a cost model that takes the DW 
query workload and data volumes as input, and states the criteria to build vertical 
fragments of fact tables in order to materialize them  [14] [20]. Query workload is 
stated as pairs <query, frequency> and it is based on the conceptual structures. Al-
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though it is a powerful approach, it does not cover table maintenance considerations 
(e.g. related to manage versioned monster dimensions- [18]), and does not state how to 
determine the most relevant query workload pairs. Other proposals focus on star 
schemas and are not conceived to generate complex DW structures  [3] [15] [29]. 
Therefore they do not provide flexibility to apply different design strategies.  
Other works in DW logical design do not take a conceptual schema as input, but build 
the logical schema either from requirements or the source databases- [23] [5] [18]. In-
 [18], the author proposes to build star schemas from user requirements and presents 
logical design techniques to solve frequent DW design problems. In- [23], the logical 
schema is built from an Entity-Relationship schema of the source database. It de-
scribes several logical models, as star, snowflake and star-cluster, and presents the 
main characteristics of each one. The proposition of- [5] also builds a logical schema 
starting from a source database. 

2.2 Motivating examples  

This section presents a couple of examples that show potential problems that may 
arise when the relational DW schema is build using a fixed logical design strategy. 
Such limitations motivate the specification of additional information to take into ac-
count implementation-related aspects in the DW logical design stage. The examples 
will be based on the following situation. 

Example 1. Consider the case of a company that gives phone support to its customers 
and wants to analyze the amount of time spent in call attentions.  

The conceptual design phase leads to two dimensions: customers and, dates. Cus-
tomers dimension has four levels: state, city, customer and department, organized in 
two hierarchies. Date dimension has two levels: year and month. The designer has 
also identified a set of facts associated to events of attention support, which crosses 
customers and dates dimensions, and which includes a measure representing the Du-
ration of an attention. Note that this measure (Duration) can also be seen as a dimen-
sion (by applying the generic dimensionality principle of Codd). Consequently it is 
structured into two levels: minutes and ranges.  

Figure 1 sketches the conceptual schema using CMDM graphical notation  [7], but 
can be used with other conceptual models.  

 
It is interesting to note that, although existing proposals are strongly based in par-

ticular conceptual models, the resulting tables are quite similar. They consist of a fact 
table for each conceptual fact and a dimension table for each conceptual dimension. 
The following tables (S1) correspond to the Example 1, and follow a Star Schema 
pattern: 

 
(S1)� CUSTOMERS-(customer_id,� department,� city_id,� state_id,�

customer_name,� income,� city_name,� state_name,� country)�
DATES-(month,� year)�
SUPPORT-(month,� customer_id,� minutes)� �

 
We identify several problems when following a fixed strategy that always builds 

star schemas. 
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Figure 1. Conceptual schema. Dimension representation consists of levels in hierarchies, 
which are stated as boxes with their names in bold followed by the items. The items followed 
by a sharp (#) identify the level. Arrows between levels represent dimension hierarchies. Facts 
are represented by ovals linked to the dimensions, which are stated as boxes. Measures are 
distinguished with arrows. 

 
First, in the case of complex or big dimensions (monster dimensions  [18]), de-

normalization can cause great redundancy, and therefore maintenance problems. Par-
tially normalizing the dimension may be a trade-off between performance and redun-
dancy. Continuing with the example, consider that the CUSTOMERS table may have 
hundreds of thousands customers, but only one hundred different cities. Data about 
cities and states is extremely redundant and causes maintainability problems. In this 
case, the following tables can be more appropriate: 

 
(S2)� CUSTOMERS-(customer_id,� department,� city_id,� customer_name,income)�

CITIES-(city_id,� state_id,� city_name,� state_name,� country)� �
 
In addition, if the dimension data has to be versioned (to keep track of the 

changes), again denormalization can cause maintainability problems. A good strategy 
would be to maintain different tables gruping attributes that do not change, attributes 
that slowly change and attributes that change more frequently. For example, if we 
want to trace the history of the cities where a customer has lived, we can add addi-
tional tuples to the CUSTOMERS table and generalize the key (we add the version at-
tribute to do it). Then, the size of the table will increase and the performance of other 
queries, e.g. by the department attribute, will degrade. To avoid this, we can store the 
current city in the CUSTOMERS table and the historical values in a separate table with a 
generalized key, as in S3:   

 
(S3)� CUSTOMERS-(customer_id,� department,� city_id,� customer_name,�

income,� version)�
CUSTOMER_HISTORY-(customer_id,� version,� city_id)�
CITIES-(city_id,� state_id,� city_name,� state_name,� country)� �
SUPPORT-(month,� customer_id,� version,� minutes)�

Furthermore, when there are requirements to access different subsets of dimension 
attributes, it is not necessary to design large and complex dimension tables. Consider 
that there are two user profiles: those who are mainly interested in the geographical 
distribution of calls, and those who supervise customers by their departments. The 
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fragmentation of the customer dimension in two tables: CUSTOMERS and CITIES as in 
(S2) or (S3) is recommended. 

 
Another problem arises when frequent queries require high-summarized data. 

Query execution time is generally not satisfactory and we need to materialize aggre-
gated data. Consider for example these two types of requirements: (i) analyze calls of 
the last months, filtering by customers, their cities and departments, and (ii) analyze 
annual totals of previous years calls for each city. In order to satisfy these require-
ments the schema should materialize the following aggregation (in addition to the 
SUPPORT table of S3): 

 
(S4)� SUPPORT_YEAR_CITY-(year,� city_id,� minutes)�

 
In addition, when materializing an aggregate, additional dimension tables (with 

the appropriate granularity) must be generated to assure correct results. These may be 
an additional reason to partially normalize a dimension table. E.g. to join the 
SUPPORT_YEAR_CITY table with city and state information we need the CITIES table 
of schema (S2). If city and state data is also stored in the denormalized CUSTOMERS 
table of schema (S1), we have excessive duplication of data. In this situation, schema 
(S2) is more suitable.   

 
Sometimes, some dimension attributes may be accessed more frequently than oth-

ers. Consider that the state_name attribute is queried in most of the queries, but the 
country attribute is queried in only some specific ones. We can store different degrees 
of redundancy for the different attributes, storing some of them in several tables, for 
example, storing the state_name attribute in both dimension tables: 

 
(S5)� CUSTOMERS-(customer_id,� department,� city_id,� customer_name,�

income,� version,� state_name)�
CITIES-(city_id,� state_id,� city_name,� state_name,� country)�

 
Usually, the most frequent queries access the most recent data, and other queries 

access older data. In such cases, fact tables can be horizontally fragmented (and even-
tually aggregated) according to the user queries. Consider that calls of the last months 
are queried grouped by customer, and calls of previous years are queried grouped by 
year and city. We can build two tables: a fact table only with calls of previous years 
and aggregated by year and city; and another fact table with the current year calls 
without aggregation. 

 
(S6)� CURRENT_SUPPORT-(month,� customer_id,� version,� minutes)�

HISTORICAL_SUPPORT-(year,� city_id,� minutes)�
 
Other aggregates may be necessaries because of complex requirements. Consider 

the analysis of the quantity of customers that make long calls, classifying call dura-
tions in different ranges. In this case, the duration measure is used as dimension, and 
the customer dimension is studied as a measure. This is a case of generic dimension-
ality  [9] and is a hard query. It may be necessarily to materialize the aggregation:  

 
(S7)� CUSTOMER_QUANTITY-(month,� city_id,� duration_range,� quantity)�
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In the generated schema (S7), the customer quantity measure is not additive, for 
example for the dates dimension. If we have the customer quantity for the different 
months of a year, we cannot sum these quantities to obtain the value corresponding to 
the year because some customers can be counted several times. We have basically 
two types of solutions: querying the detailed fact table asking for distinct customers 
(with possible performance problems), and materializing several aggregates for the 
most important crossings. For example, we can materialize annual totals (S8). Queries 
with additivity problems are generally not considered when selecting which aggre-
gates to materialize. But they must be taken into account because they must be cor-
rectly solved even if they are not the most frequently executed. Additivity issues are 
discussed in  [19]. 

 
(S8)� ANUUAL_CUSTOMER_QUANTITY-(year,� city_id,� duration_range,� quantity)�

 
Finally, taking into account all the presented implementation-oriented considera-

tions, a DW designer should build the following relational schema: 
 

(S)� DATES-(month,� year)�
CUSTOMERS-(customer_id,� department,� city_id,� customer_name,�

income,� version,� state_name)�
CUSTOMER_HISTORY-(customer_id,� version,� city_id)�
CITIES-(city_id,� state_id,� city_name,� state_name,� country)� �
CURRENT_SUPPORT-(month,� customer_id,� version,� minutes)�
HISTORICAL_SUPPORT-(year,� city_id,� minutes)�
CUSTOMERQUANTITY-(month,� city_id,� duration_range,� quantity)�
ANNUALCUSTOMERQUANTITY-(year,� city_id,� duration_range,� quantity)�

 
There are notorious differences between schema S and the first one generated by 

the Star Schema based methodology (S1). The differences are a consequence of tak-
ing into account implementation-related information . 

 
Therefore, it can be concluded that implementation related information is required 

to obtain accurate relational DW schemas. Furthermore, design methods and tools 
should use this kind of information in order to generate schemas that provide efficient 
access to data, easy maintenance of data, and efficient use of storage resources. 

 
At this point some questions arise: 

- What kind of implementation-related information has to be stated to obtain 
an accurate relational DW schema? 

- How do DW design techniques should make use of these statements ? 
 

The next sections address these issues. 

3 A Formalism to specify Design Guidelines 

We propose a formalism to represent information related to non-functional require-
ments, which provides guidelines to perform the relational DW logical design. This 
formalism consists of the so-called design guidelines, which are of three types: Ag-
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gregate Materialization, Horizontal Fragmentation of Facts and Vertical Fragmenta-
tion of Dimensions.  

3.1 Aggregate materialization 

During conceptual design, the analyst identifies the desired facts, which leads to the 
implementation of fact tables at logical design. These fact tables can be stored with 
different degrees of detail, i.e. maximum detail tables and aggregate tables. In the 
example, for the support fact, we can store a fact table with detail by customers and 
months, and another table with totals by departments and years. Giving a set of levels 
of the dimensions that conform the fact, we specify the desired degree of detail to 
materialize it. 

We define a structure called cube that allows the designer to declare the degree of 
detail for the materialization of each fact. A cube basically specifies the set of levels 
of the dimensions that conform the fact.  

Sometimes, they do not contain any level of a certain dimension, representing that 
this dimension is totally summarized in the cube. However, the set can contain several 
levels of a dimension, representing that the data can be summarized by different crite-
ria from the same dimension. A cube may have no measure, representing only the 
crossing between dimensions (factless fact tables  [18]).  

A cube is a 4-uple <Cname, R, Ls, M> where Cname is the cube name that identi-
fies it, R is a conceptual schema fact, Ls is a subset of the levels of the fact dimen-
sions and M is an optional measure that can be either an element of Ls or null. The 
SchCubes set, defined by extension, indicates all the cubes that will be materialized 
(see ). Definition 1
 

SCHCUBES-⊆-{-<CNAME, -R,-LS,-M>-/ 
CNAME-∈-STRINGS-∧- 
R-∈-SCHFACTS-∧ 
LS-⊆-{-L-∈-GETLEVELS(D) -/-D-∈-GETDIMENSIONS(R) -}-∧ 
M-∈-(LS-∪-⊥) 

}1 

Definition 1 – Cubes. A cube is formed by a name, a fact, a set of levels of the fact dimensions 
and an optional measure. SCHCUBES is the set of cubes to be materialized. 

Figure 2 shows the graphical notation for cubes. There are two cubes: detail and 
summary of the support fact of Example 1. Their levels are: month, customer and 
duration, and year, city and duration, respectively. Both of them have duration as 
measure. 

                                                           
1 SCHFACTS is the set of facts of the conceptual schema. The functions GETLEVELS and GETDIMENSIONS 
return the set of levels of a dimension and the set of dimensions of a fact respectively. 
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customermonth

duration

detail
(support)

cityyear

duration

summary
(support)

 
Figure 2. Cubes. They are represented by cubes, linked to several levels (text boxes) that indi-
cate the degree of detail. An optional arrow indicates the measure. The cube name and the fact 
name (between brackets) are inside the cube. 

Figure 2

3.2 Horizontal fragmentation of facts 

A cube can be represented in the relational model by one or more tables, depending 
on the desired degree of fragmentation.  Horizontal fragmentation of relational tables 
is a well known technique, which leads to smaller tables and to improve query per-
formance [25]. 

 
As an example, consider the detail cube of Figure 2 and suppose that most fre-

quent queries correspond to calls performed after year 2002. We can fragment the 
cube in two parts, one to store tuples from calls after year 2002 and the other to store 
tuples from previous calls. The tuples of each fragment must verify respectively: 

− month-≥-“January-2002” 
− month-<-“January-2002” 

In order to ensure completeness while minimizing the redundancy, horizontal 
fragmentation has to satisfy two properties: completeness and disjointness. A frag-
mentation is complete if each tuple of the original table belongs to one of the frag-
ments, and it is disjoint if each tuple belongs to only one fragment. As an example, 
consider the following fragmentation:   

− month-≥-“January-2002” 
− month-≥-“January-1999” -∧-month-<-“January-2001” 
− month-<-“January-2000” 

The fragmentation is not complete because tuples corresponding to calls of year 
2001 do not belong to any fragment, and it is not disjoint because tuples correspond-
ing to calls of year 1999 belongs to two fragments. 

In a DW context, these properties are important to be considered but they are not 
necessarily verified. If a fragmentation is not disjoint we will have redundancy that is 
not a problem for a DW system. For example, we can store a fact table with all the 
history and a fact table with the calls of the last year. Completeness is generally de-
sired at a global level, but not necessarily for each cube. Consider, for example, the 
two cubes of . We define a unique fragment of the detail cube (with all the 
history) and a fragment of the summary cube with the tuples after year 2002. Al-
though the summary cube fragmentation is not complete, the history tuples can be 
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obtained from the detail cube performing a roll-up, and there is no loose of informa-
tion. 

We define a structure called strip that allows the designer to declare how to frag-
ment a cube. A fragmentation is expressed as a set of strips, each one represented by a 
predicate over the cube instances. 

 
SCHSTRIPS-⊆-{-<SNAME, -C, -PRED>-/ 

SNAME-∈-STRINGS-∧ 
C-∈-SCHCUBES-∧- 
PRED-∈-PREDICATES(GETITEMS(C)) 

}2 

Definition 2 – Strips. A strip is formed by a name, a cube and a boolean predicate expressed 
over the items of the cube levels. 

Figure 3 shows the graphical notation for strips. There are two strips for the detail 
cube: current and history, for calls posteriors and previous to 2002, respectively. 

 

customermonth

duration

detail
(support)

• current: month ≥ Jan-2002
• history: month < Jan-2002

 
Figure 3 – Strips. The strip set for a cube is represented by a callout containing the strip names 
followed by their predicates. 

3.3 Vertical fragmentation of dimensions 

The guideline called fragment allows the designer to specify which levels of each 
dimension he wishes to store together. A fragment basically consists of a set of levels 
of a dimension. This may lead to star schema, denormalizing all the dimensions, or 
conversely he may prefer a snowflake schema, normalizing all the dimensions  [23], or 
may choose intermediate options. This decision can be made globally, regarding all 
the dimensions, or specifically for each dimension.  

Given two levels of a fragment (A and B) we say that they are hierarchically re-
lated if they belong to the same hierarchy or if there exists a level C that belongs to 
two hierarchies: one containing A and the other containing B. A fragment is valid 
only if all its levels are hierarchically related. For example, consider a fragment of the 
customers dimension of Example 1 containing only city and department levels. As the 
levels do not belong to the same hierarchy, storing them in the same table would gen-

                                                           
2 PREDICATES(A) is the set of all possible boolean predicates that can be written using elements of the set 
A. The GETITEMS function returns the set of items of the cube levels. 
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erate the cartesian product of the levels’ instances. However, if we include the cus-
tomer level to the fragment, we can relate all levels, and thus the fragment is valid.  

 
SCHFRAGMENTS-⊆-{-<FNAME, -D, -LS>-/ 

FNAME-∈-STRINGS-∧ 
D-∈-SCHDIMENSIONS-∧ 
LS-⊆-GETLEVELS(D) -∧ 
∀A,B-∈-LS-.-( 

<A,B>-∈-GETHIERARCHIES(D) -∨ 
<B,A>-∈-GETHIERARCHIES(D) -∨ 
∃C-∈-LS-.-(<A,C>-∈-GETHIERARCHIES(D) -∧-<B,C>-∈-GETHIERARCHIES(D))) 

}3 

Definition 3 – Fragments.  A fragment is formed by a name, a dimension and a sub-set of the 
dimension levels that are hierarchically related. 

In addition, the fragmentation must be complete, i.e. all the dimension levels must 
belong to at least one fragment to avoid losing information. If we do not want to du-
plicate the information storage for each level, the fragments must be disjoint, but this 
is not a requirement. The designer decides when to duplicate information according to 
his design strategy.  

a) b) c)
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customer_id #
customer_name
income
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customers

citycity
city_id #
city_name
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state_id #
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departmentdepartment
department
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customer_id #
customer_name
income
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customers

citycity
city_id #
city_name
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state_id #
state_name
country

departmentdepartment
department

customercustomer
customer_id #
customer_name
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version #
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citycity
city_id #
city_name
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state_id #
state_name
country

departmentdepartment
department

 
Figure 4. Alternative fragmentations of customers dimension. The first one has only one 
fragment with all the levels. The second alternative has two fragments, one including state and 
city levels (continuous line), and the other including the customer and department levels (dotted 
line). The last alternative keeps the customer level in two fragments (dotted and continuous 
line). 

 

                                                           
3 SCHDIMENSIONS is the set of dimensions of the conceptual schema. The GETHIERARCHIES function re-
turns the pairs of levels that conform the dimension hierarchies  [7]. 
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Graphically, a fragmentation is represented as a coloration of the dimension lev-
els. The levels that belong to the same fragment are bordered with the same color (or 
pattern).  shows three alternatives to fragment the customers dimension.  Figure 4

3.4 Criteria specifying the guidelines  

By means of the guidelines, the designer defines:  
- A set of cubes for each fact. 
- A set of strips for each cube. 
- A set of fragments for each dimension. 
 
In order to specify the guidelines, the designer should consider performance and 

storage constraints as well as use and maintenance requirements. 
 
It is not feasible to materialize all possible cubes for a fact, then, the decision is a 

trade-off between storage and performance constraints. It is reasonable to materialize 
the cube with the lowest granularity to do not loose information, and the cubes that 
improve performance for the most frequent or complex queries. Queries with additiv-
ity problems must be also considered, despite of the query access frequencies, be-
cause sometimes, summary data cannot be obtained from detailed data. 

 
To perform horizontal fragmentations of a cube, the designer has to study two fac-

tors: table size and the subset of tuples that are frequently queried together. The more 
strips the designer defines, the lower size they will have, and then the better response 
time for querying them; but queries that involve several strips are worsen. The deci-
sion must be based on the requirements, looking at which data is queried together.  

 
The manner to fragment the dimensions is related to the chosen design pattern. 

The definition of fragments with several levels (denormalization) achieves better 
query response time but increases redundancy. If dimension data changes slowly, re-
dundancy is not a problem. But if dimension data changes frequently and we want to 
keep the different versions, the maintenance cost grows. This guideline tries to find a 
balance between query response time and redundancy. Data that is not queried to-
gether is a good indicator in order to fragment the dimension. 

4 The DW logical design environment 

In this section we present an environment for DW logical design. Our underlying de-
sign methodology takes as input the source database and a conceptual multidimen-
sional schema. Then, the design process consists of three main tasks:  
• Refine the conceptual schema adding design guidelines and obtaining a "refined 

conceptual schema".  
• Map the refined conceptual schema to the source database. The mappings indi-

cate how to calculate each multidimensional structure from the source database 
 [27]. 
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• Generate the relational DW schema according to the refined conceptual schema 
and the source database. For the generation we propose a rule-based mechanism 
in which the DW schema is built by successive application of transformations to 
the source schema  [22]. Each rule determines which transformation must be ap-
plied according to the design conditions given by the refined conceptual schema, 
the source database and the mappings between them, i.e., when certain design 
condition is fulfilled, the rule applies certain transformation  [28]. 
 

This framework has been prototyped  [26]. The system applies the rules and auto-
matically generates the logical schema by executing an algorithm that considers the 
most frequent design problems suggested in existing methodologies and comple-
mented with practical experiences.  

 
Figure 5 shows the proposed environment. 

refined 
conceptual schema

source
relational
schema

DW
relational
schema

design
guidelines 

conceptual schema
rules 

REFINEMENT
(task 1)

MAPPING
(task 2)

GENERATION
(task 3)

 
Figure 5. DW logical design environment. Guidelines refine the conceptual schema (task 1). 
Mappings indicate how to calculate each conceptual structure from the source database (task 2). 
The refined conceptual schema, the source database and the mappings between them are the 
input to the automatic rule-based mechanism that generates the DW relational schema (task 3). 

5 Conclusions  

Data Warehouse logical design involves defining relational structures that satisfy in-
formation requirements as well as implementation related ones (i.e. performance and 
maintainability). While the first kind of requirements is represented by means of the 
conceptual schema, the second one lack on most of existing methodologies.  

This paper presented a formalism for specifying implementation related require-
ments (design guidelines), which enables to complement the conceptual schema with 
declarations of Aggregate Materializations, Horizontal Fragmentation of Facts and 
Vertical Fragmentation of Dimensions.  

The use of guidelines constitutes a flexible way to express design strategies and 
properties of the DW in a high-level manner. This allows the application of different 
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design styles and techniques, generating the DW logical schema following the de-
signer approach. Furthermore, these three guidelines we achieve a trade-off between 
the expressiveness and the property of being automatically processed. Although the 
proposed guidelines enable to cope with several design problems, the set of design 
guidelines does not intend to be complete; hence it should be extended and comple-
mented with other proposals like  [13].  

The aforementioned design guidelines have been implemented in the context of a 
CASE environment in the context of projects of the CSI Group  [10]. Current work 
consists in the extension of the environment to support multiple source databases, and 
to manage all the metadata with a CWM  [24] repository.   
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