
Using Design Guidelines to Improve Data Warehouse
Logical Design

Verónika Peralta, Raúl Ruggia

Instituto de Computación, Universidad de la República. Uruguay.
{vperalta,ruggia}@fing.edu.uy

Abstract. Data Warehouse-(DW) logical design often start with a conceptual
schema and then generates relational structures. Applying this approach implies to
cope with two main aspects: (i) -mapping the conceptual model structures to the
logical model ones, and (ii) -taking into account implementation issues, which are
not considered in the conceptual schema. This paper addresses this second aspect
and presents a formalism that allows the DW designer to specify design guidelines
which express design strategies related with implementation requirements. Through
these guidelines the designer states high level manners to cope with different design
problems, for example: managing complex and big dimensions, dimension version-
ing, different user profiles accessing to different attributes, high summarized data,
horizontal partitions of historical data, generic dimensionality and non-additive
measures. This work is part of a DW logical design environment, where the design
guidelines are specified through a graphical editor and then automatically processed
in order to build the logical schema.

Keywords. Data Warehouse design, logical design methods.

1 Introduction

It is widely accepted that Relational Data Warehouse logical design is significantly
different from OLTP database design- [17] [18] [2] [8] [9]. Relational DWs are designed
to provide simple and expressive meanings to complex queries as well as to optimize
their execution- [18] [2]. Such requirements have lead to specific design techniques
and patterns, like the well-known Star, Snowflake and Star Cluster Schemas- [18] [23].

Many of the existing DW logical design techniques propose to build the DW logi-
cal schema from a conceptual schema [13] [6] [3] [15] [29]. This is a traditional data-
base design strategy- [4] [21] which involves two main issues: (i) -map the conceptual
model structures to the logical model ones, and (ii) take into account implementation-
oriented requirements, which are not considered in the conceptual schema. While the
first issue is related with the definition of the relational structures to be created, the
second one concerns the construction of a schema that satisfies performance and
maintenance requirements. Most of the previously referenced techniques address the
first aspect by proposing inter-model mapping strategies that lead to different DW-
oriented relational structures. The second aspect has been less studied. In [13] -the
authors propose to take as input DW workload information to complement a mapping
strategy.

It is important to note that dealing with implementation-oriented requirements is
not straightforward. Firstly, it is not possible to formalize all the real world implemen-

mailto:vperalta,ruggia}@fing.edu.uy

3-2 Verónika Peralta, Raúl Ruggia

tation-related aspects. Second, if these specifications are intended to be automatically
processed, then they have to be simpler enough to avoid undecidable problems. Fi-
nally, the mechanism to obtain and to manage the specifications should be practical.

This paper addresses the problem of obtaining a DW logical schema from a con-
ceptual one, and presents a formalism to declare implementation-related requirements
which may be used in automated logical design methods. The paper follows a similar
approach to [13], but proposes the specification of implementation-related guidelines
instead of workload information in order to obtain an accurate logical schema.

The proposed formalism consists of three types of design guidelines: (i) aggregate
materializations, (ii) horizontal fragmentation of facts (or cubes), (iii) vertical frag-
mentation of dimensions. These design guidelines enable the designer to formally
state some kinds of implementation related characteristics. For example: the degree of
fragmentation for dimension tables, the degree of fragmentation of fact tables, and the
materialization of aggregated data. The proposed guidelines are also simple enough to
be processed by an automated tool.

The declaration of design guidelines is part of a wider DW design environment,
which intends to automate most of the DW logical schema generation- [27] [28] [7].

The main contribution of this paper is the proposition of a formalism that allows
expressing implementation-related guidelines in a simple way and which can be used
to generate accurate DW relational schemas through semi-automated process.

The rest of this paper is organized as follows: Section 2 studies related work and
discusses some problems in the mappings between multidimensional and relational
models. Section 3 presents the formalism to declare design guidelines and discusses
criteria for their definition. Section 4 present the DW logical design environment and
section 5 concludes.

2 Relational Representations for Multidimensional Structures

This section presents first a brief state of the art on relational DW design techniques
that take as input conceptual multidimensional schemas, and then discusses some
problematic cases that would arise when building the DW relational schemas.

2.1 Existing techniques to relational DW design

There are several proposals addressing the generation of DW relational schemas from
conceptual ones- [13] [6] [3] [15] [29].

In- [6], the MD conceptual model is introduced and two algorithms are proposed in
order to map conceptual schemas to either relational or multidimensional logical
models. The former one is straightforward generating a star schema. In- [13], a meth-
odological framework based on the DF conceptual model is proposed. The paper pro-
poses to generate relational or multidimensional schemas starting from a conceptual
one. Despite not suggesting any particular model, the star schema is taken as example.
The paper also presents a design strategy based on a cost model that takes the DW
query workload and data volumes as input, and states the criteria to build vertical
fragments of fact tables in order to materialize them [14] [20]. Query workload is
stated as pairs <query, frequency> and it is based on the conceptual structures. Al-

Using Design Guidelines to Improve Data Warehouse Logical Design 3-3

though it is a powerful approach, it does not cover table maintenance considerations
(e.g. related to manage versioned monster dimensions- [18]), and does not state how to
determine the most relevant query workload pairs. Other proposals focus on star
schemas and are not conceived to generate complex DW structures [3] [15] [29].
Therefore they do not provide flexibility to apply different design strategies.
Other works in DW logical design do not take a conceptual schema as input, but build
the logical schema either from requirements or the source databases- [23] [5] [18]. In-
 [18], the author proposes to build star schemas from user requirements and presents
logical design techniques to solve frequent DW design problems. In- [23], the logical
schema is built from an Entity-Relationship schema of the source database. It de-
scribes several logical models, as star, snowflake and star-cluster, and presents the
main characteristics of each one. The proposition of- [5] also builds a logical schema
starting from a source database.

2.2 Motivating examples

This section presents a couple of examples that show potential problems that may
arise when the relational DW schema is build using a fixed logical design strategy.
Such limitations motivate the specification of additional information to take into ac-
count implementation-related aspects in the DW logical design stage. The examples
will be based on the following situation.

Example 1. Consider the case of a company that gives phone support to its customers
and wants to analyze the amount of time spent in call attentions.

The conceptual design phase leads to two dimensions: customers and, dates. Cus-
tomers dimension has four levels: state, city, customer and department, organized in
two hierarchies. Date dimension has two levels: year and month. The designer has
also identified a set of facts associated to events of attention support, which crosses
customers and dates dimensions, and which includes a measure representing the Du-
ration of an attention. Note that this measure (Duration) can also be seen as a dimen-
sion (by applying the generic dimensionality principle of Codd). Consequently it is
structured into two levels: minutes and ranges.

Figure 1 sketches the conceptual schema using CMDM graphical notation [7], but
can be used with other conceptual models.

It is interesting to note that, although existing proposals are strongly based in par-

ticular conceptual models, the resulting tables are quite similar. They consist of a fact
table for each conceptual fact and a dimension table for each conceptual dimension.
The following tables (S1) correspond to the Example 1, and follow a Star Schema
pattern:

(S1)� CUSTOMERS-(customer_id,� department,� city_id,� state_id,�

customer_name,� income,� city_name,� state_name,� country)�
DATES-(month,� year)�
SUPPORT-(month,� customer_id,� minutes)� �

We identify several problems when following a fixed strategy that always builds

star schemas.

3-4 Verónika Peralta, Raúl Ruggia

customercustomer
customer_id #
customer_name
income

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

monthmonth
month #

yearyear
year #

dates

departmentdepartment
department

customerscustomers

datesdates

durationdurationsssupport

durationduration
minutes #

rangerange
range #

durations

Figure 1. Conceptual schema. Dimension representation consists of levels in hierarchies,
which are stated as boxes with their names in bold followed by the items. The items followed
by a sharp (#) identify the level. Arrows between levels represent dimension hierarchies. Facts
are represented by ovals linked to the dimensions, which are stated as boxes. Measures are
distinguished with arrows.

First, in the case of complex or big dimensions (monster dimensions [18]), de-

normalization can cause great redundancy, and therefore maintenance problems. Par-
tially normalizing the dimension may be a trade-off between performance and redun-
dancy. Continuing with the example, consider that the CUSTOMERS table may have
hundreds of thousands customers, but only one hundred different cities. Data about
cities and states is extremely redundant and causes maintainability problems. In this
case, the following tables can be more appropriate:

(S2)� CUSTOMERS-(customer_id,� department,� city_id,� customer_name,income)�

CITIES-(city_id,� state_id,� city_name,� state_name,� country)� �

In addition, if the dimension data has to be versioned (to keep track of the

changes), again denormalization can cause maintainability problems. A good strategy
would be to maintain different tables gruping attributes that do not change, attributes
that slowly change and attributes that change more frequently. For example, if we
want to trace the history of the cities where a customer has lived, we can add addi-
tional tuples to the CUSTOMERS table and generalize the key (we add the version at-
tribute to do it). Then, the size of the table will increase and the performance of other
queries, e.g. by the department attribute, will degrade. To avoid this, we can store the
current city in the CUSTOMERS table and the historical values in a separate table with a
generalized key, as in S3:

(S3)� CUSTOMERS-(customer_id,� department,� city_id,� customer_name,�

income,� version)�
CUSTOMER_HISTORY-(customer_id,� version,� city_id)�
CITIES-(city_id,� state_id,� city_name,� state_name,� country)� �
SUPPORT-(month,� customer_id,� version,� minutes)�

Furthermore, when there are requirements to access different subsets of dimension
attributes, it is not necessary to design large and complex dimension tables. Consider
that there are two user profiles: those who are mainly interested in the geographical
distribution of calls, and those who supervise customers by their departments. The

Using Design Guidelines to Improve Data Warehouse Logical Design 3-5

fragmentation of the customer dimension in two tables: CUSTOMERS and CITIES as in
(S2) or (S3) is recommended.

Another problem arises when frequent queries require high-summarized data.

Query execution time is generally not satisfactory and we need to materialize aggre-
gated data. Consider for example these two types of requirements: (i) analyze calls of
the last months, filtering by customers, their cities and departments, and (ii) analyze
annual totals of previous years calls for each city. In order to satisfy these require-
ments the schema should materialize the following aggregation (in addition to the
SUPPORT table of S3):

(S4)� SUPPORT_YEAR_CITY-(year,� city_id,� minutes)�

In addition, when materializing an aggregate, additional dimension tables (with

the appropriate granularity) must be generated to assure correct results. These may be
an additional reason to partially normalize a dimension table. E.g. to join the
SUPPORT_YEAR_CITY table with city and state information we need the CITIES table
of schema (S2). If city and state data is also stored in the denormalized CUSTOMERS
table of schema (S1), we have excessive duplication of data. In this situation, schema
(S2) is more suitable.

Sometimes, some dimension attributes may be accessed more frequently than oth-

ers. Consider that the state_name attribute is queried in most of the queries, but the
country attribute is queried in only some specific ones. We can store different degrees
of redundancy for the different attributes, storing some of them in several tables, for
example, storing the state_name attribute in both dimension tables:

(S5)� CUSTOMERS-(customer_id,� department,� city_id,� customer_name,�

income,� version,� state_name)�
CITIES-(city_id,� state_id,� city_name,� state_name,� country)�

Usually, the most frequent queries access the most recent data, and other queries

access older data. In such cases, fact tables can be horizontally fragmented (and even-
tually aggregated) according to the user queries. Consider that calls of the last months
are queried grouped by customer, and calls of previous years are queried grouped by
year and city. We can build two tables: a fact table only with calls of previous years
and aggregated by year and city; and another fact table with the current year calls
without aggregation.

(S6)� CURRENT_SUPPORT-(month,� customer_id,� version,� minutes)�

HISTORICAL_SUPPORT-(year,� city_id,� minutes)�

Other aggregates may be necessaries because of complex requirements. Consider

the analysis of the quantity of customers that make long calls, classifying call dura-
tions in different ranges. In this case, the duration measure is used as dimension, and
the customer dimension is studied as a measure. This is a case of generic dimension-
ality [9] and is a hard query. It may be necessarily to materialize the aggregation:

(S7)� CUSTOMER_QUANTITY-(month,� city_id,� duration_range,� quantity)�

3-6 Verónika Peralta, Raúl Ruggia

In the generated schema (S7), the customer quantity measure is not additive, for
example for the dates dimension. If we have the customer quantity for the different
months of a year, we cannot sum these quantities to obtain the value corresponding to
the year because some customers can be counted several times. We have basically
two types of solutions: querying the detailed fact table asking for distinct customers
(with possible performance problems), and materializing several aggregates for the
most important crossings. For example, we can materialize annual totals (S8). Queries
with additivity problems are generally not considered when selecting which aggre-
gates to materialize. But they must be taken into account because they must be cor-
rectly solved even if they are not the most frequently executed. Additivity issues are
discussed in [19].

(S8)� ANUUAL_CUSTOMER_QUANTITY-(year,� city_id,� duration_range,� quantity)�

Finally, taking into account all the presented implementation-oriented considera-

tions, a DW designer should build the following relational schema:

(S)� DATES-(month,� year)�
CUSTOMERS-(customer_id,� department,� city_id,� customer_name,�

income,� version,� state_name)�
CUSTOMER_HISTORY-(customer_id,� version,� city_id)�
CITIES-(city_id,� state_id,� city_name,� state_name,� country)� �
CURRENT_SUPPORT-(month,� customer_id,� version,� minutes)�
HISTORICAL_SUPPORT-(year,� city_id,� minutes)�
CUSTOMERQUANTITY-(month,� city_id,� duration_range,� quantity)�
ANNUALCUSTOMERQUANTITY-(year,� city_id,� duration_range,� quantity)�

There are notorious differences between schema S and the first one generated by

the Star Schema based methodology (S1). The differences are a consequence of tak-
ing into account implementation-related information .

Therefore, it can be concluded that implementation related information is required

to obtain accurate relational DW schemas. Furthermore, design methods and tools
should use this kind of information in order to generate schemas that provide efficient
access to data, easy maintenance of data, and efficient use of storage resources.

At this point some questions arise:

- What kind of implementation-related information has to be stated to obtain
an accurate relational DW schema?

- How do DW design techniques should make use of these statements ?

The next sections address these issues.

3 A Formalism to specify Design Guidelines

We propose a formalism to represent information related to non-functional require-
ments, which provides guidelines to perform the relational DW logical design. This
formalism consists of the so-called design guidelines, which are of three types: Ag-

Using Design Guidelines to Improve Data Warehouse Logical Design 3-7

gregate Materialization, Horizontal Fragmentation of Facts and Vertical Fragmenta-
tion of Dimensions.

3.1 Aggregate materialization

During conceptual design, the analyst identifies the desired facts, which leads to the
implementation of fact tables at logical design. These fact tables can be stored with
different degrees of detail, i.e. maximum detail tables and aggregate tables. In the
example, for the support fact, we can store a fact table with detail by customers and
months, and another table with totals by departments and years. Giving a set of levels
of the dimensions that conform the fact, we specify the desired degree of detail to
materialize it.

We define a structure called cube that allows the designer to declare the degree of
detail for the materialization of each fact. A cube basically specifies the set of levels
of the dimensions that conform the fact.

Sometimes, they do not contain any level of a certain dimension, representing that
this dimension is totally summarized in the cube. However, the set can contain several
levels of a dimension, representing that the data can be summarized by different crite-
ria from the same dimension. A cube may have no measure, representing only the
crossing between dimensions (factless fact tables [18]).

A cube is a 4-uple <Cname, R, Ls, M> where Cname is the cube name that identi-
fies it, R is a conceptual schema fact, Ls is a subset of the levels of the fact dimen-
sions and M is an optional measure that can be either an element of Ls or null. The
SchCubes set, defined by extension, indicates all the cubes that will be materialized
(see). Definition 1

SCHCUBES-⊆-{-<CNAME, -R,-LS,-M>-/
CNAME-∈-STRINGS-∧-
R-∈-SCHFACTS-∧
LS-⊆-{-L-∈-GETLEVELS(D) -/-D-∈-GETDIMENSIONS(R) -}-∧
M-∈-(LS-∪-⊥)

}1

Definition 1 – Cubes. A cube is formed by a name, a fact, a set of levels of the fact dimensions
and an optional measure. SCHCUBES is the set of cubes to be materialized.

Figure 2 shows the graphical notation for cubes. There are two cubes: detail and
summary of the support fact of Example 1. Their levels are: month, customer and
duration, and year, city and duration, respectively. Both of them have duration as
measure.

1 SCHFACTS is the set of facts of the conceptual schema. The functions GETLEVELS and GETDIMENSIONS
return the set of levels of a dimension and the set of dimensions of a fact respectively.

3-8 Verónika Peralta, Raúl Ruggia

customermonth

duration

detail
(support)

cityyear

duration

summary
(support)

Figure 2. Cubes. They are represented by cubes, linked to several levels (text boxes) that indi-
cate the degree of detail. An optional arrow indicates the measure. The cube name and the fact
name (between brackets) are inside the cube.

Figure 2

3.2 Horizontal fragmentation of facts

A cube can be represented in the relational model by one or more tables, depending
on the desired degree of fragmentation. Horizontal fragmentation of relational tables
is a well known technique, which leads to smaller tables and to improve query per-
formance [25].

As an example, consider the detail cube of Figure 2 and suppose that most fre-

quent queries correspond to calls performed after year 2002. We can fragment the
cube in two parts, one to store tuples from calls after year 2002 and the other to store
tuples from previous calls. The tuples of each fragment must verify respectively:

− month-≥-“January-2002”
− month-<-“January-2002”

In order to ensure completeness while minimizing the redundancy, horizontal
fragmentation has to satisfy two properties: completeness and disjointness. A frag-
mentation is complete if each tuple of the original table belongs to one of the frag-
ments, and it is disjoint if each tuple belongs to only one fragment. As an example,
consider the following fragmentation:

− month-≥-“January-2002”
− month-≥-“January-1999” -∧-month-<-“January-2001”
− month-<-“January-2000”

The fragmentation is not complete because tuples corresponding to calls of year
2001 do not belong to any fragment, and it is not disjoint because tuples correspond-
ing to calls of year 1999 belongs to two fragments.

In a DW context, these properties are important to be considered but they are not
necessarily verified. If a fragmentation is not disjoint we will have redundancy that is
not a problem for a DW system. For example, we can store a fact table with all the
history and a fact table with the calls of the last year. Completeness is generally de-
sired at a global level, but not necessarily for each cube. Consider, for example, the
two cubes of . We define a unique fragment of the detail cube (with all the
history) and a fragment of the summary cube with the tuples after year 2002. Al-
though the summary cube fragmentation is not complete, the history tuples can be

Using Design Guidelines to Improve Data Warehouse Logical Design 3-9

obtained from the detail cube performing a roll-up, and there is no loose of informa-
tion.

We define a structure called strip that allows the designer to declare how to frag-
ment a cube. A fragmentation is expressed as a set of strips, each one represented by a
predicate over the cube instances.

SCHSTRIPS-⊆-{-<SNAME, -C, -PRED>-/

SNAME-∈-STRINGS-∧
C-∈-SCHCUBES-∧-
PRED-∈-PREDICATES(GETITEMS(C))

}2

Definition 2 – Strips. A strip is formed by a name, a cube and a boolean predicate expressed
over the items of the cube levels.

Figure 3 shows the graphical notation for strips. There are two strips for the detail
cube: current and history, for calls posteriors and previous to 2002, respectively.

customermonth

duration

detail
(support)

• current: month ≥ Jan-2002
• history: month < Jan-2002

Figure 3 – Strips. The strip set for a cube is represented by a callout containing the strip names
followed by their predicates.

3.3 Vertical fragmentation of dimensions

The guideline called fragment allows the designer to specify which levels of each
dimension he wishes to store together. A fragment basically consists of a set of levels
of a dimension. This may lead to star schema, denormalizing all the dimensions, or
conversely he may prefer a snowflake schema, normalizing all the dimensions [23], or
may choose intermediate options. This decision can be made globally, regarding all
the dimensions, or specifically for each dimension.

Given two levels of a fragment (A and B) we say that they are hierarchically re-
lated if they belong to the same hierarchy or if there exists a level C that belongs to
two hierarchies: one containing A and the other containing B. A fragment is valid
only if all its levels are hierarchically related. For example, consider a fragment of the
customers dimension of Example 1 containing only city and department levels. As the
levels do not belong to the same hierarchy, storing them in the same table would gen-

2 PREDICATES(A) is the set of all possible boolean predicates that can be written using elements of the set
A. The GETITEMS function returns the set of items of the cube levels.

3-10 Verónika Peralta, Raúl Ruggia

erate the cartesian product of the levels’ instances. However, if we include the cus-
tomer level to the fragment, we can relate all levels, and thus the fragment is valid.

SCHFRAGMENTS-⊆-{-<FNAME, -D, -LS>-/

FNAME-∈-STRINGS-∧
D-∈-SCHDIMENSIONS-∧
LS-⊆-GETLEVELS(D) -∧
∀A,B-∈-LS-.-(

<A,B>-∈-GETHIERARCHIES(D) -∨
<B,A>-∈-GETHIERARCHIES(D) -∨
∃C-∈-LS-.-(<A,C>-∈-GETHIERARCHIES(D) -∧-<B,C>-∈-GETHIERARCHIES(D)))

}3

Definition 3 – Fragments. A fragment is formed by a name, a dimension and a sub-set of the
dimension levels that are hierarchically related.

In addition, the fragmentation must be complete, i.e. all the dimension levels must
belong to at least one fragment to avoid losing information. If we do not want to du-
plicate the information storage for each level, the fragments must be disjoint, but this
is not a requirement. The designer decides when to duplicate information according to
his design strategy.

a) b) c)

customercustomer
customer_id #
customer_name
income
version #

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

departmentdepartment
department

customercustomer
customer_id #
customer_name
income
version #

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

departmentdepartment
department

customercustomer
customer_id #
customer_name
income
version #

customers

citycity
city_id #
city_name

statestate
state_id #
state_name
country

departmentdepartment
department

Figure 4. Alternative fragmentations of customers dimension. The first one has only one
fragment with all the levels. The second alternative has two fragments, one including state and
city levels (continuous line), and the other including the customer and department levels (dotted
line). The last alternative keeps the customer level in two fragments (dotted and continuous
line).

3 SCHDIMENSIONS is the set of dimensions of the conceptual schema. The GETHIERARCHIES function re-
turns the pairs of levels that conform the dimension hierarchies [7].

Using Design Guidelines to Improve Data Warehouse Logical Design 3-11

Graphically, a fragmentation is represented as a coloration of the dimension lev-
els. The levels that belong to the same fragment are bordered with the same color (or
pattern). shows three alternatives to fragment the customers dimension. Figure 4

3.4 Criteria specifying the guidelines

By means of the guidelines, the designer defines:
- A set of cubes for each fact.
- A set of strips for each cube.
- A set of fragments for each dimension.

In order to specify the guidelines, the designer should consider performance and

storage constraints as well as use and maintenance requirements.

It is not feasible to materialize all possible cubes for a fact, then, the decision is a

trade-off between storage and performance constraints. It is reasonable to materialize
the cube with the lowest granularity to do not loose information, and the cubes that
improve performance for the most frequent or complex queries. Queries with additiv-
ity problems must be also considered, despite of the query access frequencies, be-
cause sometimes, summary data cannot be obtained from detailed data.

To perform horizontal fragmentations of a cube, the designer has to study two fac-

tors: table size and the subset of tuples that are frequently queried together. The more
strips the designer defines, the lower size they will have, and then the better response
time for querying them; but queries that involve several strips are worsen. The deci-
sion must be based on the requirements, looking at which data is queried together.

The manner to fragment the dimensions is related to the chosen design pattern.

The definition of fragments with several levels (denormalization) achieves better
query response time but increases redundancy. If dimension data changes slowly, re-
dundancy is not a problem. But if dimension data changes frequently and we want to
keep the different versions, the maintenance cost grows. This guideline tries to find a
balance between query response time and redundancy. Data that is not queried to-
gether is a good indicator in order to fragment the dimension.

4 The DW logical design environment

In this section we present an environment for DW logical design. Our underlying de-
sign methodology takes as input the source database and a conceptual multidimen-
sional schema. Then, the design process consists of three main tasks:
• Refine the conceptual schema adding design guidelines and obtaining a "refined

conceptual schema".
• Map the refined conceptual schema to the source database. The mappings indi-

cate how to calculate each multidimensional structure from the source database
 [27].

3-12 Verónika Peralta, Raúl Ruggia

• Generate the relational DW schema according to the refined conceptual schema
and the source database. For the generation we propose a rule-based mechanism
in which the DW schema is built by successive application of transformations to
the source schema [22]. Each rule determines which transformation must be ap-
plied according to the design conditions given by the refined conceptual schema,
the source database and the mappings between them, i.e., when certain design
condition is fulfilled, the rule applies certain transformation [28].

This framework has been prototyped [26]. The system applies the rules and auto-
matically generates the logical schema by executing an algorithm that considers the
most frequent design problems suggested in existing methodologies and comple-
mented with practical experiences.

Figure 5 shows the proposed environment.

refined
conceptual schema

source
relational
schema

DW
relational
schema

design
guidelines

conceptual schema
rules

REFINEMENT
(task 1)

MAPPING
(task 2)

GENERATION
(task 3)

Figure 5. DW logical design environment. Guidelines refine the conceptual schema (task 1).
Mappings indicate how to calculate each conceptual structure from the source database (task 2).
The refined conceptual schema, the source database and the mappings between them are the
input to the automatic rule-based mechanism that generates the DW relational schema (task 3).

5 Conclusions

Data Warehouse logical design involves defining relational structures that satisfy in-
formation requirements as well as implementation related ones (i.e. performance and
maintainability). While the first kind of requirements is represented by means of the
conceptual schema, the second one lack on most of existing methodologies.

This paper presented a formalism for specifying implementation related require-
ments (design guidelines), which enables to complement the conceptual schema with
declarations of Aggregate Materializations, Horizontal Fragmentation of Facts and
Vertical Fragmentation of Dimensions.

The use of guidelines constitutes a flexible way to express design strategies and
properties of the DW in a high-level manner. This allows the application of different

Using Design Guidelines to Improve Data Warehouse Logical Design 3-13

design styles and techniques, generating the DW logical schema following the de-
signer approach. Furthermore, these three guidelines we achieve a trade-off between
the expressiveness and the property of being automatically processed. Although the
proposed guidelines enable to cope with several design problems, the set of design
guidelines does not intend to be complete; hence it should be extended and comple-
mented with other proposals like [13].

The aforementioned design guidelines have been implemented in the context of a
CASE environment in the context of projects of the CSI Group [10]. Current work
consists in the extension of the environment to support multiple source databases, and
to manage all the metadata with a CWM [24] repository.

References
[1] Abello, A.; Samos, J.; Saltor, F.: "A Data Warehouse Multidimensional Data Models Clasification".

Technical-Report LSI-2000-6. Universidad de Granada, 2000.

[2] Adamson, C.; Venerable, M.: “Data Warehouse Design Solutions”. J. Wiley-&-Sons, Inc.1998.
[3] Ballard, C.; Herreman, D.; Schau, D.; Bell, R.; Kim, E.; Valncic, A.: “Data Modeling Techniques for

Data Warehousing”. SG24-2238-00. IBM-Red-Book. ISBN-number-0738402451. 1998.
[4] Batini, C.; Ceri, S.; Navathe, S.: “Conceptual Database Design- an Entity Relationship Approach”.

Benjamin-Cummings, 1992.
[5] Boehnlein, M.; Ulbrich-vom Ende, A.:”Deriving the Initial Data Warehouse Structures from the

Conceptual Data Models of the Underlying Operational Information Systems". DOLAP’99, USA,
1999.

[6] Cabibbo, L.; Torlone, R.:"A Logical Approach to Multidimensional Databases", EDBT'98, Spain,
1998.

[7] Carpani, F.; Ruggia, R.: “An Integrity Constraints Language for a Conceptual Multidimensional
Data Model”. SEKE’01, Argentina, 2001.

[8] Chaudhuri, S.; Dayal, U.: "An overview of Data Warehousing and OLAP technology". SIGMOD-
Record, 26(1), 1997.

[9] Codd, E.F.; Codd, S.B.; Salley, C.T.: "Providing OLAP (on-line analytical processing) to user- ana-
lysts: An IT mandate". Technical-report, 1993.

[10] CSI Group, Universidad-de-la-República, Uruguay. URL: -http://www.fing.edu.uy/inco/grupos/csi/

[11] Elmasri, R.; Navathe, S.: “Fundamentals of Database Systems. 2nd-Edition”. Benjamin-Cummings,
1994.

[12] Golfarelli, M.; Maio, D.; Rizzi, S.:"Conceptual Design of Data Warehouses from E/R Schemes.",
HICSS’98, IEEE, Hawaii,1998.

[13] Golfarelli, M. Rizzi, S.: ”Methodological Framework for Data Warehouse Design.", DOLAP’98,
USA, 1998.

[14] Golfarelli, M. Maio, D. Rizzi, S.:”Applying Vertical Fragmentation Techniques in Logical Design of
Multidimensional Databases”. DAWAK’00, UK, 2000.

[15] Hahn, K.; Sapia, C.; Blaschka, M.: ”Automatically Generating OLAP Schemata from Conceptual
Graphical Models", DOLAP’00, USA, 2000.

[16] Hüsemann, B.; Lechtenbörger, J.; Vossen, G.:"Conceptual Data Warehouse Design". DMDW’00,
Sweden, 2000.

[17] Inmon, W.: “Building the Data Warehouse”. John-Wiley-&-Sons, Inc. 1996.

[18] Kimball, R.:"The Datawarehouse Toolkit". John-Wiley-&-Son, Inc., 1996.

[19] Lenz, H. Shoshani, A.: "Summarizability in OLAP and Statistical Databases”. Conf. on-Statistical-
and-Scientific-Databases, 1997.

http://www.fing.edu.uy/inco/grupos/csi/

3-14 Verónika Peralta, Raúl Ruggia

[20] Maniezzo, V.; Carbonaro, A.; Golfarelli, M.; Rizzi, S.: “ANTS for Data Warehouse Logical De-
sign”. 4th-Metaheuristics-International-Conference, Porto, pp. 249-254, 2001.

[21] Markowitz, V. Shoshani, A.: “On the Correctness of Representing Extended Entity-Relationship
Structures in the Relational Model”. SIGMOD’89, USA, 1989.

[22] Marotta, A. Ruggia, R.: “Data Warehouse Design: A schema-transformation approach”.
SCCC’2002. Chile. 2002.

[23] Moody, D.; Kortnik, M.: “From Enterprise Models to Dimensionals Models: A Methodology for
Data Warehouse and Data Mart Design”. DMDW’00, Sweden, 2000.

[24] Object Management Group: “The Data Warehousing, CWM and MOF Resource Page”. URL:-
http://www.omg.org/cwm/

[25] Ozsu, M.T. Valduriez, P.: “Principles of Distributed Database Systems”. Prentice-Hall-Int. Editors.
1991.

[26] Peralta, V.: “Diseño lógico de Data Warehouses a partir de Esquemas Conceptuales Multidimensio-
nales”. Technical-Report. Universidad-de-la-República, Uruguay. TR-0117. 2001.

[27] Peralta, V.; Marotta, A.; Ruggia, R.: “Towards the Automation of Data Warehouse Design”. Techni-
cal-Report. Universidad-de-la-República, Uruguay. TR-0309. 2003.

[28] Peralta, V.; Illarze, A.; Ruggia, R.: “On the Applicability of Rules to Automate Data Logical De-
sign”. DSE’03, Austria, 2003.

[29] Phipps, C.; Davis, K.: "Automating data warehouse conceptual schema design and evaluation".
DMDW'02, Canada, 2002.

http://www.omg.org/cwm/

	Existing techniques to relational DW design
	Motivating examples
	Aggregate materialization
	Horizontal fragmentation of facts
	Vertical fragmentation of dimensions
	Criteria specifying the guidelines
	References

