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Preface
The 2011 ECML-PKDD Discovery Challenge deals with the learning problems from the
domain of recommender systems. Datasets and problems designed by the organizers of this
Challenge, originate from the VideoLectures.Net site, a free and open access multimedia
repository of video lectures, mainly of research and educational character. The lectures are
given by distinguished scholars and scientists at the most important and prominent events
like conferences, summer schools, workshops and science promotional events from many
fields of science. The Challenge was organized with multiple aims in mind: to improve the
current websites recommender system, discover new algorithms or computational workflows
and provide new dataset for the research community. It encompassed two tasks: first one re-
lated to new-user/new-item recommendation problem, and the second task in which ”normal
mode”, click-stream based recommendation is simulated. Dataset for the challenge is some-
what specific as it does not include any explicit nor implicit user preference data. Instead,
implicit profiles embodied in viewing sequences have been transformed into a graph of lec-
ture co-viewing frequencies and pooled viewing sequences. The data also includes content
related information: topic taxonomy, lecture titles, descriptions and slide titles, authors’ data,
institutions, lecture events and timestamps. The dataset (including the leaderboard and the
test set) will remain publicly available for experimentation after the end of the challenge.

Over 300 teams registered for the challenge, resulting in more than 2000 submitted re-
sults for the evaluation from 62/22 active teams for task 1 and task 2, respectively. The teams
approached the tasks with diverse algorithms and in several cases novel feature construction
approaches. The following are the winners of the challenge:

Task 1 Cold-start problem:

• Alexander Dýakonov (1st place)

• Eleftherios Spyromitros-Xioufis, Emmanouela Stachtiari, Grigorios Tsoumakas,
and Ioannis Vlahavas (2nd place)

• Martin Možina, Aleksander Sadikov, and Ivan Bratko (3rd place)

Task 2 Pooled sequence recommendation:

• Alexander Dýakonov (1st place)

• Javier Kreiner (2nd place)

• Vladimir Nikulin (3rd place)

The Discovery Challenge workshop at the ECML-PKDD 20011 conference in Athens is
aimed for discussion of the results, approaches, VL.net dataset and lecture recommendation
setting in general. We wish to express our gratitude to:

• the participants of the challenge,

• the authors of the submitted papers,

• Viidea Ltd for disclosing the data on video lectures and for the technical support

Zagreb
August 2011

Tomislav Šmuc
Nino Antulov-Fantulin

Mikołaj Morzy
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This workshop was supported by the European Union Collaborative Project e-LICO (e-
LICO: An e-Laboratory for Interdisciplinary Collaborative Research in Data Mining and
Data-Intensive Science GA 231519). The partners of e-LICO are:

• University of Geneva - Co-ordinator (Switzerland)

• Institut National de la Sant et de la Recherche Mdicale (France)

• Jošef Stefan Institute (Slovenia)

• National Hellenic Research Foundation (Greece)

• Poznań University of Technology (Poland)

• Rapid-I GmbH (Germany)

• Rudjer Bošković Institute (Croatia)

• University of Manchester (UK)

• University of Zurich (Switzerland)
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ECML-PKDD 2011 Discovery Challenge Overview

Nino Antulov-Fantulin1, Matko Bošnjak1, Martin Žnidaršič2, Miha Grčar2, Miko laj
Morzy3, and Tomislav Šmuc1

1 Rudjer Boškovic Institute, Zagreb, Croatia
2 Jožef Stefan Institute, Ljubljana, Slovenia

3 Poznań University of Technology, Poznań, Poland

Abstract. This year’s Discovery Challenge was dedicated to solving of the
video lecture recommendation problems, based on the data collected at Vide-
oLectures.Net site. Challenge had two tasks: task 1 in which new-user/new-
item recommendation problem was simulated, and the task 2 which was a sim-
ulation of the clickstream-based recommendation. In this overview we present
challenge datasets, tasks, evaluation measure and we analyze solutions and
results.

1 General description of the challenge

VideoLectures.Net (VL.Net)4 is a free and open access multimedia repository of video
lectures, mainly of research and educational character. The lectures are given by
distinguished scholars and scientists at the most important and prominent events
like conferences, summer schools, workshops and science promotional events from
many fields of science. The website is aimed at promoting science, exchanging ideas
and fostering knowledge sharing by providing high quality didactic contents not only
to the scientific community but also to the general public. All lectures, accompanying
documents, information and links are systematically selected and classified through
the editorial process taking into account also users’ comments.

This challenge was organized through the support of the EU project e-LICO5.
The aims of the challenge are multifold: from research in recommender systems, im-
provement of the current recommender system of the VL.Net site, to provision of
the problem and datasets to the research community. The challenge consisted of two
main tasks. Due to the nature of the problem, each of the tasks has its own merit:
task 1 simulates new-user and new-item recommendation cold-start mode, while task
2 simulates clickstream (implicit preference) based recommendation. Due to the pri-
vacy preserving constraints, data from VL.Net website includes neither explicit nor
implicit user profiles. Instead, implicit profiles embodied in viewing sequences (click-
streams) have been transformed, so that no individual viewing sequence information
can be revealed or reconstructed. This transformed, viewing related data includes: i)
lecture co-viewing frequencies ii) pooled viewing sequences (whose construction will
be described later) and is accompanied with rich lecture description related informa-
tion available: lecture category taxonomy, lecture names, descriptions and slide titles
(where available), authors, institutions, lecture events and timestamps. Unlike most
of the other publicly available recommendation problems datasets, this dataset con-
tains original content, names and taxonomy. The dataset of the challenge6 (including

4 http://videolectures.net
5 http://www.e-lico.eu
6 http://lis.irb.hr/challenge/
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the leaderboard and the test set), together with task and evaluation descriptions is
publicly available for the non-commercial research purposes [28].

We have ensured prize-sponsoring (5500e) from the European Commission through
the e-LICO EU project, 2009-2012 whose primary goal is to build a virtual laboratory
for interdisciplinary collaborative research in data mining and data-intensive sciences.

The prizes, for each of the tracks are:

– 1500e for the first place

– 700e for the second place

– 300e for the third place

The prizes, for the Workflow contest are:

– 500e for the best workflow

– Free admission to RapidMiner Community Meeting and Conference 2012 for the
best RapidMiner workflow (sponsor: Rapid-I)

The challenge has been hosted on TunedIt7.

2 Background

Recommender systems have become an important research area since the first appear-
ance of the information overload for the typical user on the internet. Personalized
recommender systems take user profiles into account when the prediction for par-
ticular user and item is generated. The prediction techniques for the recommender
systems [1–3] can be divided into three main categories: content-based, collaborative-
based and hybrid-based prediction techniques.

Content-based techniques [4, 5] are based on interactions between a particular user
and all the items in the system. Content-based recommender systems use information
about items and the user’s past activities on items in order to recommend similar
items.

Collaborative filtering techniques [6–8] analyze interactions between all users and
all items through users’ ratings, clicks, comments, tags, etc. Collaborative filtering
recommender systems do not use any specific knowledge about the items except
their unique identifiers. These prediction techniques are domain-independent and
can provide serendipity recommendations for users. However, collaborative filtering
needs sufficient amount of collaborative data in order to recommend for the new user
or the new item (the cold-start problem) [9, 10].

Hybrid prediction techniques [11–13] merge collaborative-based and content-based
techniques and are more resistant to cold start problems. This challenge was designed
to tackle the problems of cold start and hybridization of content and collaborative
data in realistic setting of the VL.Net website. In comparison to recommender chal-
lenges of recent years (Netflix challenge, KDDCup challenge 2008, KDDCup challenge
2011) this challenge relies on indirect collaborative data, and is more focussed on uti-
lization of content and descriptions of items.

7 http://tunedit.org
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3 Description of the challenge dataset

The data snapshot which is the basis for the VideoLectures.Net dataset was taken in
August 2010. At that time, the database contained 8 105 video lectures. 5 286 lectures
were manually categorized into taxonomy of roughly 350 scientific topics such as Arts,
Computer Science, and Mathematics.

VideoLectures.Net dataset includes:

1. Data about lectures: every lecture has a title, type (e.g. lecture, keynote, tu-
torial, press conference, etc.) language identifier (e.g. en, sl, fr, etc.), number
of views, publication date, event identifier, and a set of authors. Many lectures
come with a short textual description and/or with slide titles from the respective
presentations. Specifically, 5 724 lectures are enriched with this additional un-
structured data. The training part of data contains also lecture-pairs coviewing
frequencies (CVS - common view score), and pooled sequences related collabo-
rative data, which is not available for the set of test lectures. Test set contains
lectures with publication date after July 01, 2009, which are used for task 1
scoring. Neither CVS nor pooled viewing sequences containing these lectures are
available in the training data.

2. Data about authors: each author has a name, e-mail address, homepage ad-
dress, gender, affiliation, and the respective list of lectures. The dataset contains
8 092 authors. The data about the authors is represented by authors’ names,
VL.Net url, e-mail, homepage, gender, affiliation, and pairwise relations to the
lectures delivered by the author at VL.Net

3. Data about events: a set of lectures can be associated with an event (e.g. a
specific conference). In a similar fashion, events can be further grouped into meta-
events. An event is described in a similar way as a lecture: it has a title, type
(e.g. project, event, course), language identifier, publication date, and a meta-
event identifier. The VideoLectures.Net dataset contains data about 519 events
and meta-events (245 events are manually categorized, 437 events are enriched
with textual descriptions).

4. Data about the categories: The data about the categories is represented in
the shape of the scientific taxonomy used on VL.Net. The taxonomy is described
in a pairwise form, using parent and child relations.

5. View statistics: The VideoLectures.Net software observes the users accessing
the content. Each browser, identified by a cookie, is associated with the sequence
of lectures that were viewed in the identified browser. Temporal information,
view durations, and/or user demographics are not available. The dataset contains
anonymized data of 329 481 distinct cookie-identified browsers. The data about
view statistics is given in the form of frequencies: (i) for a pair of lectures viewed
together (not necessarily consecutively) with at least two distinct cookie-identified
browsers; (ii) for pooled viewing sequences - triplets of lectures viewed together
prior to a given sequence of ten lectures. This is a special construct based on
aggregation of click-streams, which is used for training and scoring in task 2.

3.1 Creating pooled viewing sequences

In order to comply with privacy-preserving constraints, lecture viewing sequences
for the task 2 have been transformed into what we named pooled sequences. Pooled

9
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viewing sequence is given by the set of three lectures on the left side (triplet) and a
ranked list of at most ten lectures on the right side. The set of three lectures does
not imply an ordering, it is merely a set that comes upstream of lectures given on
the right of a pooled viewing sequence. Ranked list on the right side of some pooled
viewing sequence is constructed from all the clickstreams with the particular triplet
on the left side. The transformation process for the construction of pooled viewing
sequences is given below.

Consider a sequence of viewed lectures:

id1 → id7 → id2 → id1 → id4 → id5 → id6 → id3

We first filter out duplicates (here - id1):

id1 → id7 → id2 → id4 → id5 → id6 → id3

Then, we determine all possible unordered triplets in the sequence. For each triplet,
cut the sequence after the right-most lecture from the triplet.

In the above example, if {id1, id4, id5} is the triplet, the sequence is cut right after
id5. Finally, increase triplet-specific counts for all the lectures after the cut. In the
above example, given the triplet {id1, id4, id5}, the triplet-specific counts for id6 and
id3 are increased:

{id1, id4, id5} → id6 : 1, id3 : 1

Suppose there is another click-stream sequence, that amongst others, contains un-
ordered triplet id1, id4, id5 and that id6, id3, and id7 are lectures appearing after the
cut. Then the counts for the {id1, id4, id5} are increased as follows:

{id1, id4, id5} → id6 : 2, id3 : 2, id7 : 1

3.2 Creating lecture co-viewing frequencies

Consider two sequences of viewed lectures:

id1 → id7 → id2 → id1,

id2 → id3 → id7.

We first filter out duplicates in sequences:

id1 → id7 → id2,

id2 → id3 → id7.

Then, we determine lecture co-viewing frequencies (CVS):

CVS(id1, id2) = 1,CVS(id1, id7) = 1,

CVS(id2, id7) = 2,CVS(id2, id3) = 1,

CVS (id3, id7) = 1.

10
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Table 1: Train-test data statistics

Moment t2 05.08.2010.

Moment t1 01.07.2009.

Total number of lectures in the train set 6983

Total number of lectures in the test set 1122

Number of common-view pairs in the train set 363 880

Number of common-view pairs in the test set 18 450

3.3 A train-test split logic

Basic statistics of lectures in the training and test sets are given in Table 1. Common
view score matrix CV S is a lecture co-viewing frequency matrix collected at the
site at some moment t2 and represents lecture viewing adjacency matrix of lecture-
lecture graph G at the moment t2. G is undirected weighted graph of all lectures.
Each lecture in this graph has associated temporal information - date of publishing
at the VideoLectures.Net site. We partition G using the publishing date by some
threshold t1, into two disjoint graphs G1 and G2: each lecture in G1 has publishing
date before the date threshold while each lecture in G2 has publishing date after
the date threshold t1. We define pair common viewing time as a period that two
lectures spend together in the system. All lecture pairs (xi, xj) : xi ∈ G1, xj ∈ G1

have pair common time strictly greater than (t2 − t1) value and all lecture pairs
(xi, xj) : xi ∈ G1, xj ∈ G2 have pair common time strictly less than (t2 − t1) value.

In oder to make proper the training and test set split based on G1 and G2, we
had to ensure similar distribution of pair common times in both training and test
sets. We have divided nodes from subgraph G2 in randomized fashion (with some
constraints) into two approximately equal sets (G21, G22) and we have appended G21

to the training set. Now, the subset of lecture pairs (xi, xj) : xi ∈ G1, xj ∈ G21 from
the training set has similar distribution of pair common times that overlaps with
times (xi, xj) : xi ∈ G1, xj ∈ G22 from the test set. Figure 1 gives the distribution of
edges related to the graphs G1, G22.

Finaly, the train-test split logic was implemented through the series of steps:

1. Split the lectures by publication date into two subsets: old (publication date <
July 01, 2009) and new (publication date ≥ July 01, 2009). Put the old lectures
into the training set;

2. Move all new lectures with parent id occuring in the old lecture subset to the
training set;

3. Split the rest of the new lectures randomly into two disjoint sets of similar car-
dinality, taking care of their parent ids:
(a) lectures with the same parent id can be only in one of the sets;
(b) lectures without parent id are just randomly divided between two sets.

4. Finally, add one of the disjoint sets to the training set; the other disjoint set
represents the test set.

At the end of the process, we get the training set consisting of all the lectures
with publishing date prior to July 01, 2009, together with approximately half of the
lectures after the aforementioned date, and the test set consisting of the rest of the
lectures published after the aforementioned date.
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Fig. 1: Distribution of edges of lecture-lecture graph with adjacency matrix of co-
ocurrences between lectures. (a) for all lecture pairs (xi, xj) : xi ∈ G1, xj ∈ G22 (b)
for all lectures pairs (xi, xj) : xi ∈ {G1 ∪G21}, xj ∈ {G1 ∪G21}

4 Challenge task definiton

Due to the nature of the problem, each of the tasks has its own merit: task 1 sim-
ulates new-user and new-item recommendation (cold start mode); task 2 simulates
clickstream-based (implicit preference) recommendation.

4.1 The cold start task

The first task of the challenge is related to solving the so called cold start problem,
commonly associated with pure collaborative filtering (CF) recommenders. Generally,
cold start recommending quality should be measured through user satisfaction surveys
and analysis. For the challenge, one needs a quantitative measure and a simulated
cold start situation. In order to be able to score solutions, new video lectures are
those that entered the site more recently, but for which there is already some viewing
information available.

In this task, we assume that the user has seen one of the lectures which are
characterized by the earlier times of entering the site (old lectures). As a solution for
this task a ranked list of lectures from the new lectures set, is to be recommended
after viewing some of the old lectures. The length of the recommended list is fixed at
30 lectures. Overall score for the submission/solution is based on the mean average
R-precision score (MARp) (explained in Section 5).

Solution for the task 1 is based on ranking of lectures according to withheld lec-
ture co-viewing frequencies in descending order. Suppose, the co-viewing frequencies
(CVS) for some old lecture id1 to new lectures {id2, id3, id4, id5} are:

CVS (id1, id2) = 12,CVS(id1, id3) = 2,

CVS (id1, id4) = 43,CVS(id1, id5) = 3,

then we construct solution ranked list for old-lecture id1:

id1 : id4, id2, id5, id3.

12
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4.2 Pooled lecture viewing sequences task

In task 2 contestants are asked to recommend a ranked list of ten lectures that should
be recommended after viewing a set of three lectures. In contrast to the task 1, this
is the situation close to typical recommendation scenario (submission and evaluation
for the task 2). Solution for the task 2 is based on ranking of lectures according to
frequencies in withheld pooled lecture viewing sequences in descending order. Test
lectures from the task 1 are in this case not included into training pooled sequences,
but can be a part of the ranked solution list for the task 2.

Suppose, there is a pooled lecture viewing sequences:

{id1, id4, id5} → id6 : 5, id3 : 4, id7 : 2, id2 : 1,

then we construct solution ranked list for triplet {id1, id4, id5}:

{id1, id4, id5} → id6, id3, id7, id2.

5 Challenge evaluation function

Taking into account relative scarcity of items available for learning, recommending
and evaluation (esp. in case of cold start task), we have defined an R-precision variants
of standard evaluation measures in information retrieval p@k and MAP . The overall
score of the submission is mean value over all queries R (recommended lists r) given
in the test sets:

MARp =
1

|R|
∑

r∈R

AvgRp(r)

Average R-precision score - AvgRp(r) for a single recommended ranked list r is
defined as:

AvgRp(r) =
∑

z∈Z

Rp@z(r)

|Z|

where Rp@z(r) is R-precision at some cut-off length z ∈ Z. Rp@z(r) is defined as
the ratio of number of retrieved relevant items and relevant items at the particular
cut-off z of the list:

Rp@z(r) =
|relevant ∩ retrived |z

|relevant |z
=

|relevant ∩ retrived |z
min(m, z)

Number of relevant items at cut-off length z is defined as min(m, z), where m is
the total number of relevant items. When m ≤ z, number of relevant items at z is m,
while for other situations it is limited to top z relevant items from the (real) solution
ranked list s. A special situation happens when there are more equally relevant items
at the same rank (ties) at the cut-off length of the s list. In that case, any of these
items are treated as relevant (true positive) in calculating Rp@z(r). For the task 1,
cut-off lengths z for the calculation of MARp are z ∈ {5, 10, 15, 20, 25, 30}. For the
task 2, cut-off lengths z for the calculation of MARp are z ∈ {5, 10}.

13
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(a) (b)

Fig. 2: Number of submissions per days for (a) task 1 (b) task 2

Why average R-precision?

We have introduced R-precision because it is more apt to our situation: it adjusts to
the size of the set of relevant documents. Typically, in information retrieval tasks one
has to filter and rank from a large pool of both relevant and irrelevant items. This is
not the case with the simulated cold start situation of this challenge. As an example,
if there were only 4 items (lectures) in the whole collection relevant to the particular
query, a perfect recommender system would score 1, measured by Rp@10, whereas
its p@10 would be only 0.4. Using this measure for our application makes more sense,
as the number of relevant items can vary from 1 to above 30, and in such situations
Rp@z expresses the quality of retrieval more fairly at some predefined retrieval (cut-
off) length, than p@z. The reason why we use AvgRp(r) over set of different Rp@z,
is that through the averaging we can also take into account ranking and at the same
time improve the ability to differentiate between similar solutions (recommenders).

We have also considered MAP (mean average precision) measure, which is the
closest to the proposed measure. However, MAP does not take into account abso-
lute ranking positions of recommended items since permutations of relevant or true
positive items in recommended list do not affect MAP score.

Normalized discounted cumulative gain (NDCG) [16, 17] takes into account that
relevant documents are more useful when apperaing earliear in a recommendation
list. It is the most common measure used for ranking the results of the search list in
information retrieval. This measure has also been used in other challenges where the
main task was to learn ranking [14, 15].

If ranking order is not to be so strict for the top-n item recommendations [18], the
”granularity” of ranking can be relaxed. This is the main reason why we are using
MARp measure instead of the NDCG. Proposed measure MARp takes into account
absolute ranking positions with granularity of five items. This granularity was chosen
after studying the ranking-recall influence on recommender system evaluation.

6 Challenge submissions results

ECML-PKDD 2011 Discovery Challenge started on 18th of April and ended on 8th of
July 2011. The competition attracted significant number of participants: 303 teams

14
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(a)

(b)

Fig. 3: (a) The MARp scores of final submissions for task 1. (b) Difference between
MARp preliminary score and the MARp final score for task 1.

with 346 members, with 62/22 active teams per task. More than 2000 submissions
were sent and best approaches outperformed baseline solution several times.

Winners of the challenge for task 1 are:

1. D’yakonov Alexander, Faculty of Computational Mathematics and Cybernetics,
Moscow State University (Username: ”D’yakonov Alexander”)

2. Eleftherios Spyromitros-Xioufis and Emmannouela Stachtiari, Department of In-
formatics, Aristotle University of Thessaloniki (Username: ”lefman”)

3. Martin Možina, Faculty of Computer and Information Science, University of
Ljubljana, Slovenia (Username: ”Nitram”)

Winners of the challenge for task 2 are:

1. D’yakonov Alexander, Faculty of Computational Mathematics and Cybernetics,
Moscow State University (Username: ”D’yakonov Alexander”)

2. Javier Kreiner, University of Trento, Italy (Username: ”meridion”)
3. Vladimir Nikulin, Department of Mathematics, The University of Queensland,

Australia (Username: ”UniQ”)

The final scores, for the teams that scored better than the random recommender,
are presented in the Figures 3 and 4, for each of the tasks respectivelly. The scores are
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(a) (b)

Fig. 4: (a) the MARp scores of final submissions for task 2. (b) Difference between
MARp preliminary score and the MARp final score for task 2.
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Fig. 5: Number of queries in the solution vs. AvgRp scores for the winning entries (a)
task 1, (b) task 2

.

accompanied with the graphs of differences between preliminary MARp score on the
leaderboard set and the final MARp score on the test set. For the task 1, from Figure
3, we can conclude that majority of the teams had positive difference scores, which
may suggest overtraining. To the contrast, the majority of the teams had negative
difference scores in tasks 2 (see Figure 4).

The distributions of the average R-precision over queries for the winning entry
on each of the tasks are presented in Figure 5. Difference in distributions between
the tasks reflects also the difference in the approaches used: while for the first task
main features for solving the problem are constructed from lecture content and meta-
data similarity, for the second task only co-viewing information is utilized. We have
also noted that these distributions are qualitatively very similar between first three
positioned entries on each of the tasks, reflecting general similarity in approaches of
different teams.

Dependence of query average R-precision score on the size of the solution list for
the task 1 is presented in Figure 6 (graph on the left). On average, query score just
slightly diminishes with the increase of the solution list. To the contrast, dependence
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of the query average R-precision score to the triplet frequency, for the task 2 (graph
on the right in Figure 6) shows that on average the quality of result for the query is
proportional to the triplet frequency.
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Fig. 6: (a) Dependence of individual query AvgRp score on the size of the query solu-
tion list (number of relevant lectures in the solution list); (b) Dependence of individual
query AvgRp score on the triplet frequency in the test set (reflecting popularity and
co-viewing connectedness of the lectures in the triplet)

.

6.1 Methods used and discussion of approaches

The teams approached task 1 using quite different learning techniques with the pri-
mary effort focussed on feature engineering and optimization. Almost all of the par-
ticipants have utilized all the lecture content related data (lecture taxonomy, event
tree, types of lectures, descriptions, etc.), differing however slightly in definitions of
the similarity of any two lectures. Important with respect to the overall score was
the process of filling the missing values for the lectures that lack some of the content
related data. Winning solutions used more sophisticated approach of filling lecture
content and meta-data features’ missing values using lecture co-viewing information
(weighted CVS feature vector expansion [19], query expansion[20]) - thus utilizing
collaborative information to ”enrich” content-based features.

Table 2 gives a summary of the feature engineering approaches and learning meth-
ods used in solving challenge tasks.

7 Conclusion

In the last couple of years, a number of challenges was organized in the field of recom-
mendation problems. Most of them were focussed on prediction problems related to
large scale explicit or implicit user preference matrices, in some cases combined with
(mostly obfuscated) user, item and/or context related information. ECML-PKDD

17



N. Antulov-Fantulin et al.

2011 Discovery Challenge differed from this mainstream through two aspects: (i) in-
stead of user preferences, only item to item preference information is available in
the shape of the co-viewing frequencies graph; (ii) a rich and explicit description of
lectures is available in the form of structured and unstructured text. On both tasks
participants have obtained significantly higher MARp values than set by the baseline
solutions.

The analysis of the results shows that the most important part of a successful
solution was careful feature engineering. Definition of the similarity scoring function
capable of capturing content, context and temporal information turned out to be
crucial for the success in the cold start (task 1) competition. Task 2, pooled sequence
completion problem, was easier to solve and both approaches and results of the
participants were mutualy much more similar. Rather unexpectedly, content related
information was not used in ranking lectures to be viewed in succession to test set
triplets. Most of the participants have also reported about the complexity/scaling of
their solutions.

Table 2: Approaches in solving challenge tasks
Solution (Track/pos) Feature engineering approach Model learning approach

1/1 combined similarity vector; uses fea-
ture expansion with CVS graph
weighting; uses temporal transform
for final similarity indices (LENKOR
methodology)

optimization of weights of the linear
model by the coodinate descent

1/2 textual based features synthesis; tf-
idf based; use ”query” expansion for
missing terms; use temporal informa-
tion (co-existence similarity)

cosine-similarity based k-nn, fitting
to the optimal k ; train the model uti-
lizing ”temporal” split in the training
set

1/3 meta-data into categorical features
(do not use in the model: lecture
viewing, lecture description, slides’
content); use co-viewing information
to expand the content based rank
prediction

content based linear regression for
learning rank; utlize stochastic gra-
dient descent to learn parameters of
the linear model; learn hyperparam-
eters from leaderboard submissions

2/1 two level normalization of pooled se-
quence vectors from the training set
constructed from ”pairs” and ”sin-
gles” of triplets from the training set
(LENKOR methodology) (do not use
in the model: content and other lec-
ture meta-data)

optimization of weights of the linear
model by the coodinate descent

2/2 forming conditional probabilities for
RHS lectures of triplets based on
triplet lecture training co-viewing; no
use of content based data

probabilistic model; entropy ”like”
scoring formulation; greedy grid
based search fitting of coefficients in
the scoring function

2/3 use singles’, pairs’ and couples’ fre-
quencies and define score updating

resampling based combination of the
individual scoring functions; propose
gradient based matrix factorization
and recommendation model

Other track 1 approaches tf-idf for different content/meta-
data; Jaccard similarity based on
LDA for topics

SVM for co-viewing prediction (bi-
nary classification, regression and
ranking); random walk model using
CVS graph (Katz and RF based), or-
dinary linear regression

Other track 2 approaches using pairs and single lecture co-
viewing data to construct test triplet
RHS solution frequency vectors; hy-
bridization of content similarity and
co-viewing data

frequent item-set formulation - sup-
port/confidence based scoring and
ranking
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Our opinion is that the results of the challenge could be quite useful for con-
structing a new recommendation system for the VideoLectures.Net. In particular,
there are several approaches that could significantly improve recommendation qual-
ity of new lectures at the site, with modest consumption of additional computational
resources. Using lecture co-viewing frequency information instead of original pref-
erences information in the form of click-streams should be studied in more detail,
in order to understand the implications of this transformation on the personalized
recommendation quality from the user’s perspective.
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Two Recommendation Algorithms
Based on Deformed Linear Combinations⋆

Alexander D’yakonov

Moscow State University, Moscow, Russia,
djakonov@mail.ru,

Abstract. Data mining for recommender systems has gained a lot of interest
in the recent years. ”ECML/PKDD Discovery Challenge 2011” was organized
to improve current recommender system of the VideoLectures.Net website. Two
main tasks of the challenge simulate new-user and new-item recommendation
(cold-start mode) and clickstream based recommendation (normal mode). This
paper provides detailed descriptions of two simple algorithms which were very
successful in the both tasks. The main idea of the algorithms is construction of
a linear combination equal to a vector of estimations of lectures popularity after
viewing a certain lecture (or lectures). Each addend in the combination describes
similarity of lectures using the part of the data. The algorithms are improved by
transforming the combination to non-linear function. Lectures with the highest
estimations of popularity are recommended to users.

1 Introduction

Algorithms which have taken the first places in the competition “ECML/ PKDD Dis-
covery Challenge 2011 (VideoLectures.Net Recommender System Challenge)” [1] are
described. The competition was focused on algorithm development for making recom-
mendations for video lectures, based on historical data from the VideoLectures.Net
website [2]. The competition consisted of two independent tasks. In the first task it
was necessary to recommend a list of “new lectures” (which had been published on
the portal recently). So there was not information on popularity of the new lectures,
only their detailed descriptions were available. In the second task it was necessary to
recommend lectures from the entire lecture set, using information on viewed triple of
lectures. The tasks are described in detail below. We do not describe the evaluation
metrics used by organizers and the data offered to participants that have not been used
by our algorithms. Algorithms are simple enough, universal, can be used for different
problems.

2 First Task “Cold Start”

Descriptions of the lectures from VideoLectures.net website are available. Every lecture
has the lecture id, the language of the lecture (“English”, “Slovene”, “French”, etc.),

⋆ This work was supported by the Russian Foundation for Basic Research, project 10-07-
00609; by the President of the Russian Federation, project no. MD-757.2011.9. The author
is also grateful to the organizers of “ECML/PKDD Discovery Challenge 2011” for running
the interesting competition.
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the categories of the lecture (for example “Machine Learning”, “Biology”), the total
(aggregated) number of views, the date when the lecture was published on the portal,
the authors of the lecture (their ids, names, e-mails, homepages), the name of the lecture
(a sentence in the specified language), the lecture description (a small text). The lectures
were given at events (conferences, summer schools, workshops, etc.). Similar information
is available on the events. Besides, for every pair of lectures the total number of the users
viewed both lectures is known (if the number is more than one). Other information, for
example, the descriptions of the slides or the dates, when the lectures were recorded,
was also available, however it was not used in the final version of the algorithm. Note
that some data is unknown (for example, descriptions are not known for all lectures).

The set of the described lectures is divided into two subsets: “older lectures” (all
information is available) and “new lectures” (which have been published on the portal
recently, so the viewing information is not available). A test set is a subset of the older
lectures set. The task is to recommend the list of 30 new lectures for every lecture from
the test set (it is recommendation of new lectures to a new user who has watched one
lecture).

3 Algorithm for Solving the First Task

Let some information on a lecture can be written as the n-dimensional vector f =
(f1, . . . , fn). For example, if n is the number of the authors of all lectures than the
binary vector f describes the authors of concrete lecture: fi = 1 iff the i-th author is
the author of the lecture. It is similarly possible to describe the language of the lecture,
its categories, etc. Naturally, the vectors describing different types of information are of
different dimensionality. In each case it is possible to estimate similarity of the lectures.
For example, for the i-th lecture presented by the vector f(i) = (f1(i), . . . , fn(i)) and
the j-th lecture presented by the vector f(j) = (f1(j), . . . , fn(j)) their similarity is
estimated as changed cosine similarity [3]

〈f(i), f(j)〉 = f1(i)f1(j) + · · ·+ fn(i)fn(j)√
f1(i)2 + · · ·+ fn(i)2 + ε

√
f1(j)2 + · · ·+ fn(j)2 + ε

. (1)

The change “+ε” is for preventing division by zero (for example, if the authorship of a
lecture is unknown). In the final version of the algorithm ε = 0.01.

Idea of the algorithm is very simple: for the test lecture to calculate similarity to each
new lecture by summing (with some coefficients) values (1) for all presented “types of
information” (language, categories, authors, etc.). First, we will mark the main modifi-
cation of the algorithm which essentially improves performance. Together with similarity
to the lecture from the test set it is necessary to consider similarity to co-viewed older
lectures (similar from the point of view of users’ behavior).

Let the set of older lectures be indexed by numbers from I, let f(i) be the vector
of the description of the i-th lecture, let m′

ij be the estimation of similarity of the i-th
and the j-th lectures (from the point of view of users’ behavior, see below). Then let

f ′(i) =
∑

j∈I

(
m′

ij

f(j)√
f1(j)2 + . . .+ fn(j)2 + ε

)
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and similarity to the new t-th lecture is calculated by summing of 〈f ′(i), f(t)〉 for all
types of information. Let us describe how values m′

ij are calculated. Let L be the
number of lectures, mij be the number of the users that viewed both the i-th and the
j-th lectures, i ∈ {1, 2, . . . , L}, j ∈ {1, 2, . . . , L}, i 6= j, and mii be the number of views
of the i-th lecture divided by 2 (such “strange” definition of the diagonal elements is a
result of optimization of algorithm performance). Then

m′
ij =

mij

L∑
t=1

mit

.

The sense of this value is clear enough. If the numbers mii were equal to zero, i ∈
{1, 2, . . . , L}, than it would be an estimation of probability that user viewed the j-th
lecture under the condition that he viewed the i-th (the performance of the algorithm
was 26.02%, see below). Nonzero diagonal elements are necessary to consider also simi-
larity to the i-th lecture, not only to co-viewed lectures (the performance was 29.06%,
without division by 2 the performance was 28.17%).

Let us enumerate types of information which were used to calculate similarity. For
each type we will specify the vector

γindex = (〈f ′(i), f(j1)〉, . . . , 〈f ′(i), f(jr)〉) ,

where J = {j1, . . . , jr} is the set of new lecture indexes.

1. Similarity of categories. Here f(j) is the characteristic vector of lecture cate-
gories, i.e. a binary vector, in which the t-th coordinate is equal to 1 iff the j-th lecture
belongs to the t-th category. As a result we receive the vector γcat.

2. Similarity of authors. Here f(j) is the characteristic vector of lecture authors,
i.e. a binary vector, in which the t-th coordinate is equal to 1 iff the t-th author is the
author of the j-th lecture. As a result we receive the vector γauth.

3. Similarity of languages. Here f(j) is the characteristic vector of lecture lan-
guage, in which the first element corresponding to English is set to 1 (to make all lectures
similar on lectures in English, because lectures in English are popular among Internet
users). As a result we receive the vector γlang.

4. Similarity of names. At first all words which are included into names and de-
scriptions of the lectures are parsed and reduced to word stems (we used Porter Stemmer
[4], [5]). Note, all special symbols (brackets, commas, signs of arithmetic operations, etc.)
were deleted, but stop words were reserved (it does not essentially influence performance
of the algorithm). The name of every lecture is described by the vector (h1, . . . , hW ), in
which hi is the number of words with the i-th word stem. Then we apply TF-IDF-like
weighting scheme [3]:

fi =
hi√
wi + ε

, (2)

where wi is the total number of words with the i-th word stem in names and descriptions
of all lectures. Such vectors (f1, . . . , fW ) are used for calculation of the vector γdic. Note
that for calculation of similarity of names we use information on names and descriptions
(for weighting scheme). Standard TF-IDF proved to perform a bit worse (∼ 1–4%).
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5. Similarity of names, descriptions, names and descriptions of events.
Each lecture has the name, the description (may be empty), the name of appropriate
event and the event description (if information on event is not present we consider that
the even name and the event description coincide with the lecture name and the lecture
description). All it is united in one text, that is described by the vector (h1, . . . , hW ),
and further operations are the same as in the previous item. As a result we receive the
vector γdic2.

For task solving the algorithm construct the vector

γ = 0.19 ·
√
0.6 · γcat + 5.6 · γauth +

√
4.5 · γlang + 5.8 · γdic + 3.1 · γdic2 . (3)

Here the square root is elementwise operation. At first the linear combination of the
vectors γcat, γauth, γlang, γdic, γdic2 was used. The coefficients in the linear com-

bination were a result of optimization problem solving. But the usage of square roots
gives small improvement of performance (coefficients also tuned solving optimization
problem). For optimization problem the method of coordinate descent [6] was used.
The algorithm recommends the lectures with the highest values of elements in the vec-
tor γ = (γ1, . . . , γN ). Such problem solving technology (selection of various types of
information, construction of an appropriate linear combination, its further tuning and
“deformation”) is being developed by the author and is named “LENKOR” (the full
description of the technology will be published in the near future).

In the final submitted solution one more change was made: the vector γ = (γ1, . . . , γN )
was transformed to the vector

(
γ1 ·

(
1 + δ

tmax − t1
tmax − tmin

)
, . . . , γN ·

(
1 + δ

tmax − tN
tmax − tmin

))
, (4)

where tj is the time (in days) when the j-th new lecture was published, tmin is the
minimum among all these times, tmax is the maximum. The transformation increased
performance approximately on 5%. The reason of the transformation is that it is im-
portant how long is lecture available online (not only popularity of the lecture). In the
final version of the algorithm δ = 0.07, because this value maximizes performance of
the algorithm in uploads to the challenge website [1] (37.24% for δ = 0.09, 37.28% for
δ = 0.07, 36.24% for δ = 0.05).

The described algorithm has won the first place among 62 participants with the
result of 35.857%. We do not describe the evaluation metric, the interested reader can
find the definition of the metric on the challenge website [1]. For local testing we used
the same metric. After data loading and processing (it takes 1 hour, but can be launched
once for recommender system construnction) the running time for the first task solving
was 17.3 seconds on a computer HP p6050ru Intel Core 2 Quad CPU Q8200 2.33GHz,
RAM 3Gb, OS Windows Vista in MATLAB 7.10.0. 5704 recommendations (30 lectures
in each) were calculated. The dictionary consisted of 35664 word stems.

4 Second Task “Pooled Sequences”

In the second task the training set T consists of triples {a, b, c} of lecture numbers.
For every triple the number n({a, b, c}) of users who viewed all three lectures is known.
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Besides, the pooled sequence [1] is specified. It is the ranked list of lectures which
were viewed by users after all lectures of the triple {a, b, c}. The numbers of views
are also known (the pooled sequence is ordered according to these values). Definition
and examples of pooled sequence construction can be found on the official site of the
competition [1]. We formalize this concept by means of the vector v({a, b, c}) ∈ ZZL,
where L is the number of lectures,

v({a, b, c}) = (v1({a, b, c}), . . . , vL({a, b, c})) ,

vj({a, b, c}) is the total number of views of the j-th lecture after triple {a, b, c} (infor-
mally speaking, it is popularity of the j-th lecture after lectures from {a, b, c}). The test
set also consists of triples (the test set is not intersected with the training set). The task
is to define pooled sequences for triples from the test set, to be exact 10 first members
of the sequences (10 highest elements of each vector v({a, b, c}). So, these 10 lectures
should be recommended to user after viewing the three lectures.

5 Algorithm for Solving the Second Task

At first, two normalizations of the vectors corresponding to triples from the training set
T are performed, the first is

v′({a, b, c}) =
(

v1({a, b, c})
log(|{t̃ ∈ T | v1(t̃) > 0}|+ 2)

· · ·

· · · vL({a, b, c})
log(|{t̃ ∈ T | vL(t̃) > 0}|+ 2)

)
. (5)

It is clear that |{t̃ ∈ T | vj(t̃) > 0}| is the number of triples from the training set such
that their pooled sequences include the j-th lecture. The reason for performing such
normalization is that lectures included into many pooled sequences are generally less
relevant. The second normalization is

v′′({a, b, c}) =




v′1({a, b, c}) · log
(

L∑
j=1

v′j({a, b, c}) + 1

)

√
3 · n({a, b, c}) + ε

· · ·

· · ·
v′L({a, b, c}) · log

(
L∑

j=1

v′j({a, b, c}) + 1

)

√
3 · n({a, b, c}) + ε




, (6)

ε = 0.01. It is difficult enough to describe sense of this normalization. It was a result
of exhaustive search of different variants and increased performance by 1–2%, that was
essential in competition.
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Let

s(d̃) =
∑

t̃∈T : d̃⊆t̃

v′′(t̃)

and n(d̃) = |{t̃ ∈ T : d̃ ⊆ t̃}| be the number of addends in the sum, T be the training set.
For example, s({a, b}) is the sum of vectors v′′({a, b, d}) for all d such that {a, b, d} ∈ T .
Let operation ω deletes from a vector all zero elements except one and adds one zero if
there was not any zero element. For example, ω(1, 0, 0, 2, 0) = (1, 0, 2), ω(1, 2) = (1, 2, 0).
Let

std(x1, . . . , xn) =

√√√√ 1

n− 1

n∑

t=1

(
xt −

1

n

n∑

i=1

xi

)2

(standard deviation [7]).

The algorithm is very simple: for the triple {a, b, c} from the test set if there are
at least two nonzeros among numbers n({a, b}), n({a, c}), n({b, c}) (it corresponds to
having enough information) than

γ =
log(s({a, b}) + 0.02)

std(ω(s({a, b}))) + 0.5
+

log(s({b, c}) + 0.02)

std(ω(s({b, c}))) + 0.5
+

log(s({a, c}) + 0.02)

std(ω(s({a, c}))) + 0.5
.

(7)

Otherwise we add to this sum addends

log(s({a}) + 0.02)

std(ω(s({a}))) + 0.5
+

log(s({b}) + 0.02)

std(ω(s({b}))) + 0.5
+

log(s({c}) + 0.02)

std(ω(s({c}))) + 0.5
. (8)

Here the log is taken elementwise. Elements of the received vector γ are treated as the
estimations of popularity of lectures from pooled sequence (the higher value, the more
popular). Lectures with the highest estimations are recommended.

Let us try to explain the process of the development of the algorithm. It is very
logical to operate simply by a rule

γ = log(s({a, b})) + log(s({b, c})) + log(s({a, c})) =
= log(s({a, b}) · s({b, c}) · s({a, c})), (9)

where “·” is the elementwise multiplication of vectors. Indeed, if there is no information
on triple {a, b, c} we parse triples {a, b, d} for all d. Thus we sum vectors v({a, b, d}) and
receive a vector s({a, b}). It corresponds to union of multisets [8]. Similarly for triples
{a, c, d}, {b, c, d} we receive vectors s({a, c}) and s({b, c}). Now it is logical to intersect
the received multisets. Standard operation for intersection in the theory of multisets is
min (minimum). However in our experiment product proved to be better:

s({a, b}) · s({b, c}) · s({a, c}) ,

26



Two Recommendation Algorithms Based on Deformed Linear Combinations

this operation is popular in the theory of fuzzy sets [9] for intersection (the performance
was 49%, and for min the performance was 47%). The expression

(s({a, b}) + ε) · (s({b, c}) + ε) · (s({a, c}) + ε)

is needed to prevent zeroing many elements of the vector and information losses (the
performance became 57%). Then experiments on normalizations of vectors and scaling
were made. As a result, division by std(ω(s({·, ·})))+0.5 increased performance approx-
imately by 1–3%. Adding of (8) does not influence performance, it was made “just in
case”.

In this solution the ideas of “LENKOR” were also used: linear combination tuning
(for this reason the product (9) was written down as the sum of logs) and subsequent
“deformation” (we used data normalizations). Each addend in the linear combination is
a vector estimated popularity of lectures. The algorithm did not use detailed descriptions
of the lectures as in the first task. In our experiments the usage of descriptions did not
improve performance.

The algorithm has won the first place among 22 participants with the result of
62.415%. The algorithm running time on computer HP p6050ru Intel Core 2 Quad
CPU Q8200 2.33GHz, RAM 3Gb, OS Windows Vista in MATLAB 7.10.0 for one lecture
recommendation is 0.0383 seconds, full task 2 solving (60274 recommendations) takes
38.33 minutes.

The algorithms (for the first and the second tasks) can be efficiently parallelized.
Calculations (1)–(9) can be made on matrices to produce several recommendations at
once. For this reason we used MATLAB in our experiments: there are efficient matrix
calculations in this system.
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Abstract. This paper presents the solution which ranked 2nd in the “cold-start”
recommendations task of the ECML/PKDD 2011 discovery challenge. The task
was the recommendation of new videolectures to new users of the Videolec-
tures.net Web site. The proposed solution is a hybrid recommendation approach
which combines content-based and collaborative information. Structured and un-
structured textual attributes which describe each lecture are synthesized to create
a vector representation with tf/idf weights. Collaborative information is incor-
porated for query expansion with a novel method which identifies neighboring
lectures in a co-viewing graph and uses them to supplement missing attributes.
The cosine similarity measure is used to find similar lectures and final recom-
mendations are made by also accounting the coexistence duration of lectures.
The results of the competition show that the proposed approach is able to give
accurate “cold-start” recommendations.

1 Introduction

Recommender systems are designed to suggest items which are predicted to be inter-
esting to users, based on some evidence. This technology has allowed for businesses on
the web to keep a sense of a local shop where customers are familiar to the owner,
while targeting at a global market. Recommender systems filter items to support users
to easier decide what to buy. For an e-commerce, like Amazon.com, providing personal-
ized suggestions of products leads to a better alignment with the designed sales’ policy,
which could aim at augmenting the sales, or enlarging their market. Web sites that
don’t make profit out of products can also benefit from a recommender system which
attracts users by addressing their specialized needs. Examples of such applications in-
clude recommending movies at Grouplens.org, videos at Youtube.com etc. Except for
identifying which items to recommend, it is also important to determine a ranking for
displaying those items, since the top displayed recommendations are more likely to be
viewed or visited.

Videolectures.net is an online repository of video lectures which took place at sci-
entific events like conferences, summer schools, workshops etc. Its goal is to promote
science ideas by providing high quality didactic content to the scientific community and
to the general public. All lectures, accompanying documents, information and links are
systematically selected and classified through the editorial process taking also into ac-
count users’ comments. ECML/PKDD 2011 discovery challenge was organized in order
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to improve the Web site’s current recommender system. The first task of the challenge
is tackled here and it simulates a new-user and new-item recommendation mode, the
so-called “cold-start” recommendations problem.

There are two main categories of recommender systems. Collaborative filtering meth-
ods [3, 8, 2] make use of the observed activity of users in terms of rating, viewing, or
buying items, in order to recommend to a user those items that were appreciated by
other similar (or neighboring) users. Content-based or information filtering methods [7,
9, 10] recommend items with descriptive characteristics which match user’s taste or a
given query. Many hybrid systems [4, 2] have also been developed combining collabora-
tive and content-based methods.

Collaborative filtering systems can recommend items even when nothing is known
about their description, which in many cases may not be available or may be extremely
noisy. However, it gives poor recommendations to infrequent, new, or anonymous users,
because their observed activity is small or nonexistent. They also fail to address “un-
usual” users (neighboring users may not be found) and “unusual” items (they may have
no ratings yet). Regarding content-based techniques, a known advantage over collabo-
rative filtering is that they perform well in “cold-start” situations: they deal with new
users by recommending items with similar description to a query item. Another strength
is that they are indifferent to the frequency of the selection of items, so new (or rare)
items will also be returned. Among its drawbacks is that performance depends a lot
on feature selection and content assignment to the items, which for some domains (like
multimedia) requires advanced methods.

The solution proposed here is mainly content-based: for a query lecture we recom-
mend lectures that are similar in their descriptive features, taking also into account
the duration that they coexisted in the Web site. We deal with the problem of missing
attributes in queries by a query expansion method, which introduces collaborative infor-
mation in the method. Missing attributes are replaced with the corresponding attributes
of the most neighboring lectures in a co-viewing graph.

The rest of the paper is organized as follows. Section 2 refers to related work on
recommender systems. Section 3 gives an overview of the task and introduces the eval-
uation system that we developed in order to assess the performance of our method.
Section 4 describes the given solution and finally Section 5 concludes this paper.

2 Related Work

A variety of collaborative filtering techniques have been developed [3, 5, 8]. Typically
these techniques compute similarity scores between pairs of users and give recommen-
dations for a user by taking into account the feedback of other users proportionally to
their similarity to the given user. As a measure of similarity, correlations of the feedback
of users have been used in [8]. An alternative to the typical approach is an item to item
collaborative filtering algorithm which was presented in [5]. This technique keeps an
item to item similarity matrix, in which items that tend to be purchased by common
customers have high similarity. Upon a recommendation request, the algorithm first
aggregates items that are similar to each of the user’s purchases and ratings and then
recommends the most popular or correlated items. Our query expansion method, being
also based on item to item collaborative information, differs in that we form a graph
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instead of a matrix. This representation allows us to apply Dijkstra’s shortest path
algorithm to find similar items. These items are not recommended (since the recom-
mendations should come from a different pool of items) but used to expand the query
item.

Pure content-based systems rely on content of items to make recommendations [7,
10]. For example, the authors in [6] suggest text-categorization of movie synopses in
the domain of movie recommendation. They also examined the use of semantically
richer representations than the standard bag of words representation, such as phrases
instead of words. Another approach [10] builds a discriminative classifier for each user
profile, using a factored model as its prior, where different factors contribute in different
levels. Opposite to collaborative filtering, content-based systems can even recommend
previously unrated items to users without any observed behavior in the system, and
perform better in cases that users have particular interests.

Some hybrid systems aim at combining collaborative with content information in
the features of each example and then provide recommendations using content-based
methods. For example, experiments for movie recommendation were reported in [2]
where features were drawn from content and user ratings and an inductive rule learner
was applied. Other hybrid methods augment the existing feedback using content-based
techniques and then produce recommendations through collaborative methods. Such
an approach in the movie recommendation domain [4] tackles sparsity of existing feed-
back by generating ratings in an automatic manner using content-based agents. Our
method resembles the first example, since it is mainly content-based and it exploits
some collaborative information to expand the content of queries if needed.

3 Task Description

3.1 Task Overview

The solution of the “cold-start” recommendations task should deal with the “cold-
start” problem, in the sense that new lectures should be recommended to new users.
The scenario assumes that each user has watched only one lecture from a set of old
lectures which are lectures published at an early stage of the site’s life. Given this old
lecture as query, the task is to return a ranked list of 30 similar lectures from a set of
new lectures. New lectures are considered to be unseen at the time of recommendation.

3.2 The Given Data

The given data contains two disjoint sets of lectures: the test and the training lectures.
All the test lectures have been published in the site after July 1st, 2009. The majority
of the training lectures were published before July 1st, 2009, with a smaller subset of
lectures having been published after that date. A subset of the training lectures were
selected to form the set of query lectures which are all published prior to July 1st, 2009.

Lecture co-viewing information is also given in a table which contains the pairwise
co-viewing frequencies for the lectures of the training set. In general, all lecture co-
viewing frequencies were taken on July 2010. By applying the train/test split on July
1st, 2009, the split is both “vertical” (all test lectures are published after July 1st, 2009)
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and “horizontal” (the training set contains approximately half of the lectures published
after July 1st, 2009). As we will discuss in Section 4.4, this split allows learning the
temporal impact on lecture co-viewing frequencies from the training set.

For each lecture we have information about its language, event type, parent event,
date of recording, publication date, name description, slide titles, category/ies and au-
thor/s. For the training lectures, the total number of views is also given. Except for
lectures we also have information on events and the event taxonomy used to group
lectures. Table 1 gives the details of the database tables which contain the given data.

Table 1. Details of the given data.

Table name Description
authors Contains data on 8,092 authors registered on Videolectures.net and

their information. However, not all authors are assigned to a lecture.
authors lectures Contains pairwise information on which author authored which lecture

or event. A single author can author multiple lectures (or events), and
one lecture (or event) can be authored by multiple authors.

categories Contains information on categories in scientific taxonomy used on Vide-
olectures.net in a pairwise manner (parent and child pairs). The taxon-
omy is a direct acyclic graph (several categories have multiple parent
categories). Only the root category does not have a parent. There are
348 distinct categories.

categories lectures Contains information on pairs of categories and assigned lectures (or
events). Some lectures (or events) belong to more than one categories.

events Contains information on events and the event taxonomy used to group
lectures. The taxonomy is a forest (a disjoint union of trees) since: a)
each lecture is part of only one event, b) an event has only one parent
and c) there are root events that do not have a parent. Events contain
a set of lectures rather than videos. There are 519 distinct events.

lectures train, lectures test Contain information about the 6,983 training and the 1,122 test lec-
tures.

pairs Contains records about pairs of lectures viewed together (not necessar-
ily consecutively) with at least two distinct cookie-identified browsers.
There are 363,880 distinct pairs.

task1 query This is the query file for the “cold-start” recommendations task. It
contains only lecture ids from the subset of the lectures train table, for
which a recommended ordered list of 30 lectures from the lectures test
table is expected as a submission. There are 5,704 query lectures.

3.3 Evaluation method

Taking into account the scarcity of items available for learning, recommending and eval-
uation in the “cold-start” recommendations task, the challenge organizers defined an
evaluation measure called mean average R-precision (MARp), inspired from standard in-
formation retrieval measures. Given q query lectures, a set of solution lists S = s1, . . . , sq
and recommended lists R = r1, . . . , rq for these lectures and a set of cut-off lengths
Z = 5, 10, 15, 20, 25, 30, this measure is defined as:

MARp(S,R) =
1

q

q∑

i=1

AvgRp(si, qi, Z), (1)

where for a given solution list s, recommended list r and set of cut-off lengths Z, the
average R-precision (AvgRp) is defined as:
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AvgRp(s, r, Z) =
∑

z∈Z

Rp@z(s, r), (2)

where for a given solution list s, recommended list r and cut-off length z the R-precision
at this cut-off length (Rp@z(s, r)) is defined as:

Rp@z(s, r) =
|sz ∩ rz |

min(|s|, z) , (3)

where lz denotes a list containing the first z elements of list l.
The preliminary results, comprising of randomly sampled 20% of the final results,

are evaluated after submission and published on a leaderboard, allowing comparison
with other participants. The final results are scored on the full test dataset.

3.4 Internal Evaluation

In order to be able measure the performance of our recommender we developed an inter-
nal evaluation system which allowed us to experiment with variations of our approach
and tune its parameters without submitting results to the leaderboard (only 60 sub-
missions were allowed in total). To simulate the “cold-start” recommendations task, we
split the given training lectures in two sets. The first set contained all the lectures of
the original training set which had been published prior to July 1st, 2009 and formed
the new training set. The second set contained the rest of the lectures of the original
training set (published after July 1st, 2009) and formed the new test set. The set of
query lectures was the same as in the original task, since all the query lectures appear
prior to July 1st, 2009 and were all contained in the new training set. Given a query lec-
ture, we recommended the 30 most relevant lectures from the new test set. The ground
truth was created using the co-viewing information which was available in the pairs
table (described earlier). Specifically, for each query lecture, we found the (at most) 30
test lectures with which it had the highest co-viewing frequency and ranked them in
descending order according to co-viewing frequency. The AvgRp measure was calculated
by comparing our recommendations to the ground truth and finally averaged over all
query lectures to get the MARp score. It was found that the accuracy results obtained
using our internal evaluation system were (in most cases) quite close to the final evalu-
ation results. In the following section we refer to variations we tried and parameters we
tuned using our evaluation system without, however, giving the exact evaluation results
since they were not recorded.

4 Our Solution

4.1 Basic Recommendation Model

We tackled the “cold-start” recommendations problem by using a well-known content-
based recommendation technique which has its roots in the theory of Information Re-
trieval and is known as the vector space model [1]. Each lecture was represented as a
text document by synthesizing various sources of textual information related to it. Each
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document was then transformed into a vector of size k where k is the total number of
distinct terms (words) in the whole collection of documents (the union of the test and
the query lectures). To measure the importance of each term inside a document, we
used term frequency/inverse document frequency (tf/idf) weights:

TFt,d =
ft,d

maxx{fx,d}
(4)

where ft,d is the frequency of the term t in document d and maxx{fx,d} is the maximum
frequency of a term in that document.

IDFt = log
N

nt
(5)

where N is number of documents in the collection and nt is the number of documents
with the the term t.

The tf/idf weight for a term t in document d is defined as:

wt,d = TFt,d · IDFt (6)

In order to measure the similarity between two vectors q and d we used the cosine
similarity:

Scosine(q, d) =

∑k
i=1 wti,qwti,d√∑k

i=1 w
2
ti,q

√∑k
i=1 w

2
ti,d

(7)

The above formulas for calculating the tf/idf weights combined with the cosine sim-
ilarity were found to give the best results among other variations that we tried.

4.2 Synthesis of Textual Attributes

In order to create the document representation of each lecture we synthesized the var-
ious textual attributes related to it, which were distributed among the given database
tables. The used attributes fall into two categories: unstructured text attributes (name,
description, slide-titles) and structured text attributes with a known closed set of val-
ues (event type, language, parent event id, category/ies, author/s). We found that this
semi-structured representation, which included both attributes with restricted values
and unstructured text attributes worked better than using unstructured text alone (the
typical approach).

Structured and unstructured text attributes were treated differently in terms of
preprocessing. To preprocess the unstructured attributes, we first removed any non al-
phanumeric characters. Then, we used an English stop-word list to filter out common
terms and removed terms with less than 2 or more than 20 characters (this allowed us
to get rid of long DNA sequences in the descriptions of some biology/genetics videos).
We also removed terms consisting only of numbers. Stemming of English words was
applied without improvement in the results which can be attributed to the fact that the
collection included non-English documents which were improperly stemmed. Perhaps,
applying stemming only to the English documents or using language specific stemmers
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would produce better results. Filtering out infrequent terms performed worse than keep-
ing all the available terms.

A different type of preprocessing was applied to the structured attributes. Their
values were prefixed with the attributes’ names. For example, the value “education” of
the category attribute was substituted by “category education”. This substitution was
performed in order to distinguish a term inside a lecture’s name or description from the
same term as the value of a structured attribute. For example, the term “education” in
the title of the lecture “Women in university education”, which refers to gender issues,
should be distinguished from the same term as a lecture’s category.

Next, we give a more detailed description of the structured attributes:

– Parent event id. The parent event to which the lecture belongs. While the sets of
query and new lectures are disjoint, it may happen that a query and a new lecture
share the same parent event. This is considered a piece of information contributing
to the similarity between two lectures.

– Lecture type. The specific type of the lecture, which could be one of the follow-
ing: lecture, keynote, debate, tutorial, invited talk, introduction, interview, opening,
demonstration video, external lecture, thesis proposal, best paper, panel, advertise-
ment, promotional video, thesis defence, summary.

– Language. The language of the lecture. Although the majority of the lectures in the
collection were in English, there were also non-English lectures (699 out of 6983
in the training set and 213 out of 1122 in the test set) belonging to 10 different
languages. This attribute was included in order to increase the probability of rec-
ommending lectures of the same language.

– Category/ies. The categories under which a lecture has been categorized. Obviously,
lectures belonging to the same category are likely to be similar. We also tried includ-
ing the ancestors of the actual categories into the textual representation of lectures.
This was based on the intuition that two lectures belonging to categories which
share a common ancestor are probably more similar than two lectures whose cate-
gories have no common ancestors. Although intuitively rational, this variation did
not improve the evaluation results.

– Author/s. The authors of the presentation related to each lecture. Users are often
interested in lectures of the same author.

A description of the unstructured attributes is given here:

– Name. The name of the lecture or event in natural language. Terms in lecture names
are usually highly descriptive (e.g. “Research on position of women in science” and
“Women in technical sciences research”. However, some times names are misleading
(e.g. “Where did they all go?”).

– Description. The description of the lecture or event in natural language. Note that
not all lectures/events are given a description. However, it is expected to be a very
informative attribute.

– Slide titles. The titles of the slides accompanying the lecture. Note that slide titles
are not available for all lectures. Usually slide titles in the beginning and the end of
a presentation (“Introduction”, “Conclusions”) are not as informative as the titles
in the middle. However, the tf/idf scheme will assign small weights to terms which
are frequent in all documents.
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One can notice that some attributes contribute more than others to the similarity
between two lectures. For example, a lecture having the same author and category with
a query lecture should be favored as a recommendation compared to a lecture that only
shares some common terms with the query in its description. In order to take advantage
of this intuition and to compensate for the large number of terms in the unstructured
attributes compared with the few terms of the structured attributes, we assigned a
different weight to each attribute by repeating its terms in the textual representation of
each query lecture. The final weights were tweaked using the internal evaluation system.
The terms of parent event id, lecture type, language, category/ies, author/s and name
were repeated sixteen times, the terms of description four times and the terms of slide
titles one time.

4.3 Query Expansion

We noticed that some query lectures had missing attributes (descriptions, slide-titles,
authors and/or events). This resulted in uncertain recommendations due to the sparsity
of the tf/idf vectors. We tried to tackle this problem by using neighboring lectures to
enrich the original queries. The lecture pairs table was used for this purpose. The pairs
contained in this table involve only lectures from the training set, thus the co-viewing
information can not be used for recommending new lectures. However, this information
can be used for identifying training lectures which are frequently co-viewed with query
lectures and are thus assumed to have similar content.

Finding Neighbors To find neighboring lectures, we construct a co-viewing graph
where the training lectures represent the vertices. For every pair of lectures in the pairs
table we add an undirected edge connecting the lectures of the pair. The weight of
the edge is equal to the pair’s frequency. These edges show the strength of connection
between two nodes or the likelihood of moving from one lecture to another. A straight-
forward approach to find the nearest neighbors of a query lecture in the graph, would
be to find all the lectures which are connected to the query with some edge and then
rank them in descending order according to edge weight. This approach identifies only
lectures which are directly connected to the query as neighbors. However, there are cases
where two lectures have very low or zero co-viewing frequency but have both been co-
viewed many times with a third lecture. With the previous approach these two lectures
would not be returned as neighbors, although it is likely that they are similar. In order
to overcome this problem we developed a method which is based on Dijkstra’s shortest
path algorithm and is able to identify neighbors even if they are not directly connected
to the query lecture. Since Dijkstra’s algorithm requires cost (distance) edges, we apply
a transformation to the weights of the edges. This is done by first finding the weight of
the edge with the largest weight maxw in the original graph and then using the formula
shown in Equation 8 where w(x, y) is the weight of the edge connecting the vertices x
and y before the transformation and w′(x, y) is the transformed weight.

w′(x, y) = maxw − w(x, y) + 1 (8)

Given a source vertex (lecture), Dijkstra’s algorithm finds the shortest path between
that vertex and every other vertex. The algorithm guarantees that in its k-th iteration,
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the shortest paths between the source and the k nearest vertices have been identified.
Since we are interested only in the k nearest neighbors, we stop the algorithm on its k-
th iteration, thus achieving a small execution time. In our internal evaluation we found
that this way of finding nearest neighbors in the co-viewing graph yielded better results
than the straightforward approach and we therefore used it in our recommender.

Using Neighbors Two different ways to use the nearest neighbors for expanding the
original query were tested. In the first approach, the query lecture was expanded by
including all the attributes of its nearest neighbors. The evaluation showed that we
could obtain better results with this approach compared with using only the original
query. Even better performance was achieved by assigning larger weight to the attributes
coming from the original query than the attributes coming from the query’s neighbors.
A degradation in performance was observed when more than two nearest neighbors
were considered. This is attributed to the fact that including attributes from distant
neighbors adds noise to the query.

In the second approach, instead of expanding all the query lectures with information
from their nearest neighbors we tried to do that selectively, only in the cases where the
original query was missing some attributes. For example, if the original query had no
description assigned, we looked for a description at its nearest neighbor. The process
was repeated until a neighbor with description was found or until the distance of the
neighboring lecture to the original query lecture exceeded a fixed threshold. The thresh-
old was used to ensure that missing attributes will be supplemented using attributes of
really close neighbors. This approach outperformed the previous one.

4.4 The Temporal Effect

An important factor for improving the evaluation score was to consider how the ground
truth was generated. Ideally, recommender systems success should be measured through
user satisfaction analysis. For the challenge, a quantitative measure was needed. In order
to be able to score solutions, the organizers took a snapshot of the Videolectures.net
database on July 2010 and lecture co-viewing frequencies were recorded for all lectures
(both train and test) at that moment. The list of relevant lectures for each query lecture
was created by ranking the test lectures in descending order according to withheld
lecture co-viewing frequencies.

By observing co-viewing frequencies in the training data (no co-viewing information
was available for the test data), we noticed that the duration of coexistence between
lectures had an impact in the frequencies. In fact, the more the time that two lectures
coexisted in the site the more likely it was to have a high co-viewing frequency. Intu-
itively, a lecture that was published in Videolectures.net just one week before the day
that the snapshot was taken could not have had many co-views with any of the other
lectures, even with the ones most similar to it.

To account the impact of both the content-based similarity and the impact of the
coexistence duration in co-viewing frequencies, we used the algorithm listed in Algo-
rithm 1. We first find the k nearest neighbors of the (expanded) query in the test set
according to the cosine similarity. k is a parameter of the algorithm with values ranging
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Algorithm 1: Make recommendations

Input: a query lecture lq, the set of test lectures LT , k
Output: the sorted list of recommended lectures LR

1 // Find the k most similar items to lq based on the cosine similarity Scosine and
initialize the recommended list.

2 LR ← kNearestNeighborscosine(lq,LT )
3 foreach lt ∈ LR do
4 Calculate the coexistence-based similarity Sduration(lq, lt) between lq and lt
5 Stotal(lq, lt)← Sduration(lq, lt) · Scosine(lq, lt)

6 Sort LR on Stotal

7 Return the top 30 items of LR

between 30 and |LT | where LT is the test set. Then, we multiply the cosine similarity be-
tween the query and each one of its k nearest neighbors with a similarity based on their
coexistence duration, to get a total similarity score. The coexistence-based similarity is
just the time (in ms) that two lectures coexisted divided by the maximum coexistence
duration (approximately one year) between a query lecture and a test lecture. Both
similarities are normalized to the [0,1] scale. To make the final recommendations, we
sort the list of neighbors on the combined score and return the top 30 lectures.

The value for the parameter k was tweaked using the internal evaluation system and
the best results where obtained with k = 40. By taking the temporal effect into account,
the overall performance was increased by 10%.

5 Conclusions and Future Work

In this paper we presented the recommendation system that we developed for the “cold-
start” recommendations task of the ECML/PKDD 2011 Discovery Challenge. The sys-
tem uses a traditional content-based filtering technique to recommend similar lectures,
based on both structured and unstructured attributes related to each lecture. Collabora-
tive information is also incorporated to the system using a novel method which identifies
neighboring lectures in terms of co-viewing and uses them to supplement missing at-
tributes. Finally, temporal aspects are studied and taken into account to produce the
final recommendations. The results of the competition show that the proposed hybrid
approach is able to produce accurate recommendations in “cold-start” situations. We
expect that better results can be obtained if the coexistence duration between pairs
of lectures is taken into account in the process of finding neighbors in the co-viewing
graph. It would also be interesting to examine whether a better way to combine the
content-based similarity and the coexistence-based similarity could learned from the
training data.
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Abstract. This paper describes our approach to the task 1 of the ECML PKDD
2011 VideoLectures.Net Recommender System Challenge. The task was to se-
lect a set of lectures to be recommended to a visitor of the VideoLecture.Net
homepage after already seeing another lecture. Our proposed approach is a hy-
brid recommender system combining content and collaborative approaches. The
core of the system is a linear regression model for predicting the rank of a lec-
ture, whereas by rank we mean the lecture’s position in the list of all lectures
ordered by the interest of the visitor. Due to the complexity of the problem, the
model could not be learned by a classical approach - instead, we had to employ
the stochastic gradient descent optimization. The present paper furthermore,
through evaluation, identifies and describes some interesting properties of the
domain and of the algorithm that were crucial to achieve a higher prediction
accuracy. The final accuracy of the model was enough to take the third place in
the competition.

1 Introduction

In this paper, we describe our approach to the first task (cold start) of the ECML
PKDD 2011 Discovery Challenge (VideoLectures.Net Recommender System Challenge)
hosted by TunedIT1. The task was to make recommendations for video lectures on the
VideoLectures.Net website.

Our proposed approach is a hybrid recommender system [2] based on linear regression
for predicting the ranks of the newly acquired lectures after viewing some of the “older”
lectures. First, we give a short description of the domain, of the learning problem, and
present the attributes that we decided to use in learning. Afterwards, we define the
problem of learning ranks, present a method for learning a linear regression based on
stochastic gradient descent and use it to make content-based and collaborative-based
predictions. In section 4, we evaluate the method and assess the results. We finish the
paper with conclusions.

2 Domain description

The coldstart problem in the challenge was defined as:

1 http://tunedit.org/challenge/VLNetChallenge
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1. after seeing an “old” lecture (a lecture present in the system for a while),
2. recommend 30 of the “new” (published after the 1st of July 2009) lectures that the

user might like. The results have to be ranked - more “likeable” lectures should
come first.

The organizers collected 6983 training (old) lectures and 1122 test (new) lectures.
The task of competitors was to make a selection of 30 test lectures for almost each
training lecture and submit the results for evaluation.

The most important part of the provided data was the so-called pairs data set.
It contained the frequencies of co-occurrences of lectures from the training set. Two
lectures are said to co-occur if they were seen together (in the same browser session,
not necessarily consecutively) and the user watched at least half of each of the two
lectures. The co-occurrences between training and test lectures were withheld from the
competitors and were used to produce the true rankings, which were used to evaluate
the submitted solutions.

Provided lectures were described with the following attributes:

type of lecture (discrete; sample values: normal lecture, tutorial, debate, invited talk,
etc.)

language (discrete; sample values: Slovene, English, etc.)
recorded date (date value)
published date (date value)
title of lecture (textual attribute)
description (a short textual description of the lecture)
slide titles (textual attribute)
categories (discrete; a lecture can belong to multiple categories, e.g. machine learning,

reinforcement learning, etc.)
event (discrete; the event where the lecture was recorded)
author (discrete; a lecture can have several authors)
views (number of all views of the lecture; this information was given for the training

lectures only)

For categories, events and authors, additional information was provided. Each cate-
gory was specified by its name and a link to its description on Wikipedia. Events were
described with: type (normal event, project, etc.), language of the event, recorded
and published dates, name and a short description (both textual) of the event.
Finally, for each author we were given his or her name, email, homepage, gender,
and organization.

2.1 Attributes used in Learning

We manually constructed a set of attributes to be used in learning. Some of them
were simply taken as originally provided, while some were combinations of the original
attributes. The set of used attributes is summarized in Table 1. Published date is the
number of days between the day the lecture was published and the day the snapshot
of the database was taken (31st July 2010). Categories is a list of categories that the
lecture belongs to. The authors attribute contains the names of actual authors and also
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their domain names extracted from their email addresses. Therefore, if a lecture was
presented by two persons coming from Google, lecture’s value of authors attribute would
be: “name of first author”, “name of second author”, and “google.com”. Significant title
words are a selection of specific words found in the titles of lectures that, as assumed,
imply a higher number of views. These words are: “introduction”, “tutorial”, “basic”,
“lecture 1:”, “lecture 2:”,“lecture 3:”,“lecture 4:”, and “lecture”. The last attribute,
Title words, contains all words mentioned at least once in a title.

The constructed attributes include almost all the information provided, with the
exception of the textual attributes, where only titles of lectures were used. Original
attributes not included in our model are: recording date of lectures, lecture’s descrip-
tion and slide titles, lecture’s number of views, description of categories on Wikipedia,
anything about events, authors homepage and organization.

Table 1. An overview of attributes used in learning. No. of values is the number of distinct
values found in the training and test data. The column Can have multiple values? specifies
whether a single lecture can have several values (e.g. a lecture can belong to several categories)
or not.

Name Type No. of values Can have multiple values?

Published date continuous n/a no
Type discrete 17 no
Language discrete 9 no
Categories discrete 291 yes
Authors discrete 8109 yes
Events discrete 520 yes
Significant title words discrete 9 yes
Title words discrete 12812 yes

3 Content Based Recommendations with Linear Regression

3.1 Terminology

Throughout the remainder of the paper we will use the following conventions. Lectures
LO and LN will correspond to the “old” and “new” lectures, respectively. To address
the attribute value of a lecture we will use a dot and the name of the attribute. For
instance, LN .pub date is the published date of a new lecture. Greek letters β and γ will
be used as parameters of the linear regression model. Abbreviation Attr will represent
the set of learning attributes from Table 1, and Train will be the set of all training
lectures.

3.2 The Linear Regression Model for Predicting Rank

In this section, we will describe our linear regression model for predicting the rank of
a lecture LN given that the user has already seen another lecture LO. To learn such a
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model, we needed to estimate the true ranks of lectures in the training data and use them
as the values of the class variable. Let Rank(LO, LN) be the rank of lecture LN , given
LO has been seen by the user, and let Pairs(LO, LN ) be the number of co-occurrences
of LO and LN taken from the pairs data set. To compute ranks Rank(LO, LN) for all
training lectures LN , we used the standard ranking algorithm:

1. For a given training lecture LO, create a list of co-occurrences Pairs(LO, LN ) for
all LN , where LN 6= LO and LN and LO are not from the same event.

2. Order list in ascending sequence.
3. The rank Rank(LO, LN) is the position of Pairs(LO, LN) in the above ordered list.

The pair with the lowest Pairs(LO, Llow) gets rank 1 and the pair with the highest
value gets rank that equals the length of the list. In the case of ties, a mean rank is
assigned.

4. Divide all ranks Rank(LO, LN ) by the length of the ordered list;

Rank(LO, LN)← Rank(LO, LN)

Length of list
.

This procedure is repeated for every training lecture LO. We avoided using lectures
from the same event (first step) to make learn data more alike to test data. Namely,
two lectures, one from the learn set and one from the test set, always belong to different
events. The second and the third step are standard steps in ranking. The normalization
in the last step was applied to avoid different maximal ranks when the lengths of lists
differ.

The main reason to use ranking, instead of predicting Pairs(LO, LN ) directly, was
to minimize the influence of lecture LO. For example, if LO is a tutorial, it will for this
reason have a high number of views, and hence also Pairs(LO, LN) will be relatively
high for all LN . On the other hand, the ranks depend only on LN and on similarities
between LO and LN , but not much on LO itself.

The linear regression model for predicting rank has the form:

R̂ank(LO, LN) = β0 + βdate ×min(L0.pub date, LN .pub date) +

+
∑

a∈Attr\{pub date}

[ ∑

v∈LN .a

βa.v

]
+

+
∑

a∈Attr\{pub date}

[ ∑

v∈LN .a∩LO.a

γa.v

]
(1)

The first term β0 is the intercept and is usually close to 0.5, which is the average
normalized rank of lectures. The second term contains βdate, the parameter that models
the influence of published date. This parameter has to be positive, as lectures with low
published date were published later and therefore had less chances to be viewed. The
third term is the sum over all remaining attributes and values of the lecture LN . Each
attribute value has an assigned parameter βa.v that models the increase (or decrease)
of the rank of a lecture if the lecture contains this value. The last term is again the sum
over all attributes, however considering only the values that are the same for LO and
LN . The parameter γa.v, therefore, models the change of rank of LN if both lectures have
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the same value of attribute a. This parameter is usually positive, as lectures with same
values are more alike, therefore it is more probable they that will be viewed together.

Such a process, where the recommendation relies only on the characteristics of the
lectures, is commonly called content-based recommendation [2]. In section 4, we will
describe a possible approach to extend this model to exploit some techniques from
collaborative filtering.

3.3 The Learning Algorithm

The learning algorithm has to find such parameters (βs and γs) to minimize the residual
sum of squares. A penalty factor λ, as in ridge regression [1], was included to prevent
overfitting:

Err =

[ ∑

LO∈Train

LO.event6=LN .event∑

LN∈Train

(
R̂ank(LO, LN)−Rank(LO, LN)

)2
]
+

+ λ ∗


β2

date +
∑

a∈Attr\{pub date}

(∑

v∈a

(
β2
a.v + γ2

a.v

)
)
 (2)

Usually, the parameters of linear regression are fit easily using the formula for linear
regression that involves matrix multiplication and inversion. However, considering 6983
training lectures, we have approximately 69832 = 48762289 ranks to predict. Moreover,
we are dealing with a large number of parameters, as adding all values from the Table 1
and multiplying by 2 sums up to 43544 parameters. The data matrix, in statistics called
the design matrix, would therefore be enormous. If each multi-valued attribute would
have only one value, it would still add up to 48762289*43544 values. Even with optimal
coding, where each value takes only 1 byte, such matrix would still require over 2TB
in memory. The data could be coded more efficiently by considering sparseness of the
input (most of the values are 0), however we believe it would still present a problem for
many implementations of linear regression.

Instead, we used the stochastic gradient descent algorithm. This algorithm iteratively
updates the model given one learning example at a time and removes the need to have the
complete data set stored. An outline of the algorithm is given in Alg. 1. The algorithm
begins by setting all parameters to 0. With the third line, it commences an iteration over
all attributes (including an attribute with constant value 1 to learn the β0 parameter).
In each iteration, the parameters for the values of only one attribute will be fit. The
algorithm will keep optimizing parameters of one attribute until the error of the model
is decreasing (5th line).

Lines 8-17 contain the core of the stochastic gradient descent algorithm. Here, the
algorithm makes one sweep over the pairs of training lectures (avoiding those with the
same event) and updates the values of parameters in the updateFeatures procedure. The
update of parameters consists of the two classical steps of gradient optimization: 1) it
computes the gradient of the error function (Eq. 2) on the current learning example for
all relevant parameters, and 2) updates these parameters for a small negative ratio of
the corresponding gradient.

The learning is governed by 4 hyperparameters of the algorithm:

45
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Algorithm 1 Skeleton of the algorithm for fitting parameters of the linear regression
model. Inputs: training data Train and the hyperparameters: ITER, MP, λ, MF. Out-
puts: parameters βs and γs of the linear model.

1: set values of all parameters (βs and γs) to 0.
2: for n = 1→ ITER do
3: for each a in Attr do
4: oldError, newError ← 1, 0 {To satisfy the condition in while clause.}
5: while oldError > newError do
6: oldError← newError
7: call shuffle(Train) {Shuffling order of training examples is a standard step in

stochastic gradient descent optimization.}
8: for each LO in Train do
9: for each LN in Train do
10: if LO .event == LN .event or LO in less than MP pairs then
11: continue
12: end if
13: newError← newError + (predictRank(LO, LN )− trueRank(LO, LN ))2

14: call updateFeatures(LO, LN , a, λ,MF)
15: {Function updateFeatures computes derivatives and updates features accord-

ingly.}
16: end for
17: end for
18: end while
19: end for
20: end for

– ITER: the number of passes over attributes made by the algorithm.

– MP: the minimal number of pairs Pairs(LO, LN) for a givenLO, where Pairs(LO, LN) >
0. A high number of non-zero pairs assures that the ranks Rank(LO, LN) were es-
timated better.

– λ: the penalty factor from the error function in Equation 2.

– MF: minimal frequency of an attribute value. In order to update a parameter for
an attribute value, at least MF of lectures must have this value. Otherwise, the
parameter’s value will remain at 0. For example, if MF=10, and since there are only
6 lectures in Russian language in the training set, the parameters related to Russian
language would remain at 0.

4 Towards a Collaborative Approach

When the description of a lecture LO is inadequate or even wrong, the content-based
approach by itself cannot provide good results. In such cases, it might be better to pre-
dict using some of the lectures that were often viewed together with LO. The question is
how to select these lectures? A natural choice to measure the importance of a “friendly”
lecture is the number of its co-occurrences with LO. A weighted sum, where weights are
the co-occurrences, implements this idea:
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Coll(LO, LN ) =

∑
j∈Train Pairs(LO, Lj) ∗ R̂ank(Lj, LN )∑

j∈Train Pairs(LO, Lj)
, (3)

where ranks R̂ank(Lj , LN) are estimated with the linear model described in the previous
section.

The above formula neglects the content-based prediction R̂ank(LO, LN) completely.
A “hybrid” approach, combining content and collaborative approaches, could result in
a more accurate predictor:

Hybrid(LO, LN ) =
R̂ank(LO, LN ) + CC ∗ Error(LO) ∗ Coll(LO, LN)

1 + CC ∗ Error(LO)
, (4)

The term Error(LO) is the mean squared error of the content-based predictor with
respect to the lecture LO:

Error(LO) =

∑LN .event6=LO.event
LN∈Train

(
R̂ank(LO, LN)−Rank(LO, LN)

)2

Number of lectures in Train
. (5)

The motivation to use the error term is to give a larger weight to the collabora-
tive predictor when the content-based predictor makes less accurate predictions. The
parameter CC sets the proportion of the error to be used as a weight.

5 Evaluation

The submitted rankings were evaluated with the mean average R-precision score (MARp),
a measure commonly used in information retrieval. Initially, we tried to produce a repre-
sentative holdout set from the provided training data, which would be used to optimize
the algorithm’s hyperparameters. However, as we were unable to sample a set that would
give similar results to those on the leaderboard, we decided to use the available number
of submissions (60) to select the hyperparameters.

Table 2. The results of the experiments on 20% of test data (for the leaderboard) during
parameter optimization. Only the relevant experiments are shown. The initial values were:
MF=10, λ = 200, MP=0, CC=0, ITER=4. The final values (in bold) are: MF=3, λ=200,
MP=200, CC=3, ITER=8. Alongside the values, MARp’s achieved on leaderboard are provided
in brackets.

MF 10 (0.157) 5 (0.162) 3 (0.264)
λ 200 (0.264) 100 (0.263) 50 (0.262)
MP 0 (0.264) 50 (0.271) 100 (0.288 ) 200 (0.290)
CC (MP=100) 0 (0.288) 3 (0.290) 6 (0.289)
ITER 4 (0.292) 8 (0.307)

Table 2 shows some of the relevant experiments. We omit several initial experiments
and all experiments not leading to the final model. At the start, the values of the
hyperparameters were MF=10, λ = 200, MP=0, CC=0, and ITER=4.
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We started off with larger values of MF and noticed a significant growth in perfor-
mance when MF was reduced to 3. As it seems, there must be some attribute values
occurring in only three training lectures, yet are critical to make good predictions for
the new lectures. The following parameter tested was λ, which appeared to have a small
influence on prediction. There was a slight decline in precision when λ was decreased,
however the change was negligible.

After fixing MF and λ we moved on to MP. We increased its value from 0 up to 200
and noticed that values over 100 clearly lead to more accurate models. As described
above, with high values of MP the algorithm will learn from lectures with better esti-
mations of ranks. In machine learning terms, we are removing examples with large noise
levels in class value. Since the increase of precision was minimal when MP went from
100 to 200, we set 200 as the final value of the parameter.

Afterwards, we investigated whether the hybrid approach helps to improve the
model. The CC weighs the importance of the collaborative predictor; setting it to zero
will result in the use of content predictor only, high numbers will give preference to
the collaborative predictor. As it turned out (to our surprise), different values of CC
did not affect the performance much. The results suggest that both approaches make
similarly good predictions, but their combination brings only a slight improvement. The
final value of CC was set to 3.

Lastly, we explored the ITER parameter. This parameter is the number of passes
made by the algorithm over all attributes. Initially, it was set to 4 and was then increased
to 8. According to the obtained results, where 8 repeats lead to notably better results,
it seems that our algorithm slowly converges towards the global optimum and it would
be useful to let it run even longer. However, we were out of available submissions.

The final score on the leaderboard was 0.307, while the final results on the complete
test set were only 0.277. Such a difference was expected as the hyperparameters of the
algorithm were optimized using the leaderboard data. This was just enough to achieve
the third place in competition with a small advantage over the fourth place (0.271). The
first and the second place competitors scored 0.359 and 0.307, respectively.

6 Conclusions

In this paper, we have presented a model for predicting the ranks of lectures. It is a
large-scale linear regression model that can not be fit by conventional methods, hence we
used the stochastic gradient descent. We implemented content-based and collaborative-
based approaches. Both approaches exhibited similar prediction accuracies with a small
improvement if they were used together. The evaluation showed an interesting property
of the data; there are some rare attribute values occurring in only 3 (out of 6983) training
lectures that are critical for a good prediction on the test data. It would be interesting
to further examine this matter and seek out which are these values. Furthermore, it
turned out that it is important to have reliable class values. Removing the lectures with
low number of views and learning the model from well represented lectures resulted in
significantly better models.

During experiments we noticed that our stochastic gradient descent only slowly
converged towards an optimum. Increasing the number of passes visibly improved the
accuracy of the model and we believe that letting it run even further would result in
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even larger improvements. Another way of improving our model would be to consider
the textual attributes, to which we did not pay much attention. Finally, it would be also
useful to construct more sensible attributes for the given domain. A possible approach
would be to use argument based machine learning (ABML), where new attributes are
constructed from arguments (explanations) given to some of the critical learning exam-
ples [4, 3].
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Abstract. In this paper we present a method to obtain a recommendation rank-
ing for items in a collection using a marginalization technique to estimate con-
ditional probabilities. The method uses no content-related information and rests
on a probabilistic model based on implicitly collected data from past user be-
haviour. Given a query triplet of items for which a list of recommended results is
required, the technique uses estimates for the conditional probabilities of items
appearing after the three doublets defined by the triplet. The technique leads to
the evaluation of a score function which takes the simple form of a sum of these
conditional probabilities. Results show that the approach has good performance
with respect to other methods.

1 Introduction

Given the exponential growth of content availability that current technology provides,
it is usually impossible for a user to even skim over each item in a collection of e.g.
webpages, movies, books or products in order to make a choice. This was recognized
early in the internet era and great effort has been devoted to the development of systems
that assist the user in this task. The ability to separate the wheat from the chaff is, in
fact, the defining element of a number of technology companies, e.g. google or yahoo,
and the recommendation of items of interest is of paramount importance for many
others like netflix and amazon. In a nutshell, recommender systems attempt to provide
a list of elements that are likely to be of relevance to a user. The ranking of elements is
based on characteristics of the items and their relationships (content-based information),
information about the user in question, and information explicitly or implicitly provided
by other users (collaborative-type information) [4].

The ECML/PKDD Discovery Challenge 2011 [1] had as its purpose the improve-
ment of VideoLectures.net’s [3] recommender system. The challenge was set up on the
tunedit.org platform [2], which provides functionality to easily organize data mining
competitions. VideoLectures.net is an open access multimedia repository of video lec-
tures available on the internet. The videos are recordings of lectures given by researchers
in diverse areas of science during scientific events such as conferences and workshops.
There were two main tasks and a workflow contest during the challenge. This paper
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describes a solution for task 2 which obtained second place. This task simulated the
situation in which a particular user is known to have seen a set of three videos. Based
on this knowledge, the system should recommend 10 videos in descending order of rel-
evance.

The paper is organized as follows. §2 describes the available data. In §3 the main
idea of the solution is introduced. §4 contains details about the implementation. §5
shows the performance of the method proposed. Finally, in §6 appear some remarks and
conclusions.

2 Data and evaluation

The contestants were provided with a number of datasets containing information about
the lectures and past viewing behaviour to construct a recommender system. The
datasets contained two types of information. The first type was information about the
content-related features of each lecture such as the author and category to which the
lecture belongs. The second type was statistical information extracted from the viewing
sequences of site users. Given the lack of explicit profiles, the users were identified by
a cookie left in their browsers. Each sequence was determined by the stream of videos
seen with a uniquely cookie-identified browser. The viewing sequences were not actually
provided. Instead, aggregated information about user behaviour was given. The solution
presented here disregards content-related data, and uses only statistics obtained from
pooled viewing sequences.

In what follows, we introduce notation that will allow us to refer to the statistics
used by the method. Let (v1, v2, v3) be a triplet of three different lectures’ id’s, and t
the id of a ‘target’ lecture , that is, a lecture seen after the triplet. Thus, we define the
following:

1. pairs frequencies: the number of distinct sequences in which a pair of lectures was
viewed together (not necessarily consecutively and regardless of order). We denote
the co-viewing frequency of v1 and v2 by f(v1, v2).

2. triplets frequencies: given a triplet of video lectures, the number of viewing se-
quences in which the three videos that define the triplet appear. f(v1, v2, v3) denotes
this frequency.

3. triplets’ targets frequencies: given a triplet of video lectures, the number of view-
ing sequences in which a given target video lecture has been seen after viewing the
three videos in the triplet (available only for the ten targets most frequently viewed
after each triplet). The notation used in this case is: f(v1, v2, v3; t). A semicolon to
separate the target from the rest because this frequency is counted differently to the
previous two.

An example follows that clarifies the last one of these definitions (adapted from [1]).
Consider the following viewing sequence:

v1 → v7 → v2 → v1 → v4 → v5 → v6 → v3

The first operation is to remove duplicates, after which the sequence becomes:
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v1 → v7 → v2 → v4 → v5 → v6 → v3

Suppose that we want to obtain the target viewing frequencies for the triplet (v1, v4, v5).
Given that only v6 and v3 appear after all of v1, v4 and v5, we increment the two fre-
quencies f(v1, v4, v5; v3) and f(v1, v4, v5; v6) by one.

Now suppose that there is another sequence:

v4 → v5 → v8 → v1 → v6 → v3 → v7

Then, given that v6, v3 and v7 appear after all of v1, v4 and v5 we increment the
three frequencies f(v1, v4, v5; v3), f(v1, v4, v5; v6) and f(v1, v4, v5; v7) by one.

Hence, if these were the only two sequences containing (v1, v4, v5) we would have:

f(v1, v4, v5; v3) = 2

f(v1, v4, v5; v6) = 2

f(v1, v4, v5; v7) = 1

The whole triplets’ targets frequencies dataset was divided by the organizers in two
parts. The first part, consisting of the target frequency information for 109044 triplets,
was provided to the contestants to train their models. For the rest of the triplets, 60274,
the target frequency information was retained by the organizers as a test set to score
the submitted solutions. As is customarily done in data mining competitions, part of
this test set was used to rank the contestants in the competition leaderboard, while the
complete test set was used to construct the final ranking. The performance measure
used was the Mean Average R-Precision (MARp, see [1]).

3 Approach used in the solution

Consider a given triplet (v1, v2, v3) and a target t for that triplet available in the training
set. Then let:

p(t|v1, v2, v3) =
f(v1, v2, v3; t)

f(v1, v2, v3)
(1)

denote the conditional probability of seeing t given that v1, v2, v3 have been seen
previously in any order. In a similar way, if we had available f(v1, v2; t), the number of
sequences in which t appears after (v1, v2), we could calculate

p(t|v1, v2) =
f(v1, v2; t)

f(v1, v2)
(2)

i.e. the conditional probability of seeing t after having seen the doublet (v1, v2).
The solution is based on the observation that it is possible to estimate this condi-

tional probability of seeing a video after having seen a doublet of videos, based on the
triplets’ information available in the training set:

p(t|v1, v2) ≈ p̂(t|v1, v2) :=
∑

v f(v1, v2, v; t)∑
v f(v1, v2, v)

(3)
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As a matter of consistency with the numerator as regards the counting of sequences,
we chose the denominator as a sum over the triplets in the training set. Consequently,
this is an approximation for the following reasons: (a) there is an unknown overlap be-
tween the set of sequences counted by f(v1, v2, v; t) and f(v1, v2, v

′; t), and also between
the set of sequences counted by f(v1, v2, v) and f(v1, v2, v

′) for two different videos v
and v′, (b) there is no information available for target videos that are not in the top
ten most frequently seen videos for each triplet, and (c) there are triplets that have
been retained for the test set for which there is no target information. In any case, this
“marginalization” over the third video would seem to provide a reasonable estimate.

Consider now a query triplet (q1, q2, q3). The task is to identify, in descending order
of viewing frequency, the ten videos most frequently viewed after having seen q1, q2, q3
in any order. Using conditional probability estimates p̂(t|q1, q2), p̂(t|q1, q3), p̂(t|q2, q3),
the ranking is constructed based on some function of them, i.e. let

score(t) = F (p̂(t|q1, q2), p̂(t|q1, q3), p̂(t|q2, q3)) (4)

be the score assigned to video t. It is reasonable to postulate some restrictions for F .
Namely, that it should be increasing, or at least non-decreasing, in each of its arguments,
and also that it should obtain the same value for any permutation of its arguments. A
number of options were tested for F , among them the product of the arguments. In the
end, the sum of the conditional probabilities happened to give a very good result, i.e.

F (p̂(t|q1, q2), p̂(t|q1, q3), p̂(t|q2, q3)) =
= p̂(t|q1, q2) + p̂(t|q1, q3) + p̂(t|q2, q3) (5)

Since the original submission of these results we found, however, that there is another
option that provides a superior ranking. This is an entropy-like function defined as,

F (p̂(t|q1, q2), p̂(t|q1, q3), p̂(t|q2, q3)) =

= −
∑

1≤i<j≤3

p̂(t|qi, qj) log(p̂(t|qi, qj) (6)

which also enjoys the same permutation symmetry.

4 Implementation details

In order to render the method computationally viable, as a first step, the target con-
ditional probability estimates given a doublet are calculated and stored in an index.
In the index, each doublet points to a list of targets that appeared after the doublet
with the corresponding conditional probability estimate (see Equation (3)). This is done
by traversing the triplets’ training set once and accumulating the frequencies for each
doublet and target.

Once this index is constructed, given a query triplet (q1, q2, q3), consider the three
doublets (q1, q2), (q1, q3), and (q2, q3). The index contains for each of these doublets a
list of target videos with corresponding conditional probabilty estimates. Let L1, L2

and L3 be the list of targets in the index for (q1, q2), (q1, q3), and (q2, q3), respectively.
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Additionally, let L be the list of videos appearing simultaneously in L1, L2 and L3, i.e.
L = L1∩L2∩L3. For these targets, which would seem particularly relevant for the query,
we can readily use the scoring function F to rank them. In the case that the number
of results thus obtained is at least ten (the number of required recommendations for
the task), the top ten sorted recommendations are written to an output file and we are
done with this query triplet.

For some query triplets it may happen that there are less than ten targets in the
intersection list L (in the query file this happened for 20688 of the total of 60274 query
triplets). If this happens, consider the targets t that are in the intersection of exactly
two of the lists i.e.

t ∈ L′ := (L1 ∩ L2) ∪ (L1 ∩ L3) ∪ (L2 ∩ L3) \ L

for these t’s two of the probability estimates are available. They are ranked, again using
the function F , and appended after the previous recommendations.

If at this point the recommendation list still has less than ten results (3372 of the
60274 queries), consider the targets that appear exactly in one of the three lists, i.e.

t ∈ L′′ := L1 ∪ L2 ∪ L3 \ ((L1 ∩ L2) ∪ (L1 ∩ L3) ∪ (L2 ∩ L3))

For these targets one probability estimate is available. Once again, they are ranked
using F and added to the recommendation list.

There are still some query triplets for which a list of at least ten recommendations
cannot be obtained (412 of 60274 queries), for these the conditional probability esti-
mates of targets appearing after single videos p̂(t|q1), p̂(t|q2), and p̂(t|q3) are calculated
“marginalizing” over two videos:

p(t|q) ≈ p̂(t|q) :=
∑

v,w f(q, v, w|t)∑
v,w f(q, v, w)

(7)

Now, the score for ranking given to a target for query triplet
(q1, q2, q3) is:

p̂(t|q1) + p̂(t|q2) + p̂(t|q3) (8)

Finally, there are some triplets in the query file for which after carrying out the
previous steps still less than 10 recommendations are obtained (29 of 60274), in this case
the video pairs co-viewing frequencies are used to generate the remaining recommended
video lectures.

The method described above obtained a score of 0.60749 on the leaderboard and a
score of 0.61134 on the complete test set. The final solution submitted, which obtained
a score of 0.60791 on the leaderboard and a score of 0.61172 on the complete test set,
included a coefficient per doublet that was fitted and incorporated into the scoring
function. The rationale behind these coefficients was that they might adjust for some
of the inaccuracies in calculating the conditional probability estimates discussed above.

Consider a model introducing these coefficients:

F (p(t|q1, q2), p(t|q1, q3), p(t|q2, q3)) =
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= λq1,q2 × p(t|q1, q2) + λq1,q3 × p(t|q1, q3) + λq2,q3 × p(t|q2, q3) (9)

To fit these coefficients a greedy grid search method was used. Accordingly, each
coefficient was initialized to 1. Given a doublet for which the coefficient needs to be
fitted, a greedy search was conducted over a range (range used for the solution: [0.5−1.5])
and the coefficient value was selected for which the evaluation metric (MARp) over the
available training triplets that contained the doublet was maximal. After greedy fitting
these coefficients sequentially for each doublet and calculating the recommendations for
the test set using Equation (9) for the score function, the leaderboard score improved to
0.60791. The Wilcoxon signed rank test was used to assess whether the difference was
statistically significant. The p-value obtained was 0.01462, which does not lend strong
support to the hypothesis that the means are different.

5 Results

Table 1 contains the scores for the leaderboard and complete test sets obtained using the
methods described. The table also shows the score obtained when using a solution based
on single videos conditional probability estimates only (see Equation (7)). Additionally,
the scores obtained by the winner solution and the third place solution are included for
comparison.

Again, the Wilcoxon signed rank test was used to assess statistical significance of
the difference in scores between the original method using the simple sum as ranking
function and the one using an entropy-like ranking function. The test yielded a p-value
in the order of 10−16, confirming that the difference in scores is statistically significant.

Table 1. Scores for the three methods described

Method Leaderboard Score Complete Test Set Score

Singles Cond. Probs. 0.41844 0.42057
Doublets Cond. Probs. 0.60749 0.61134
Doublets Cond. Probs. with Coeffs. 0.60791 0.61172
Doublets Cond. Probs. entropy-like F 0.60910 0.61285
Winner Solution (D’yakonov Alexander) 0.62102 0.62415
Third Place Solution (Vladimir Nikulin) 0.58727 0.59063

6 Summary and Conclusions

The method presented here uses a purely probabilistic approach to construct a recom-
mender system from pooled viewing sequences statistical data. To do this we introduced
an approximate marginalization technique leading to an estimate of the conditional
probabilities of viewing target videos given that a doublet has been seen. These are in
turn combined using a fully symmetric function to calculate a ranking score.

Introduction of doublet-dependent coefficients did not improve the performance in
a statistically significant amount according to the Wilcoxon signed rank test. On the
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other hand, replacing a simple sum by an entropy-like function for the ranking function
yielded a statistically significant higher performance, again as assessed by the same
statistical test.

The technique is straightforward, intuitively sound, being based on a simple insight,
and easy to implement. Furthermore, it displayed better performance compared to other
methods, obtaining second place on task 2 of the ECML/PKDD Discovery Challenge
2011.
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Abstract. We propose to use two lectures (out of the given triplet of three
lectures) in order to define a direction of prediction, which includes the set of
predicted lectures accompanied by the corresponding frequencies. The relevance
of the whole predicted set is calculated according to the remaining third lecture.
Further improvements were achieved with homogeneous ensembles, based on the
random sampling known, also, as bagging. The experimental results were ob-
tained online during the VideoLectures.Net ECML/PKDD 2011 Discovery Chal-
lenge (Track N2).

1 Introduction

VideoLectures.Net is a free and open access multimedia repository of video lectures,
mainly of research and educational character. The lectures are given by distinguished
scholars and scientists at the most important and prominent events like conferences,
summer schools, workshops and science promotional events from many fields of science.
The website is aimed at promoting science, exchanging ideas and fostering knowledge
sharing by providing high quality didactic contents not only to the scientific community
but also to the general public. All lectures, accompanying documents, information and
links are systematically selected and classified through the editorial process taking into
account also users’ comments1.

The tasks of the challenge were focused on making recommendations for video lec-
tures, based on historical data from the VideoLectures.Net website2.

According to [1], Open Social Learning Systems open new prospects for millions of
self-motivated learners to access online a high quality materials. It is estimated that there
will be 100 million students qualified to enter universities over next decade. Universities
have responded to this need with Open Education Resources: thousands of free, high
quality online courses, developed by hundreds of faculty, used by millions worldwide.
Unfortunately, online courseware does not offer a supporting learning experience or the
engagement needed to keep students motivated.

However, students today care deeply about their education. Four out of five stress
about their grades. To create a successful online learning experience for those students,

1 http://tunedit.org/challenge/VLNetChallenge
2 http://videolectures.net/
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there are two main issues that need to be addressed: 1) creation of online study materials
(content), and 2) an engaging online interaction experience (community).

The core problem (and the main subject of this study) lies around the second issue:
how to give the right direction to a generation of learners, who live on the Internet, in
the wide space of the available research/educational resources.

Recommender systems attempt to profile user preferences over items, and model
the relation between users and items. The task of recommender systems is to recom-
mend items that fit a users tastes, in order to help the user in selecting/purchasing
items from an overwhelming set of choices [2]. Such systems have great importance in
applications such as e-commerce, subscription based services, information filtering, etc.
Recommender systems providing personalized suggestions greatly increase the likeli-
hood of a customer making a purchase compared to unpersonalized ones. Personalized
recommendations are especially important in markets where the variety of choices is
large, the taste of the customer is important, and last but not least the price of the
items is modest. Typical areas of such services are mostly related to art (esp. books,
lectures, movies, music), fashion, food and restaurants, gaming and humor.

The most of the methods presented and discussed in [2] were motivated by the famous
Netflix Cup. Those methods, where matrix factorization is the most common, cannot be
applied in our case directly, because the structure of the data is different. In our case we
are dealing not with a specific users, but with abstract users who had seen in the past a
triplet as a set of three given lectures, where an exact sequence of lectures is not given.
We shall consider in Section 4 one suitable modification (as a prospective direction) of
the gradient-based matrix factorization (GMF) [6] as an example of stochastic gradient
descent algorithm.

Traditional data mining techniques such as association rules were tried with good
results at the early stages of the development of recommender systems [3]. Frequent item
sets, discovered as part of association rule mining, represent the least restrictive type of
navigational patterns, since they focus on the presence of items rather than the order
in which they occur within user session [4]. Frequency-based methods are the primary
tool in the following below Sections 3.1 - 3.6. Note, also, that Markov decision processes
provide a more advanced model for recommender systems (in the case if the sequence
of the states is given). According to the Markov Chain Model, we are dealing with a
finite space of possible states, and, using a maximum-likelihood estimate (applied to the
historical data) as a transition function, we can formulate a prediction [5].

Bagging predictors is a method for generating multiple versions of a predictor and
using these to get an aggregated predictor. The aggregation averages over the versions
when predicting a numerical outcome and does a plurality vote when predicting a class
[7]. In Section 3.6 we consider method of random resampling: it is supposed that using
the hundreds of predictors (base learners) based on the subset of the whole training
set we shall reduce the random factors. According to the principles of homogeneous
ensembling, the final predictor represents an average of base predictors. As a reference,
we mention random forests as a well-known example of successful homogeneous ensem-
ble. However, the construction of random forests is based on another method, which is
linked to the features but not to the samples.
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Fig. 1. Histograms of (a) triplet’ frequencies; (b) pair’ frequencies truncated to the level of
50; (c) pair’ frequencies bigger than 50, and truncated to the level of 500, see for more details
Section 2.

2 Data and some definitions

The training database includes two sets named 1) pairs P and 2) triplets T with two
parts left and right, where the left part contains input triplets and the corresponding
numbers of views, the right part contains output lectures and the corresponding numbers
of views.

2.1 Pair data

Let us denote by IP set of indexes corresponding to the pairs data. Any element of
IP represents a set (without order) of two lectures I = {a, b}, where I ∈ IP . We shall
understand under PI = Pab number of times lectures a and b were viewed/seen together.
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2.2 Triplet data

Let us denote by IT set of indexes corresponding to the triplets data. The element with
index I ∈ T has two values (one for the left, and one for the right parts): τI = {a, b, c} is
a triplet or a set of three lectures a, b and c. Under TI we shall understand the number
of times those three lectures were seen together. Further, LI is a set of single lectures,
which were seen after τI . Under TI(ℓ), ℓ ∈ LI , we shall understand the number of times
lecture ℓ was seen after the triplet τI .

2.3 Graphical illustrations

Figure 1(a) illustrates histogram of empirical probabilities or frequencies

rτ (ℓ) =
TI(ℓ)

TI
, ℓ ∈ LI , I ∈ IT , (1)

where we replaced I by τ in the left side of (1), because there is unique correspondence
between I and τ.

Figure 1(b-c) illustrates histogram of frequencies

PI , I ∈ IP ,

where all the values in Figure 1(b) were truncated to 50, Figure 1(c) illustrates histogram
of the values PI bigger than 50, which were truncated to 500.

3 Methods

3.1 Predictions with couples

The task of the Challenge was to make predictions according to the test dataset V ,
which has the same structure as T (left part). In more details, the task was to make a
recommendation of the ten the most appropriate lectures after viewing the given triplet.

Remark 1. As a particular and very important feature of this Challenge, we note the
absence of the same triplets in both training T (left part) and test V sets. At the
same time, we can report a very significant proportion of the same sets of two lectures
(couples) in both training and test sets.

In total, we found nc = 34756 couples, with number of record (which were extracted
from the right part of T ) per couple ranging from 1 to mc = 4020. Note that any triplet
may be considered as a set of three couples. There are NV = 60274 triplets in the test
set V , and 1) we did not find any related couples in the training set only in 116 cases,
2) we found one couple in 829 cases , 3) we found two couples in 4705 cases, and 4) we
found all three couples in an absolute majority of 54624 cases.

Remark 2. Any lecture is identified by the index, where the biggest index is nL = 13251.
However, not all nL lectures were used. We had assumed that the predicted lectures
should be found in the right part of T , where we identified only ns = 5209 different
lectures.
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Some preliminary definitions We shall explain how the system works in the terms
of the ns secondary indexes, because the transformation to the original nL indexes is a
trivial one. Our database was organised as follows. Squared matrix A with sizes ns×ns

contains nc different addresses of the matrix B with sizes nc ×mc.
Firstly, we shall find three couples αij , j = 1, . . . , 3, for any triplet τi, i = 1, . . . , NV ,

in the test dataset V . Then, for any couple αij we shall find (according to the matrix A)
the corresponding address β(αij) (in the matrix B) and the number of records n(αij),
where 1 ≤ β ≤ nc, 1 ≤ n ≤ mc.

Under the element of matrix B we shall understand predicted/recommended lecture
ℓ and the corresponding frequency

{ℓ, rτ (ℓ)}, (2)

where rτ is defined in (1).

Remark 3. The main advantage of the above method is its speed: the algorithm will go
through the whole test set V and will output required solution for the Track N2 within
5 min.

An update process Now, we shall describe the most critical step of the computational
process. Any particular triplet τ from the test dataset is to be considered in an identical
manner, so we omit index i in order to simplify notations.

Suppose that initially all the ratings are set to zero s(ℓ) = 0, ℓ = 1, . . . , ns, where
s(ℓ) is the rating of the corresponding lecture ℓ which will be used for the final ranking
as an output of this model.

This is the most important update formula

s(Bβk(1))+ = Bβk(2), k = 1, . . . , n(αj), j = 1, . . . , 3, (3)

where Bβk(1) is the lecture index, and Bβk(2) is the corresponding frequency defined
in (2).

After computation of the vector s according to (3), we shall sort it in a decreasing
order, and the arguments (indexes of the lectures) corresponding to the ten biggest s
(from the top to the bottom) are to be submitted as a solution.

Remark 4. In the case if the number of positive values in the vector s is smaller compared
to the required 10, we shall generate remaining indexes at random assuming that the
indexes are different compared to 1) the indexes of the input triplet τi plus 2) those
indexes which were selected already.

The method, as described above produced the score on the Leaderboard 0.49568,
where the detailed definition (with numerical examples) of the Competition score is
available from the web-site of the PKDD 2011 Contest.

3.2 Predictions with singles

Essentially, predictions with singles (single lectures) work similarly as predictions with
couples. However, there are some differences, which could be treated as simplifications.
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We had found that the maximum number of the records corresponding to the single
lecture is ms = 77798. Accordingly, the matrix B̂ (as a replacement to the matrix B in
the previous Section 3.1) has sizes ns ×ms.

The model works in the following way: by definition, any triplet represents a set of
three lectures ℓj , j = 1, . . . , 3.We shall find the number of records 1 ≤ n(ℓ) ≤ ms, where
1 ≤ ℓ ≤ ns.

An update process Again, initial ratings of lectures are set to zero: s(ℓ) = 0, ℓ =
1, . . . , ns.

This is the main update formula

s(B̂ℓjk(1))+ = B̂ℓjk(2), k = 1, . . . , n(ℓj), j = 1, . . . , 3. (4)

After computation of the vector s according to (4), we shall sort it in a decreasing
order, and the arguments (indexes of the lectures) corresponding to the ten biggest s
(from the top to the bottom) are to be submitted as a solution.

The method, as described above produced the score on the Leaderboard 0.33278.

3.3 Predictions with pairs

Definition 1. We shall call that the lectures a and b are P-linked if Pab ≥ 1. According
to the symmetric matrix P, we define set H(a) of all P-linked lectures to the lecture a.

An update process As before, initial ratings of lectures are set to zero: s(ℓ) = 0, ℓ =
1, . . . , ns. Then, we shall apply an update formula

s(d)+ = P (ℓj , d), d ∈ H(ℓj), j = 1, . . . , 3, (5)

where an interpretation/definition of the lectures ℓj is the same as in (4).

After computation of the vector s according to (5), we shall sort it in a decreasing
order, and the arguments (indexes of the lectures) corresponding to the ten biggest s
(from the top to the bottom) are to be submitted as a solution.

The method, as described above produced the score on the Leaderboard 0.12677.

Remark 5. The solution, as described in this section, was recommended by the Organ-
isers on the forum as “simple pairs solution”.

Note, also, that during our numerous experiments we made a very interesting obser-
vation/discovery.

Remark 6. Statistics defined in (3-5) represent a sum of frequencies. It is very interesting
to note that the results will be significantly poorer if we shall apply an average of
frequencies as an alternative to the sums.
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3.4 Predictions with weighted couples

According to the above three sections, predictions with the couples produced best re-
sults. We decided to go further and to take into account remaining third lectures φ and
ψ in both training and test sets.

Motivation: in the case if remaining (“extra”) lectures φ and ψ are closer (have
bigger number of the joint views according to the pairs data), the predicted direction,
corresponding to the related couple, must be given bigger weight.

As it was discussed in Remark 1, lectures φ and ψ are different by definition. In
other words, the corresponding (“similar”) triplets in the training and test datasets
may be represented as

αj ∪ φj , αj ∪ ψj ,

where φj 6= ψj , j = 1, . . . , 3.

An update process As before, initial ratings of lectures are set to zero: s(ℓ) = 0, ℓ =
1, . . . , ns. Then, we can re-write (3) in this way

s(Bβk(1))+ = w(P (φj , ψj))Bβk(2), k = 1, . . . , n(αj), j = 1, . . . , 3, (6)

where w is an increasing weight function. In our final submission we used very simple
linear function: w(x) = 0.01 · x+ 0.005.

After computation of the vector s according to (6), we sort it in a decreasing order,
and the arguments (indexes of the lectures) corresponding to the ten biggest s (from
the top to the bottom) are to be submitted as a solution.

The method with weighted couples, as described above, produced very significant
improvement on the Leaderboard 0.58145.

3.5 Predictions with weighted singles

This section may be regarded as an extension of Section 3.2. In some sense, prediction
with weighted singles is similar to the prediction with weighted couples, Section 3.4.
However, there are some differences. In the case of singles, we are defining direction of
the prediction according to the single lectures. Accordingly, we have two other (“extra”)
lectures, which should be compared properly with two lectures in the corresponding
triplet of the training data.

An update process Updates were conducted according to

s(B̂ℓjk(1))+ = w(φ1j , φ2j ;ψ1j , ψ2j) · B̂ℓjk(2), k = 1, . . . , n(ℓj), j = 1, . . . , 3, (7)

where w(φ1j , φ2j ;ψ1j , ψ2j)

= 0.0005(P (φ1j, ψ1j)P (φ2j , ψ2j) + P (φ1j , ψ2j)P (φ2j , ψ1j)) + 0.01.

The motivation behind the above formula is a very simple: we must ensure that any
“extra” lecture from the test triplet is close to at least one “extra” lecture from the
train triplet.
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After computation of the vector s according to (7), we sort it in a decreasing order,
and the arguments (indexes of the lectures) corresponding to the ten biggest s (from
the top to the bottom) are to be submitted as a solution.

The method, as described in this section, produced the score 0.4529 on the Leader-
board.

3.6 Resampling method (the final recommender)

In this section computation of the single ranking vector s was based on 75% of randomly
selected samples. In an absolute majority of all 60274 test instances, the number of
positive components of the vector s defined in (6) is greater than 100. So we shall
consider this case only.

Let us denote vector of secondary ratings as z, which is set to zero at the beginning of
the whole resampling process. We conducted 200 random samplings (global iterations).
After any global iteration, only 100 top lectures (components of the vector z) received
increments ranging from 1 to 100 votes (bigger for better performance). The method
which we used within any global iteration (base learner) is described in Section 3.4.

After completion of all 200 global iterations, we sorted vector z in a decreasing order,
and the arguments (indexes of the lectures) corresponding to the ten biggest z (from
the top to the bottom) were submitted as a solution.

The final model with resampling, as described above, produced the following score
on the Leaderboard 0.58727. This solution was used as a final.

Table 1. Distances (8) between five solutions described in Sections 3.1 - 3.4 and 3.6.

N Method Score 1 2 3 4 5

1 couples 0.49568 0 0.2605 0.2137 0.6394 0.6517
2 singles 0.33278 0.2605 0 0.5832 0.4269 0.4327
3 pairs 0.12677 0.2137 0.5832 0 0.1565 0.1664
4 wgt-couples 0.58145 0.6394 0.4269 0.1565 0 0.91
5 resampling 0.58727 0.6517 0.4327 0.1664 0.91 0

3.7 Statistical comparison of different solutions

The distances in the above Table 1 were computer using simplified version of the PKDD
2011 Contest evaluation method. Any solution represents an integer matrix of NV × 10,
T = 10NV integer indexes in total. By comparing two matrices, we shall find the number
of common indexes (intersection) in any row. The total number of all intersections will
give us a numerator R, and the required distance represents a ratio

D =
R
T . (8)
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3.8 Computation time

A Linux multiprocessor workstation with speed 3.2GHz and 16GB RAMwas used for the
most of the computations, which were conducted according to the specially developed
codes in C. The computation of the final solution, as described in Section 3.6, was
conducted overnight and took about 12 hours.

4 Gradient-based matrix factorization

The main idea behind an approach of this section is to factorize the transition matrix
X of a Markov chain (or matrix of frequencies) [9].

By definition, X is a squared symmetrical matrix with size ns, and any element of
X reflects similarity between the corresponding lectures (the bigger value indicates the
higher level of similarity).

Further, we shall consider factorization of the matrix X

X ∼ GG′, (9)

where factor matrix G has sizes ns × k.
We shall compute matrix X according to an update formula, which is very similar

to (4). Initially, all the values of the matrix X are set to zero. The update process will
be conducted according to the formula

x(B̂ℓk(1), ℓ)+ = B̂ℓk(2), x(ℓ, B̂ℓk(1)) = x(B̂ℓk(1), ℓ), (10)

where k = 1, . . . , n(ℓ), ℓ = 1, . . . , ns.
In this section, boldface capital letters denote matrices or vector-columns, while

normal letters denote elements of matrices. Also, it will be convenient for us to use
notation xab = x(a, b).

We now describe the procedure for undertaking the matrix factorization (9). The
matrix factorization represents a gradient-based optimisation process with the objective
to minimise the following squared loss function:

L(A) =
n−1∑

a=1

n∑

b=a+1

e2ab, (11)

where eab = xab −
∑k

f=1 gafgfb.
The above target function (11) includes in total kn regulation parameters and may be

unstable if we minimise it without taking into account the mutual dependence between
elements of the factor matrix G.

As a solution to the problem, we can go consequently through all the differences eab,
minimising them as a function of the particular parameters which are involved in the
definition of eab. Compared to usual gradient-based optimisation, in our optimisation
model we are dealing with two sets of parameters, and we should mix uniformly updates
of these parameters, because these parameters are dependent.
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Algorithm 1: Gradient-based matrix factorization.

1. Input: X - similarity matrix.
2. Select M - number of global iterations; k ≥ 1 - number of factors; λ > 0 - learning rate.
3. Initial similarity matrix G is generated randomly.

4. Global cycle: repeat M times the following steps 5 - 15:
5. external-cycle: for a = 1 to ns − 1 repeat steps 6 - 15:
6. internal-cycle: for b = a+ 1 to ns repeat steps 7 - 15:

7. compute prediction S =
∑k

f=1 gafgfb;
8. compute error of prediction: ∆ = xab − S;
9. internal factors-cycle: for f = 1 to k repeat steps 10 - 15:

10. compute α = gafgfb;
11. update gaf ⇐ gaf + λ ·∆ · gfb (see (12a));
12. ∆ ⇐ ∆+ α− gafgfb;
13. compute α = gafgfb;
14. update gfb ⇐ gfb + λ ·∆ · gaf (see (12b));
15. ∆ ⇐ ∆+ α− gafgfb;

16. Output: G - matrix of latent factors.

The following partial derivatives are necessary for Algorithm 1:

∂e2ab
∂gaf

= −2eabgfb, (12a)

∂e2ab
∂gfb

= −2eabgaf , (12b)

where a = 1, . . . , ns − 1, b = a+ 1, . . . , ns.

Remark 7. The content within this section represents rather a direction for a prospective
work. We are thinking that transformation by the logit function of the values of the
matrix X will work better with Algorithm 1.

4.1 Ranking of the lectures with the matrix of latent factors

As an outcome, Algorithm 1 produces the matrix G of latent factors. Accordingly, we
can characterize any lecture by the corresponding vector-row of k numerical values, and
can compute a proximity measure with the given three lecture (triplet) from the test
set V . The smaller value of the distance indicates higher preference.

5 Concluding remarks

We fully agree with [10] that the superiority of new algorithms should always be demon-
strated on an independent validation data. In this sense, an importance of the data
mining contests is unquestionable. The rapid popularity growth of the data mining
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challenges demonstrates with confidence that it is the best known way to evaluate dif-
ferent models and systems.

In general terms, we are satisfied with our results. However, due to the lack of avail-
able time, we did not find an efficient way how to construct heterogeneous ensembles.
For example, the outcomes of the methods of weighted singles and couples are very
different. Nevertheless, both results are competitive, and it is very important to find
out how to exploit the differences in order to produce more advanced solution.

Also, we did not explore in details gradient-based matrix factorization, which is pre-
sented in Section 4. We can expect that this method may lead (after proper adjustment
and modification) to the solution, which will be different and competitive at the same
time.
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Abstract. Content-based methods are commonly adopted for addressing the
cold-start problem in recommender systems. In the cold-start scenario, usage
information regarding an item and/or item preference information of a user is
unavailable since the item or the user is new in the system. Thus collaborative
filtering strategies cannot be employed but instead item-specific attributes or the
user profile information are used to make recommendations. We focus on lecture
recommendations for the data in videolectures.net that was made available as
part of the ECML/PKDD Discovery Challenge. We propose the use of co-view
information based on previously seen lecture pairs for learning the weights of
lecture attributes for ranking lectures for the cold-start recommendation task.
Co-viewed triplet and pair information is also used to estimate the probability
that a lecture would be seen, given a set of previously seen lectures. Our results
corroborate the effectiveness of using co-view information in learning lecture
recommendations.

1 Introduction

Given a set of users and a set of items, the goal of a recommender system is to predict
the items a particular user is most likely to be interested in. Recommending products
for users on a shopping website like Amazon, predicting the ratings that a user is likely
to assign to a movie, predicting the citations a paper is likely to make are some common
scenarios where automatic recommender systems are desirable[11, 4, 14] 1.

We focus on lecture recommendations for lectures from videolectures.net, an
open-access repository of educational lectures 2. Lectures given by prominent researchers
and scholars at conferences and other academic events are made available on this website
for educational purposes. This year’s ECML/PKDD Discovery Challenge involved two
recommendation tasks using lectures from this website. Figure 1 denotes a snapshot
of the existing system at videolectures.net. We indicate in this figure some of the
information available with lectures on this website. Most lectures on this website contain
information on the language in which the lecture was given, content of the slides, the
category (discipline-area) of the lecture etc. Sometimes, additional information such as
the description of the event (such as conference, workshop) in which the lecture was given
and author affiliation is also available. The training data for ECML/PKDD challenge
contains a subset of lectures from videolectures.net. Along with the lecture, authors

1 Partially supported by NSF DUE-0817376 and DUE-0937891 awards.
2 http://videolectures.net/site/about/
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and event attribute information, the training data includes information about pairs and
triples of lectures that were frequently co-viewed in the past. The datasets are described
in more detail in Section 3 and [3].

Task 1 of the challenge pertains to the cold-start scenario where recommendations
are sought for new lectures. In this task, we are given a set of training lectures Q, and
a co-viewed pairs set P = {(l1, l2, f) | l1, l2 ∈ Q}, where f is the frequency that l1, l2
were co-viewed together. The test set, T contains lectures without any viewing history
and the task requires the participants to recommend lectures, Rq ⊂ T for each query
lecture q ∈ Q′, Q′ ⊂ Q. This task simulates the scenario in which recommendations are
to be made for a new user or a new lecture where no co-viewed history information is
available.

Task 2 of the challenge simulates a typical scenario for recommender systems. For
this task, recommendations are sought on what lectures are likely to be viewed next
given three lectures of a stream of previously viewed lectures. The training data for
this task includes triplets Tleft = {(tid, l1, l2, l3, fl) | l1, l2, l3 ∈ Q} where Q is the set of
lectures, fl is the frequency that l1, l2, l3 appeared together in click streams and tid an
identifier for the triplet. The data also includes the set of lectures that have the highest
co-view frequencies, Tright = {(tid, l, fr) | l ∈ Q} where fr is the co-view frequency of
the lecture l with the triple tid. Given a list of query triplets T query

left , task 2 involves
predicting lectures that are most likely to be viewed next given that each lecture in the
triplet t ∈ T query

left was seen.
Our solutions to task 1 and 2 make use of the lecture co-view information available in

the training data. We adopt a content-based approach for the cold-start scenario of task
1 where co-view information is used to learn the feature weights for ranking lectures for
the recommendation task. We use the co-viewed lecture pairs to form training instances
for a supervised learning setup. Support Vector Machines were used where the learnt
feature weights indicate the importance of each lecture attribute for recommending
lectures in the cold-start scenario. For task 2 that involves making recommendations
based on a set of previously seen lectures, we propose a scoring technique to estimate
the likelihood that a lecture would be seen next using concepts from item-set mining.
Our solutions based on the above strategies performed on par with the top-performing
systems in the Discovery challenge. In the final rankings on the leader board, our system
was ranked 8th among 62 participants for task 1 and 4th among 22 participants for task
2.

The remainder of this paper is organized as follows: We briefly summarize previous
work most related to our approach in Section 2. Section 3 describes our solution and
experiments related to task 1 where as in Section 4 we describe our algorithm for task
2 and its performance. Section 5 concludes the paper.

2 Related Work

Recommendation strategies can be broadly classified into collaborative filtering and
content-based strategies. We briefly describe the basic ideas behind these approaches
and include references to some surveys for further understanding. Collaborative filtering
(CF) methods use previous item-user history to generate lists of recommendations.
For example, in movie recommendations, CF strategies use movie ratings previously
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Fig. 1. Lecture video attributes

submitted by other users to predict the rating a user might assign to a movie based on
user-similarity or movie-similarity [1]. In addition to historical information, a user’s or
item’s properties and attributes can be used for personalized recommendations using
content-based approaches [13]. Content-based methods are common in addressing the
cold start problem where ratings and preference information is unavailable or sparse.

Recently, hybrid strategies are being used to leverage the benefits of both collabora-
tive filtering and content-based strategies. For example, to tackle the cold start problem,
Gantner, et al. used collaborative information to compute similarity between existing
items or users using matrix factorization, and then proposed mapping techniques like a
linear combination of various attributes of new items to fit content into same model [8].
Our techniques for learning feature weights for content-based recommendations is closest
to the techniques adopted by Strohman, et al. [14] and Debnath, et al [7]. As opposed to
the regression framework adopted by them, we formulate the attribute-weight learning
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problem in a classification framework for cold-start recommendations for task 1. For
task 2, we design an algorithm that makes use of the fundamental concepts of support
and confidence from item-set mining [2].

3 Task 1: Learning Attribute Weights for Cold Start
Recommendations

We briefly summarize the attribute information available with the data provided for the
challenge in Table 1.

Table 1. Description of Tables in the dataset

Table Name Attribute Information

authors id, name, e-mail, homepage, gender, organization
categories id, name, parent-id, wikipedia-url
lectures id, type, lang, parent-id, views, rec-date, pub-date, name, desc., titles
events id, type, lang, parent-id, views, rec-date, pub-date, name, desc., titles
pairs lec-id1, lec-id2, frequency
triplets-left lec-id1, lec-id2, lec-id3, freq , pooled sequences of 3 lectures
triplets-right top 10 lectures with highest view frequencies for triplets

3.1 Design of Features

The pairs information available for task 1 indicates the frequency with which a given
lecture pair was co-viewed. This information is very significant in understanding the
features that a pair of lectures that tend to be co-viewed often share. For instance, it is
reasonable to expect that a highly co-viewed pair of lectures are in the same language
and perhaps in the same category. Similarly, a pair that is co-viewed frequently is likely
to be on related topics such as two lectures presented in the same conference or two
parts of a tutorial on a topic. It is also intuitive to expect the co-view frequencies of
lectures belonging to diverse categories such as Graph Theory and Ecology to be small.
Based on the above intuitions, we designed the set of following features to measure the
similarity between two lectures in terms of their attributes.

1. Co-author similarity This feature indicates whether two lectures have the same
author. It has a value 1 when two lectures share the same author and 0 otherwise.

2. Type similarity This feature has a value 1 when two lectures share the same type
and 0 otherwise. Example lecture types include lecture, keynote, thesis proposal,
tutorial etc.

3. Language similarity has a value 1 when the two lectures are in the same language
and 0 otherwise.

4. Event similarity A value of 0 or 1 indicates whether the two lectures belong to
the same event such as conference, workshop series etc. In addition to using the
above boolean-valued feature, we used the description fields associated with events
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to compute a similarity value using the cosine similarity function. This score is
meant to capture events that are similar though not the same. For instance, the
conferences ECML and ICML are related despite being distinct venues since they
are both machine learning conferences. Similarly, lectures belonging to the same
conference venue but presented in different years are related.

5. Category similarity The category information pertains to the subject area as-
signed to a lecture. The categories used by videolectures.net are those available
in Wikipedia. Connections between categories are captured via a directed graph in
Wikipedia and can be used to compute similarity. For instance, if two lectures are
assigned the categories “Computer Science” and “Graph Theory”, they share some
commonality since “Graph Theory” is a sub-category of “Computer Science”. To
capture this aspect, we used four different binary indicators for capturing category
similarity between two lectures l1, l2:

– C1: 1 if l1.categories ∩ l2.categories 6= ∅ and 0 otherwise.
– C2: 1 if l1.categories ∩ l2.parent categories 6= ∅ and 0 otherwise.
– C3: 1 if l1.parent categories ∩ l2.categories 6= ∅ and 0 otherwise.
– C4: 1 if l1.parent categories ∩ l2.parent categories 6= ∅ and 0 otherwise.

6. Text similarity The name, titles and description fields of a given lecture have
textual content. We represent these fields using TFIDF [12] vectors and use the
cosine similarity of the corresponding fields of two lectures to compute these features.

7. Topic similarity We use Latent Dirichlet Allocation (LDA) [5], a popular tool
used for modeling documents as topic mixtures. The generative process in LDA
expresses each document in terms of its topic proportions. We modeled the training
set of lectures (name+description+titles) using 1000 topics and obtained the topic
proportions for each lecture. Similarity between a pair of lectures can be computed
using the cosine similarity between the topic vectors or by measuring the overlap
among the top topics from each lecture. We used Jaccard Coefficient [12] to compute
the similarity score based on the overlap among the top-10 topics of the two lectures.

8. Affiliation similarity The author affiliation information is also available with lec-
tures. We compute the affiliation similarity between two affiliations with the Jaccard
similarity measure on the set of words describing the affiliation.

3.2 Learning attribute weights for pairwise prediction

Support Vector Machines (SVM) is a discriminative supervised learning approach widely
used for classification and regression problems in several areas. For binary classification
where the set of class labels is restricted to +1 and -1, the SVM learns a maximally
separating hyperplane between the examples belonging to the two classes based on the
training data. During testing, the distance between a given instance and this hyperplane
is computed and used to assign a prediction label. We formulate the recommendation
task for the cold start scenario as a binary classification problem. We treat the co-viewed
lecture pairs available in the training data as positive examples for the classification
problem. Negative instances for training the classifier are obtained by randomly selecting
lecture pairs that were never co-viewed (in the training data). The features described in
Section 3.1 were used to train a SVM classifier. Task 1 includes query lecture ids (from
say, the set Q) for which recommendations are to be predicted from the set of given
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test lectures (say, set T ). We used each q ∈ Q to form a pair with each t ∈ T and score
the pair using the trained SVM classifier, namely the distance from this lecture pair
instance to the hyperplane. The final list of predictions for each query is obtained by
sorting the pairs based on these scores and choosing the test lectures corresponding to
the top pairs. When trained with the linear kernel option, SVMs learn a set of weights
that satisfy the maximum number of constraints of the following form imposed by the
training data:

yi(w.xi − b) ≥ 1− ǫi, 1 ≤ i ≤ n

In the above formula, i is the index over the training examples, xi pertains to the
features of a given example, yi its label (+1 or -1) [6]. In our case, the feature values
refer to similarity values based on different attributes of a given lecture pair. That is,
as part of learning the classifier, we are in effect, learning a scoring function for lecture
pairs (li, lj) based on a linear combination of individual attribute similarity values such
that

score(li, lj) =

F∑

f=1

wf × simf(lfi, lfj)

where wf indicates the weight assigned to the similarity value based on a particular
attribute f of the given lecture pair.

3.3 Experiments and Observations

The challenge uses R-precision variant for evaluating recommendation performance a
mean value over all queries R defined as:

MARp =
1

|R|
∑

r∈R

AvgRp(r)

Here average R-precision for a single recommended ranked list is given by AvgRp =∑
z∈Z

Rp@z(r)
|Z| where Rp@z(r) = |relevant∩retrieved|z

|relevant|z the R-precision at some cut-off

length z where z ∈ 5, 10, 15, 20, 25, 30 for task 1 and z ∈ 5, 10 for task 2.
For training the SVM classifier for task 1, from the training set P we filtered out

pairs that occurred with a frequency less than 5% (for either lecture in the pairs): P ′ ={
(l1, l2, f) | (l1, l2, f) ∈ P , f

S(l1)
≥ 0.05 ∨ f

S(l2)
≥ 0.05

}
, where S(l1) =

∑
(l1,li,f1i)∈P

f1i,

S(l2) =
∑

(lj ,l2,f2j)∈P

f2j . These were assigned the class label +1. For negative instances,

we randomly selected lecture pairs of a comparable size to P ′ that do not appear in the
training pairs set P . In total we had a balanced data set with about 40, 000 pairs for
training the classifier. We used the SVMLight [9] implementation provided by Joachims.
We set the margin-loss penalty parameter C to 10 after experimenting with values
between 0.1-100. The performance on a validation set was the best for C values ranging
between 5-20. To show the stability of feature weights we show their mean and variance
over five-folds of training runs in Table 2.

As shown in the above table the positive weights for some features such as co-
author similarity, event similarity and LDA topic overlap support our intuitions on what
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Table 2. Feature Weights Learnt By SVM

Feature Mean Variance

Co-author similarity 1.895 0.050
Type similarity -0.087 0.005
Language similarity 0.015 0.003
Event similarity (exact match) 0.779 0.110
Event description similarity 1.421 0.118
Category similarity C1 1.889 0.038
Category similarity C2 0.114 0.015
Category similarity C3 -0.058 0.019
Category similarity C4 0.268 0.195
Name TFIDF similarity 8.555 0.125
Description TFIDF similarity -1.412 0.094
Slide Content TFIDF similarity -0.360 0.100
All Text fields TFIDF 9.729 0.273
Jaccard similarity based on LDA Top 10 topics 0.329 0.016
Affiliation similarity 0.705 0.189

attributes are common in lectures that are co-viewed frequently. The negative weights
for description and slide content similarity is surprising. We reason that this is possibly
due to the fact that a large number of lectures in the training data have empty values for
these fields. Similarity based on the concatenated field combining the name, description
and slide content fields and the name similarity fields have high positive weight values
that are not surprising. Videos belonging to the same event such as lectures from a
course series are likely to share a lot of content similarity in their name fields and are
also likely to be viewed together. For our final run we discarded features with negative
weights and re-trained the classifier based on the remaining features.

The classification setup treated all paired lectures uniformly as positive instances.
However, since it is likely that lectures with higher co-view frequencies are most similar,
we also tried unequal weighing strategies based on co-view frequencies as a ranking or
regression problem using SVM. With similar features in classification, rather than +1
or -1 as class label, we defined different target values based on co-view frequencies of
pairs for regression and ranking setup. For regression setting [9], the target similarity
value of a pair instance (l1, l2, f) is defined as s = f

S(l1)+S(l2)
and normalized later.

In ranking setting [10], for each query lecture video q, the target value is defined as
pairwise preference according to co-viewed frequency, namely, in training set for each
video p paired with q, the larger co-viewed frequency (p, q) has, the higher ranking it
stands. Table 3 shows that our preliminary experiments where a regression and ranking
formulation was adopted performed worse than classification, but further experiments
on understanding this aspect are required.
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Table 3. Task 1 preliminary performance with different SVM settings

SVM Mode MAR p

Classification 0.2517
Regression 0.1100
Ranking 0.1697

4 Task 2: Estimating lecture probabilities given a previously
seen set

The task 2 of the ECML/PKDD challenge models the common use-case in recommender
systems where the goal is to estimate what lecture a user is most likely to see given a
set of lectures that were previously seen by him/her. The triplets provided from pooled
sequences in the datasets do not imply an ordering. The task seeks recommendations of
the top ten lectures given that a particular set of three lectures was viewed previously.

In theory, we could use the setup of task 1 for deriving predictions for task 2 as
well. That is, we can classify the lectures not specified in the set of three (seen) lectures
by forming pairs with each of the three lectures and designing a method to aggregate
individual scores. However, we found this method to not work well on the test dataset
(We obtained a score of 0.123 using this method which is almost three times worse
than our final score). For task 2, the triplets-right and triplets-left tables in the training
data capture the sets of lectures that are commonly seen together using which triplet-
lecture pairs information can be derived. This data can be directly used to estimate
the likelihood that a particular lecture will be seen given a set of three lectures. We
describe this estimation with a simple example. Let li refer to a lecture i where as fijkl
corresponds to the frequency of seeing lectures i, j, k and l together. Assume that the
following triplet-lecture pairs information is available from the training data.

(l1, l2, l3; l4; f1234), (l1, l2, l3; l6; f1236), (l1, l3, l5; l4; f1354), (l2, l5, l6; l1; f2561)

For the above triplet-left-right pairs, we can estimate the number of times the set of
lecture triples (l1, l2, l3), (l1, l2, l4), (l3, l1, l4), (l2, l3, l5) . . . was seen in the training data
by using the associated frequency information. The number of times pairs of lectures
are seen together can also be similarly estimated based on the training data. Given a
query triplet such as (li, lj, lk) and a potential candidate lecture lp, we form the possible
triplet and pair sets:

(li, lj, lp), (lj , lk, lp), (li, lk, lp), (li, lp), (lj , lp), (lk, lp)

and use the counts estimated based on the training data to compute a score for the
potential candidate lp w.r.t. the given set of seen lectures (li, lj , lk). Clearly, not all
possible pairs and triplets are likely to be found in the training data and a smoothing
strategy is required for cases where triplets and pairs information is unavailable.

Note that the task 2 scenario where potential lectures are to be scored given a set of
three seen lectures (triplet) parallels the item-set mining task in market-basket analysis.
Market-basket analysis involves the estimation of “interestingness” of particular items
given the transaction information of previous purchases. Inspired by this similarity, we

78



Using Co-views Information to Learn Lecture Recommendations

design our score to capture two basic concepts from item-set mining, viz., support and
confidence [2]. The support of a set X (supp(X)) of items is defined as the proportion
of transactions in the dataset containing the set X whereas the confidence of a rule
conf(X ⇒ Y ) which is interpreted as a probability estimate of seeing the set Y given

that the item set X was seen is defined as supp(X∪Y )
supp(X) .

4.1 Algorithm Description

The pseudo-code for computing the recommendation list for a given query triplet is
described in Algorithm 1. We assume that the auxiliary functions GetT riplets and
GetPairs are available to us. GetT riplets(T, li, lj) returns the set of all lectures lk that
occur with li and lj in the training data T . Similarly, GetPairs(T, li) returns all lectures
that occur with li in T . We start by accumulating all lectures from the training data
that occur with all three pairs of lectures from the query triplet. The aggregate score
for a lecture is obtained by using an aggregator function over the individual confidence
values. We experimented with ‘product’, ‘max’ and ‘sum’ as aggregator functions and
found product to perform the best among those tried. If sufficient number of recom-
mendations (input parameter) are unavailable, we relax the overlapping criterion by
first considering lectures that occur with any two pairs of lectures from the triplets
and finally with any pair of lectures in the triplet. Algorithm 1 can be directly used
with pairs information from the training data (by obtaining potential lectures using
GetPairs instead of GetT riplets).

In general, estimation based on triplets is more reliable since it captures the co-
occurrence of a potential lecture with two lectures in the query. This is also illustrated
in one of our experiments. Different strategies for combining scores from GetT riplets
and GetPairs and for smoothing are a subject of future study. The smoothing strategy
mentioned in the pseudo-code uses popular lectures (those with high number of views) as
recommendations when triplets related to query lectures are unavailable in the training
data.

4.2 Observations

For computing the estimates of lecture triples and pairs for task 2, we used the data
available in the tables triplets train left, triplets train right, task2 query and
pairs of the training data. This information was stored in memory and looked up
during calls to GetT riplets and GetPairs. For each query triplet of lectures in the test
set, we use Algorithm 1 to compute the recommendation list. In case of insufficient
number of desired recommendations, we can use smoothing strategies. We explored the
use of Algorithm 1 with GetPairs and most popular lectures as recommendations as
smoothing strategies.

In general, we found that the scores computed based on triplets rather than pairs
result in better recommendations. This is not surprising since a lecture that co-occurs
with larger number of lectures in the query triplet would be a better candidate for
recommending. We experimented with sum, max and product as aggregation functions
on the individual confidence values. The performance with triplets, pairs, and other
aggregation functions (using Algorithm 1) is shown in Table 4. We used the best setting,
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Algorithm 1 Computing Recommendations Using Lecture Triplets

Input: T (set of triplets and their frequencies from training data),
Query lecture triple q =< l1, l2, l3 >,
k (number of recommendations desired)

Output: R (Recommendation list for q)
R← φ
S1 ← GetTriplets(T, l1, l2)
S2 ← GetTriplets(T, l1, l3)
S3 ← GetTriplets(T, l2, l3)
R1 = S1 ∩ S2 ∩ S3 \ {l1, l2, l3}
for all r ∈ R1 do

score(r)← AggFunc(conf({l1, l2} ⇒ r), conf({l1, l3} ⇒ r), conf({l2, l3} ⇒ r))
end for
Sort R1 in descending order and append to R
R2 ← ((S1 ∩ S2) ∪ (S1 ∩ S3) ∪ (S2 ∩ S3)) \ (R ∪ {l1, l2, l3})
for all r ∈ R2 do

f1 = f2 = f3 = 1
if r ∈ S1 then

f1 = conf({l1, l2} ⇒ r)
end if
if r ∈ S2 then

f2 = conf({l1, l3} ⇒ r)
end if
if r ∈ S3 then

f3 = conf({l2, l3} ⇒ r)
end if
score(r)← AggFunc(f1, f2, f3)

end for
Sort R2 in descending order and append to R
R3 ← (S1 ∪ S2 ∪ S3) \ (R ∪ {l1, l2, l3})
for all r ∈ R3 do

if r ∈ S1 then
score(r) = conf({l1, l2} ⇒ r)

else if r ∈ S2 then
score(r) = conf({l1, l3} ⇒ r)

else if r ∈ S3 then
score(r) = conf({l2, l3} ⇒ r)

end if
end for
Sort R3 in descending order and append to R
if |R| < k then

append to R lectures with top recommendation using pairs until |R| = k
end if
return R
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Algorithm 1 with GetT riplets, with product as the aggregation function for our final
run.

Although the task description mentions a lack of sequence information among the
lectures of a triplet, based on the description of how the dataset was created, there
seems to be an implicit ordering among the lectures. The scores in Table 4 are obtained
from runs that assume sequence information among the lectures of a query triplet. The
last row shows a run that assumes that the lectures in a query triplet are unordered and
combines all possible orderings into the frequency information. This score being worse
than the other runs hints at the possibility of ordering information among the lectures
of a triplet in the given dataset.

Table 4. Task 2 Performance with different Algorithm Settings

Setting MAR p

GetPairs 0.1407
GetTriplets (product) 0.4843
GetTriplets (sum) 0.4780
GetTriplets (max) 0.4664
GetTriplets (unordered, product) 0.3107

5 Conclusions and Future Work

Using the techniques described in Sections 3 and 4, we obtained the MARp score of
0.2456 for task 1 and 0.4843 for task 2. The top-performing system at the ECML/PKDD
Discovery challenge obtained the scores 0.35857 and 0.62415 on task 1 and task 2 re-
spectively. Our system was ranked 8th out of 62 participating teams for task 1 and 4th
out of 22 participating teams for task 2.

Since the “correct” predictions on the test data are now available, our current focus
is on improving the performance of our techniques after an error analysis. We need
further study to understand the performance difference between SVM classification and
regression or ranking formulation. Further, in our experiments, we fit a single model
over all lectures in the training data. It is possible that the lectures can be somehow
clustered so that a different model is learnt for each cluster. For task 2, our scoring
function uses simple estimates of confidence based on triplets seen in the training data.
For queries where the required information is missing, back-up options based on content
of the lectures in the query (such as our model in task 1) can be used. Other smoothing
strategies and combination methods also need to be carefully studied.
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Abstract. In this paper we present our participation as SWAPTeam at the
ECML/PKDD 2011 - Discovery challenge for the task on the cold start problem
focused on making recommendations for new video lectures. The main idea is to
use a content-based approach because it is less sensitive to the cold start problem
that is commonly associated with pure collaborative filtering recommenders. The
strategy for the integration by hybridization and the scalability performance
affect the developed components.

1 Introduction

In this paper we present our participation as SWAPTeam1 at the ECML/PKDD 2011
- Discovery challenge for the task on the cold start problem focused on making recom-
mendations for new video lectures, based on historical data from the VideoLectures.Net
website.

Recommender systems (RSs) usually suggest items of interest to users by the ex-
ploitation of explicit and implicit feedbacks and preferences, usage patterns, and user or
item attributes. The past behavior is supposed to be useful to make reliable predictions,
thus past data is used in the training of RSs to achieve accurate prediction models. A
design challenge becomes from the dynamism of the real systems because new items
and new users are continuously added without a previous known behavior.

Also VideoLectures.Net exploits a RS to guide users during the access to its large
multimedia repository of video lectures. Beside the editorial effort to select and classify
lectures, accompanying documents, information and links, the Discovery challenge is
organized in order to improve the website’s current RS, inter alia, to deal with the cold
start problem.

The main idea underlying our participation is to use a content-based approach be-
cause it is less sensitive to the cold start problem that is commonly associated with
pure collaborative filtering recommenders. The adopted solution exploits almost all the
provided data and the actual integration with VideoLectures.Net RS can be potentially
performed by a hybrid approach. Moreover, the scalability performance is considered as
a primary requirement and, thus, a lightweight solution is pursued.

The rest of the paper is structured as follows: Section 2 recalls some common knowl-
edge about the cold start problem, Section 3 sketches some features of the dataset,
Section 4 illustrates the proposed solution and Section 5 closes the paper with some
conclusions and future work.
1 http://www.di.uniba.it/~swap/index.php
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2 Cold Start Problem

The cold start problem is commonly associated with pure collaborative filtering RSs.
Particularly, the item-based collaborative filtering techniques assume that items are
similar when they are similarly rated and therefore the recommendations concern items
with the highest correlations according the usage evidence. As drawback, new items
cannot be recommended during the cold start because they do not provide an adequate
usage evidence.

The cold start problem concerns performance issues when new items (or new users)
should be handled by the system. The cold start can be considered as a sub problem
of the coverage one [7], indeed it measures the system coverage over a specific set of
items or users. Therefore, although the prediction accuracy of a RS, especially for a
collaborative filtering one, often grows with the amount of data, the coverage problem
of some algorithms appears with recommendations of high quality only for a portion of
the items even if the system has gathered a huge amount of data.

Focusing on cold start for items, there are various heuristics to pick out the cold
items. For instance, cold items can be items with no ratings or usage evidence, or items
that exist in the systems for less than a certain amount of time (e.g., a day), or items
that have less than a predefined evidence amount (e.g., less than 10 ratings) [6]. The
correct selection of cold items allows to process them in a different way.

The prediction about cold items requires different approaches by comparing the
performance for the predictions about hot items. This may be desirable due to other
considerations such as novelty and serendipity. Thus evaluating the system accuracy on
cold items it may be wise to consider that there is a trade-off with the entire system
accuracy [7].

3 Dataset

The main entities of the dataset are the lectures. They are described by a set of at-
tributes and of relationships. The attributes are of various kind: for instance, type can
have one value in a predefined set (lecture, keynote, tutorial, invited talk and so on);
views attribute has a numeric value; rec date and pub date have a date value; name
and description are unstructured text, usually in the language of the lecture. The rela-
tionships link the lectures with 519 context events, 8,092 authors, and 348 categories.
Each of these entities has its own attributes and relationships to describe taxonomies
of events and categories.

Almost all this amount of data can be exploited to obtain features for a content-
based recommendation approach. The used features are briefly introduced in Section
4.2. The lectures are divided into 6,983 for the training and 1,122 for the testing as cold
items.

In addition, the dataset contains records about pairs of lectures viewed together (not
necessarily consecutively) with at least two distinct cookie-identified browsers. This kind
of data has a collaborative flavour and it is actually the only information about the past
behavior. The user identification is missing, thus any user personalization is eliminated.
User queries and feedbacks are also missing.
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4 Proposed Approach

4.1 Content-based Technique by Hybrid Approach

To overcome the cold start problem of the collaborative approaches, a common solution
is to hybridize them with other techniques that do not suffer of the same problem [1].
For instance, a content-based approach can be used to bridge the gap from existing
items to new ones: item attributes are used to infer similarities among items.

Content-based techniques also have a start-up problem because they must accumu-
late enough usage evidence to build a reliable classifier, but in the task on the cold start
problem of the ECML/PKDD 2011 - Discovery challenge it is not an issue.

Furthermore, relative to collaborative filtering, content-based techniques are limited
by the features that are explicitly associated with the items that they recommend.
For instance, a content-based movie recommendation is usually based on the movie
metadata, since the movie itself is opaque to the system. In the task on the cold start
problem of the ECML/PKDD 2011 - Discovery challenge, this general problem is solved
by the editorial effort of VideoLectures.Net to select and classify lectures. In addition, as
sketched in Section 3, almost all provided data can be exploited to obtain content-based
features.

The hybridization strategy can be flexible in order to apply different approaches
to specific classes of items (or users) and, therefore, switch to a specific technique for
the selected cold items. A switching approach [1] is a simple hybridization strategy to
implement different techniques with sensitivity on the item-level without any further
cost beside the cold item selection.

4.2 Steps towards Solution

The solution is obtained mainly by three steps: the data pre-processing, the model
learning, and the recommendation.

Data pre-processing step starts with the loading of CSV files of the dataset by the
Super CSV library2 to obtain an in-memory object-oriented representation.
In addition, a set of Lucene3 indexes are created to store textual metadata (title,
description and slide title) in order to exploit the term frequency vectors to efficiently
compute document similarities. Since the metadata is inherently multi-lingual, a
single index is created for each language and textual metadata is added to the proper
index according to the detected language. The language detection is performed by
naive Bayesian filters that exploit language profiles learned from Wikipedia4. The
textual metadata is also preprocessed to remove stop words and to reduce inflected
words to their stem: these sub-steps are strongly language-dependent, thus specific
linguistic knowledges can improve the process effectiveness.
The event names are filtered by regular expressions to introduce an event similarity
metric smarter than a simple string matching.

2 http://supercsv.sourceforge.net/
3 http://lucene.apache.org/
4 http://code.google.com/p/language-detection/
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An in-memory complete representation of category taxonomy is also created to
compute the category similarity as graph-based minimum path between pairs of
categories.
The main output of this step is a set of 20 numeric values describing the similarities
between lectures of each pair in the training set. Table 1 reports the used features:
for each pair of items, they involve the languages, the frequencies of languages
(Fig. 5-b), the descriptions, the recording and publication ages, the conferences, the
authors and their affiliations, and the categories.

Model learning step uses Weka5 to build a prediction model for the frequency of a
pair of lectures. The available data and the lightweight goal determined the selection
of a linear model for the learning problem. Thus the model output is a weighted sum
of the attribute values that predicts the pair frequency. The learning process aims to
obtain a regression model for the weights from the output of the data pre-processing
step.
This step is quite time-consuming and it requires a lot of memory, mainly under the
input constraints. Thus the output of the data pre-processing step can be controlled
on exploited features and selected items.
Table 1 reports different models learned using all the available pairs: for each model,
the table reports the used features with their learned weights, the regression met-
rics provided by Weka, and the metric values for the recommendation of cold items.
Model-1 uses all the available features; Model-2 leaves out the Lucene-based sim-
ilarity; Model-3 leaves out the features based on recording and publication ages;
Model-4 leaves out the conferences; Model-4 leaves out the authors; Model-6 leaves
out the categories. Some weights are missing for the fitness of the learning method.
The learned weights of a model are stored in a configuration file, with the option
to add a boost factor for each weight to easily explore the feature influences beside
the learned model. Fig. 1 and Fig. 2 report the values of the evaluation metric
(Mean Average R-precision - MARp) for the recommendations using Model-1 when
a boost factor is changed. The boost factors can be modified also to implement a
naive feedback control on recommendations without performing a complete learning
step.
Fig. 3 reports the evaluation metric values for the submitted solutions when the
boost factors for the learned weight in Model-1 are changed: the submitted solutions
always outperform the random baseline (MARp: 0.01949).

Recommendation step uses the in-memory representation of the pre-processing step
and the learned weights to predict the frequency of an old item against each se-
lected cold item. The highest values are used to select the 30 cold items for the
recommendation.
The in-memory representation and the lightweight prediction model allow to for-
mulate a new recommendation in a reasonably short time.

The in-memory representation of the data pre-processing step is also used to cre-
ate R6 scripts to visualize the information in the dataset for an informed selection of

5 http://www.cs.waikato.ac.nz/ml/weka/
6 http://www.r-project.org/

86



Lightweight Approach to the Cold Start Problem

Fig. 1. Recommendation performances changing the boost factor of “categoryBest”

Fig. 2. Recommendation performances changing the boost factor of “deltaRecAge”
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Table 1. Learned models

Model-1 Model-2 Model-3 Model-4 Model-5 Model-6

sameLang x 1.2479 x 0.8097 x 1.0349 x 3.2801 x 1.7958 x 1.0363

sameDetectedLang x -0.3375 x -0.2759 x x x x -0.3374

freqLang x 2.5217 x 4.6866 x 3.4824 x -3.8682 x x 3.9266

freqDetectedLang x -0.3458 x -0.2765 x -0.4943 x -0.2544 x -0.6531 x -0.3456

description x 17.9226 x 16.5921 x 22.2335 x 20.9256 x 17.4239

descriptionLen x -0.9129 x 1.3709 x -1.4296 x -1.0610 x -1.3196 x -0.9225

deltaPubAge x x -0.0557 x 0.0173 x -0.0963 x -0.0255

deltaRecAge x -0.0856 x -0.0907 x -0.0776 x -0.0891 x -0.0828

pubAgeOlder x 0.0890 x 0.1568 x -0.0194 x 0.1543 x 0.1252

pubAgeNewer x -0.0417 x -0.0861 x x -0.1626 x -0.0603

recAgeOlder x 0.0692 x 0.0709 x 0.0401 x 0.0779 x 0.0730

recAgeNewer x 0.0282 x 0.0111 x 0.0729 x 0.0512 x 0.0388

sameConference x 4.4207 x 5.0438 x 4.3148 x 4.5780 x 4.5366

similarConfference x 3.1643 x 3.2060 x 3.3740 x 3.4212 x 2.9982

atLeastOneSharedAuth x 3.8986 x 4.0301 x 1.7389 x 4.2799 x 3.4690

sharedAuth x x 1.6587 x 4.2296 x x 0.7031

sharedAffil x 3.2381 x x 2.5147 x 4.6232 x 3.0751

categoryBest x -2.9007 x -2.9065 x -3.6669 x -3.1974 x -3.0285

categoryAvg x 2.5258 x 2.0846 x 3.5300 x 0.6944 x 2.1317

Correlation coefficient 0.1796 0.1736 0.1661 0.1579 0.1739 0.1719

Mean absolute error 5.9355 5.9498 5.8786 5.9772 5.9521 5.8783

Root mean squared error 23.2987 23.3244 23.3549 23.3868 23.323 23.3315

Relative absolute error 96.5899 96.8226 95.6633 97.2684 96.8598 95.6583

Root relative squared error 98.3737 98.482 98.6106 98.7453 98.4762 98.5119

MARp 0.06220 0.05752 0.05535 0.05990 0.01295 0.06051

MARp (final) 0.05492 0.04715 0.05306 0.05145 0.01163 0.05295

the content-bases features. For instance, Fig. 4 shows how the views are temporally
distributed considering the recording and publishing ages: the behavior is quite dis-
similar for the two time scales, indeed, the oldest recorded lectures are seldom viewed
as the cumulative box-plot and density function (the rightmost subgraphs) highlight,
conversely the oldest published lectures have the highest density of views. Probably,
the user interest for old lectures is weak even if the VideoLectures.Net kindled a lot of
attention during the first months. In addition the views of lectures decrease when their
recording and publishing ages decrease. Thus recent lectures need some assistance. Fig.
4 supports the idea to exploit age-based features in the model learning, although the
temporal distribution of views deserves further investigation for a selective use of pairs
in the learning step. Fig. 5 shows how the views of each item are distributed considering
its type: the rightmost histogram shows the cumulative views for each type; the upper-
most box-plot summarizes the views for each items. Fig. 5 spots how the coldness and
hotness are related to the item type. Fig. 6 shows how types and languages are linked
by training pairs: the circular areas are proportional to the logarithm of cumulative fre-
quencies for the pairs of lectures viewed together. This kind of information is exploited
by the “freqLang” feature.
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Fig. 3. Mean Average R-precision of submitted solutions

4.3 Scale Problem

With the growth of the dataset, many recommendation algorithms either slow down or
require additional resources such as computation power or memory. As RSs are designed
to help users to navigate in large collections of items, one of the goals of the designers of
such systems is to scale up to real datasets. As such, it is often the case that algorithms
trade other properties, such as accuracy or coverage, for providing rapid results for huge
datasets [2]. The trade-off can be achieved by changing some parameters, such as the
complexity of the model, or the sample size. For real systems it is important to measure
the compromises that scalability dictates [7].

RSs are expected in many cases to provide recommendation on-line, thus it is also
important to measure how fast does the system provides recommendation [3, 5]. Com-
mon measurement are the number of recommendations that the system can provide per
second (the throughput of the system) and the required time for making a recommen-
dation (the latency or response time).

The developed Java components allow to complete the recommendation task for the
5,704 lectures in almost 85 seconds on a notebook with an Intel Core 2 at 2.0 GHz
as CPU and 2GB of RAM, i.e., each new recommendation about 30 cold items over
the selected 1,122 ones is provided in almost 15 milliseconds. Reasonably, a production
server allows to reduce further the response time for new recommendations and a cache
specifically devised for the recommendations allows to increase the throughput.

Moreover, the learning step performed by Weka is the most time-consuming one and
it requires a lot of memory. Although the step is designed to be performed off-line, the
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Fig. 4. Temporal distribution of views
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Fig. 5. Distribution of views considering item type

Fig. 6. Types and languages in lecture pairs
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time and space requirements can be reduced by exploiting few features or less previous
data.

5 Conclusions

We have described the steps to achieve the submitted solution that outperforms the
random baseline. The in vitro evaluation of a solution to the cold start problem is an
arduous task, since the common assumption about the reliability of past data to provide
predictions is weakened. For instance, Fig. 7 shows how many of the old items used in
the evaluation of submitted solutions have few associated cold items. The lack of such
links becomes from the real data and it warrants the need for some strategy to deal
with cold items. In additions, Fig. 7 shows that the average frequency of the considered
pairs of old and cold lectures increases when the users view an increasing number of
cold items for the same old item: the transition from cold to hot seems to be on the
highest levels used for the evaluation metric. The evaluation levels (5, 10, 15, 20, 25,
30) are shown in Fig. 7 as grey vertical lines.

Fig. 7. Number of old items (o) and their pair average frequencies (*) on the size of cold item
sets used in the evaluation

The idea of integrating a content-based approach allows to provide also serendipitous
recommendations alongside classical ones [4]. Indeed the content-based item similarity

92



Lightweight Approach to the Cold Start Problem

can be used to obtain a hybrid RS that exploits the “Anomalies and exceptions” ap-
proach [8] to spot potential serendipitous items as further trade-off with the entire
system accuracy.

Finally, the scalability performance is considered as a primary requirement and a
lightweight solution is pursued. The preliminary performance for the notebook execution
is quite promising and some future directions for improving latency and throughput are
sketched. Also a feasible integration strategy is depicted.
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Abstract. This paper presents the approaches IRIT developed for the VLNetChallenge 
regarding recommender systems in the context of video lectures. The first task aims at re-
commending newly acquired lectures after viewing an “old” lecture. We use random walk 
algorithms based on a graph composed of author, category, event, and lecture nodes and 
associated relationships. The second task aims at recommending 10 lectures from three 
lectures extracted from a sequence of lectures. We use the categories associated to lec-
tures in addition to the lecture pairs (lectures viewed in a same session). 

1 Introduction 

IRIT participated to the two tasks of the VLNetChallenge.  
Regarding the cold start task, which aims at recommending newly acquired lectures after 

viewing an “old” lecture, we first built a graph from the data collection. Graph nodes are lec-
tures and associated meta-data (authors, events and categories). Graph links correspond to the 
various types of relationships (links between lectures, between events and between categories 
as well as cross-type links). Relationships were weighted differently according to the nature of 
the links. The resulting graph was used in random walk algorithms. The best results on the test 
collection have been obtained when the graph weights are significantly more important for the 
lecture pairs and the authors-lectures relationships than for the remaining relationships. 

Regarding the pooling lecture task, we first considered the lecture contents only; this me-
thod showed poor results. We then consider the lecture categories. Since many lectures are not 
linked to categories, we first defined a way to deal with this problem. Then, we use the fre-
quency of lecture visits, lecture pairs and the categories they belong to.  

2 Data preparation 

To begin with, we uploaded the CSV data provided to the participants in a PostgreSQL da-
tabase [15]. For each lecture, we extracted the categories, events and authors associated with it. 

We also indexed lectures using the Solr search engine [14]. We used as content the name, 
description and slide_titles fields of each lecture. Indexing is based on a “bag of words” ap-
proach. To build the Solr index, the stopwords were not removed and we did not use any 
stemming heuristic similar to the Porter Stemmer [8]. Avoiding pre-processing steps allows us 
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to store all the lectures in the same index, regardless of their language. The retrieval model 
used in Solr combines Boolean Model [7] and Vector Space Model [11]. The documents are 
first selected by Boolean Model and then are scored using Vector Space Model. The scoring 
function implemented in Solr is derived from the VSM score, based on the Cosine similarity 
[10]. 

Solr was used in the two tasks. In the cold start task, Solr was used to build two matrices 
that reflect the lecture similarities based on content. For the first one, we used MoreLikeThis 
from Solr to calculate the similarities between each lecture pairs. For a given document, the 
MoreLikeThis module generates a query based on the representative terms of the document. 
These terms are selected depending on several parameters which are: their length, their fre-
quency in the document and their frequency in the overall collection. The second matrix was 
built differently: for each lecture, we calculate its similarities with all the other lectures, consi-
dering its title as a query; lectures were favored if recent. 

In the pooled sequences task, Solr was used to retrieve the most similar lectures from a giv-
en lecture. 

3 Cold start task 

The cold start task aims at predicting “which of the newly acquired lectures at the site 
should be recommended after viewing some of the 'older' lectures” [12]. 

To complete this task, we first built a graph from the data in which nodes and relationships 
are typed. In addition we weighted some of the relationships. Then we applied two random-
walk models to compute document similarities and predict which new lectures should be rec-
ommended. Section 3.1 explains the way the graph is built and section 3.2 explains the way it 
is used. 

3.1 Graph generation 

From the data, we built a graph G={N,R} where N is a set of nodes and R a set of relation-
ships between nodes. 

The set of nodes N is defined as: N={A, C, E, L} where: 
- A is a set of author nodes,  
- C a set of category nodes,  
- E a set of event nodes, and  
- L is a set of lecture nodes. 
 
The set of relationships R is defined as:  
R={CR, ERei,ej, ARli,aj, DRli,cj, TRli,ej, LRli,lj} where: 
- CR is a relationship defined between two categories.  

 CR(ci,cj) = 1 if categories ci and cj have a hierarchical relationship in the 
database;  
   =   0 otherwise. 

- ER is a relationship between two events. As for CR, ER(ei,ej) is either 0 or 1, based on 
the hierarchical relationship defined between events ei and ej using parent_id attribute. 
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(1) 

- AR is a relationship between a lecture and an author.  
- DR is a relationship between a lecture and a category. 
- PR is a relationship between a lecture and an event. 
For those three relationships, when the items are associated in the data set, the relationship is 

weighted 1; 0 otherwise. 
- LR is a relationship between two lectures. We defined two types of LR relationships. They 

can be either content based similarities or deduced from pairs of lectures. Lecture pairs were 
provided to participants; the deduced LR_P relationships were weighted considering the fre-
quency of each pair and the number of views associated to its related lectures. Lecture similari-
ties were calculated as described in section 2 and conduced to weighted LR_S relationships. 
LR_P and LR_S relationships were fused considering a linear combination, such as: 
����� , ��� = � ∗ ������,��� + � ∗ ��_�(�� , ��) 

where li and lj are two lectures. In the experiments, β=1.5 and γ=0.05. These values 
have been obtained through manual tuning. 

 
Finally, each type of relationships receives a relative weight. For example, AR(li,aj) 

receives a relative weight of 3 between li and aj if the lecture and the author are linked. Fig-
ure 1 depicts the various types of relationships that link nodes.  

 

 

Fig. 1. Nodes and relationships between nodes. 

3.2 Random walks 

We considered two random walk algorithms: Katz [6] and Random-Forest based Algorithm 
[5] that consider route accessibility and relative forest accessibility [4]. More details on these 
methods are presented by Fouss et al. [5]. In this latter paper, more methods are also discussed.  

Katz. The method proposed by Katz to compute similarities takes into account both direct 
and indirect links between items [6]. The similarity matrix is defined as: 

	 = 
� + 
��� +⋯+ 
��� +⋯ = (� − 
�)	
 − � 
where A is the adjacency matrix, I the identity and α constant. 
A is the adjacency matrix generated from the complete graph (rows and columns of the matrix 
are the nodes of the various types) and thus represents direct links between the graph’s nodes. 
An represents the indirect links through paths of length n. Both direct and indirect links are 
taken into account but a coefficient of attenuation is used: αn represents the attenuation in im-

Categories

Authors
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LR_S, Is Similar to :
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LR_P, Is Viewed with : 
1.5

PR, Is Part of : 
0.15

AR: Is Author of :
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(2) 

portance of the links of length n, K exists provided that the attenuation coefficient α is less than 
the inverse of the spectral radius of A. In our experiments, we use α =0.05. This value should 
have been tuned; but we did not for time reasons. 
 

Random-forest based algorithm (RFA). In RFA, the similarity matrix S between the 
nodes of a graph G is based on relative forest accessibility. Let F(G) = F be the set of all 
spanning forests of graph G. A spanning forest is any subgraph of G that is cycle free and in-
cludes every vertex of G. For any two nodes i and j of G, Fij denote the subset of F where i 
and j belong to the same tree. The relative forest accessibility of i and j is defined as sij = 
ε(Fij)/ε(F). ε is the weight function defined in [4]. For unweighted graphs ε(Fij)/ε(F)= |Fij |/|F| 

[4] demonstrates (I + L)−1 exists for any undirected weighted graphs and that :  
S = (I + L)−1 

where L is the laplacian matrix from the adjacency matrix A generated from the complete 
graph G (see section 3.1).  

RFA which can be seen as a rough Laplacian regularization is closely related to the similari-
ty measure associated to the pseudo-inverse of graphs Laplacian L+(see [4] for more details). 
L+ is a valid kernel that preserves the Euclidian commute time distance in graphs. We did not 
experiment the similarity measure based on L+ in the context of VLNetChallenge for lack of 
time to solve a technical problem. 

3.3 Implementation issues 

All experiments were conducted on Linux computers with a 2.9 GHz Intel Core2 Duo pro-
cessor P9700 and 6 GB of RAM. 

The graphs we handled in the context of VLNetChallenge contain around 15 000 nodes. The 
approaches we explored are then based on inverting matrices (Ο(n3)) of size 15 000 x 15 000. 
Our attempt to use Scilab [16] (with memory stack set to the maximum) was unfruitful and 
ended with a stack overflow error after more than 20 hours of running time. After shifting to 
atlas [17] the Automatically Tuned Linear Algebra Software, the running time was about 20 
minutes.  

3.4 Results 

When considering the preliminary results on the training collection (based on 20% of the fi-
nal collection), our method obtained from 0.1434 to 0.22465, depending both on the random 
walk method used and on the weight used for the relationships. The best results have been 
obtained for RFA using the weights presented in bold font in Figure 1. These weights have 
been obtained through a rough manual-tuning that used the entire training collection. 

When considering the final collection, our method is ranked 9 over 58 submissions without 
nil results or errors. We obtained a score of 0.24044 while the best result is 0.35857. Interest-
ing enough, when considering the approaches better than ours, we can see that the results de-
crease from the preliminary results to the final results. One hypothesis could be that those ap-
proaches over learnt on test data. 
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4 Pooled sequences 

In this task participants “are asked to recommend a ranked list of ten lectures that should be 
recommended after viewing a set of three lectures” [13]. 

To complete this task, we followed an empirical approach according to our knowledge 
mainly acquired in Information Retrieval field. This knowledge has been transposed and 
adapted to recommender systems. We tried two approaches that are related to the work we 
presented in [2]: one was based on lecture content only; the second one considered the cate-
gories associated to lectures and lecture pair frequency. 

4.1 Content-based approach 

In this approach, we considered the lecture content only. We used Solr search engine [14] as 
explained in section 2. For each lecture of a given triplet, we search for the 50 most similar 
documents. Then we fused the three retrieved document list using CombSum function [8] that 
consists in the sum of the document’s individual scores. 

When applied to the training collection, the results were slightly above 0.04. Indeed when 
analyzing the learning data set, we identify that users read lectures related to various topics to 
complete their knowledge. This variety of topics cannot be captured with a standard content 
similarity-based measure. For this reason, we did not continue with this content-only approach. 
Thanks to the work done in the cold-start task, we decided to particularly study lecture pair 
frequency (importance of LR_P in section 3.1) and categories. 

4.2 Category-based approach 

Rather than considering the lecture content only, we concentrated on the categories of the 
lectures. The first issue to solve was the fact that many lectures were not associated with any 
category. For those lectures, we first associated them with a category considering the hierarchy 
of events. Once the lectures are associated with a category, we then consider the lectures that 
have been visited with one of the lectures of the target triplet within close categories in the 
category hierarchy. 

 
Association of categories to lectures. Some of the lectures are not associated with any cat-

egory; for those lectures, we applied two algorithms. First for any lecture that is not in catego-
ries_lectures, we browsed the lecture-event hierarchy using a bottom up approach and asso-
ciated the current lecture to the category or categories associated to the closest event (consider-
ing the hierarchy). When such a parent does not exist, we associated the category (or catego-
ries) of the most similar lectures or events, based on its content or description.  

 
Frequency of lecture pairs. For each lecture of the current triplet, we search for the 100 

most visited lectures with the current lecture. We then calculate the lecture score (3). The score 
of the retrieved lecture li is computed as its frequency times the distance between categories. 
Indeed, this distance between categories allows the system to identify recommendations close 
in sibling categories. In that way, we emphasize the selection of information in close categories 
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in order to simulate the user behavior according to what we have extracted from the training 
data set analysis. 

Score (lj) = Frequency (lj) * similarity (category (lj), category (li)) 
 
When a lecture has more than one category, we use the most general category. This treat-

ment is repeated for the three lectures of the triplet and the three lists are fused using Comb-
Sum. The distance between categories is inspired from our previous work detailed in [1]. 

We then ranked the retrieved lectures by decreasing scores. The recommendations are the 
top 10 lectures. Using this method, it occurs that we obtained less than 10 recommendations. In 
those cases, we then add lectures to the recommended list.  

 
Completing the recommended list. When less than 10 lectures are recommended using the 

previous method, we complete the list by considering the lecture content rather than the lecture 
visits. For each lecture, we search for the 10 most similar lectures. For each lecture, we search 
for the 100 lectures the most visited with the current lecture and calculate the score of the lec-
tures using the same method as previously. When this process fails to complete the list, it is 
completed with the lectures the most visited thanks to the frequency of lecture views. 

4.3 Results 

Considering the training set, using our method, we obtained from 0.04453 to 0.18725 (de-
pending on the approach used).  

Regarding the complete set, we are ranked 12th with the score of 0.18943. The best score be-
ing 0.62415.  

The results we obtained show that the visits on lectures has a great importance; more than 
the content itself.  

5 Conclusion 

In this paper, we describe the methods we developed for the two tasks defined in VLNet-
Challenge. With regard to the cold start task, our method was not over trained. We tried vari-
ous values for the different parameters. A more systematic tuning could help improving the 
results. With regard to the pooled sequence task, we identified that content only approach is not 
sufficient. Furthermore, we think that categories could have been used more. For example, for 
a given triplet, we could have kept only those retrieved lectures that share a category with any 
lecture of the triplet. 

In the two tasks, we also identified the importance of the frequency of lecture pairs. As a 
conclusion, we expect that combining various dimensions in recommender systems can im-
prove recommendation quality. 

(3) 
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Abstract. Recommender systems are popular information filtering systems used in 
various domains. Cold-start problem is a key challenge in a recommender system. In new-
item/existing-user case of the cold-start problem, which is recommendation of a recently-
arrived item to a user with historical data, finding links between existing items with 
recently-arrived items is critical. Using VideoLectures.net Cold-Start Recommendation 
Challenge data, this paper includes a linear regression model to predict future co-viewing 
count between an existing item and a recently-arrived, not-yet-viewed item. 

1 Introduction 

A recommender system produces user-specific subsets of a global item set, in which users 
are expected to be interested. These recommendations are computed by predicting user-item 
scores that are not known yet, generally based on:  

• Implicit or explicit ratings of similar users on items that user has not rated yet. 
• Content similarity between items that user has rated high and has not rated yet. 

According to the algorithms listed above, a recommender system may either use a 
collaborative, content based, or hybrid approach to produce recommendations. 

Although collaborative filtering systems are very successful when there are sufficient 
historical user-item data available, they cannot produce recommendations in any of the cold-
start cases, which are recommending new items (an item that nobody has rated yet) to users, or 
recommending items to new users (a user with no historical ratings data). 

Recommending existing items is not in this paper’s scope, we will focus on new-item cases. 
Finding existing item-new item links using existing item-existing item links provide scores to 

be used to discover next high-rated item after high-rating an existing item, which is an 
important signal for recommendation. Our method represents two items as one vector of a joint 
feature set, which is constructed by computing relationships between some of their content 
features (title, categories, authors, … in videolectures.net domain). Then we apply linear 
regression to predict which item would be consumed after current item most probably.  This is 
a ranked list of candidate successor items for each existing item. 

The rest of the paper is organized as follows: Section 2 is the related work, Section 3 
describes the methods we have used and experiments we have done, Section 4 concludes the 
paper. 
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2 Related Work 

There have been many collaborative filtering algorithms studied. These algortihms produce 
recommendations using: 

• Neighborhood  based methods [1, 2, 3] 
• Latent Factor Models [4, 5, 6] 
• Matrix Factorization based methods [7] 

Neighborhood methods are the traditional collaborative filtering models, which used to be 
the dominant collaborative filtering method before matrix factorization techniques. Typically,  
a neighborhood based collaborative filtering  algorithm finds nearest neighbors of items or  
users, according to historical rating data [8].  Using the neighborhood, the algorithm tries to 
predict unknown user-item ratings. 

Latent factor models are based on representing both users and items in the same feature 
space, latent factors. Latent Semantic Models for Collaborative Filtering [9] is an example. 

Matrix factorization for performing collaborative filtering (may be included in latent factor 
models)  is based on factorizing ratings data, which is a user-item matrix. Singular Value 
Decomposition based recommenders are the popular factorization based methods [7].  

The pure collaborative methods for recommender systems  are not able to solve cold-start 
problems for new-item case.  Generally, hybrid models are used to solve cold-start problems 
[10, 11]. There are some other approaches that fill the user-item matrix by generating ratings 
(with a bot, for example) [12].  

Menon and Elkan’s method for Dyadic Prediction (Recommendation and link prediction are 
examples of dyadic prediction) [13] introduces a log-linear model for discovering latent 
factors, where a dyad may be a user-item pair (recommendation),  or either item-item or user-
user pairs (link predicition). Their approach takes side information (different from just unique 
identifiers) into account, thus providing a solution to cold start problem.  

Chu and Park’s bilinear regression method for recommendation on dynamic content [14] 
also benefits from the static features of users (gender, for example) and items (bag of words, 
category, ...). Their method let them recommend very recent items to users, showing that it 
may be considered as a solution to cold start problem for the new item case. 

Again, Park and Chu’s pairwise preference regression method specifically addresses the 
cold start problem [15]. Their method represents a joint feature space for user/item pairs via 
outer products. 

Park and Chu’s pairwise preference regression method is the inspiring method for our 
solution for predicting links between existing items and new items. However, there are 
differences. Our solution focuses on constructing a joint feature space for item-item pairs. This 
feature space is not bilinear. Instead, it is constructed using relationships between two items on 
several content features. A transformed feature may be either numerical or categorical. For 
example, cosine similarity between titles of two items is a candidate numerical joint feature 
(title relationship) for the final dataset, whereas the language relationship (the language code if  
they are in the same language) is a categorical joint feature. 
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3 Methods and Experimental Study  

3.1 VideoLectures.Net Data 

VideoLectures.Net1 is a repository for video lectures from scientists in various events. The 
algorithm is applied to the dataset provided by VideoLectures.Net Recommendation Challenge 
[16]. Listed below are some properties of the dataset: 

1. authors: Contains data on authors registered on VideoLectures.Net 
attributes: id, name, gender, email, homepage 

2. author_lectures: Information on which author authored what lecture (There is a many-to-
many relationship between authors and lectures) 
attributes: author_id, lecture_id 

3. categories: Information on categories in scientific taxonomy. 
attributes: id, name, parent_id 

4. categories_lectures: Information on what lecture is categorized under which category. 
(There is a many-to-many relationship between categories and lectures 
attributes: category_id, lecture_id 

5. lectures_train: contains a subset of lectures with publication date prior to 1.7.2009 
attributes: id, type, language, parent_id, rec_date, pub_date, name, description, slide_titles, 
views 

6. lectures_test: contains a subset of lectures published after 1.7.2009 
attributes: id, type, language, parent_id, rec_date, pub_date, name, description, slide_titlesll 

7. pairs: records about a pair of lectures viewed together with at least two distinct cookie 
identified browsers.  
attributes: lecture1_id, lecture2_id, frequency 

8. events: contains information on events, which are basically a set of lectures grouped 
together. 
attributes: id, type, language, parent_id, rec_date, pub_date, name, description  

9. task1_query: Contains lecture ids from the subset of lectures_train, for which a ranked list 
of 30 recommended lectures from lectrues_test is expected. 
attributes: id 

3.2 Methods and Experiments  

To estimate the model that predicts co-viewing counts of existing video-new video pairs, we 
first transform the features of video pairs into one joint feature space. We find relationships 
between two videos on several content features, and use these relationships as resulting 
features. Attributes of the transformed data are: 

• type: If two videos are in the same type (lecture, keynote, ...) the common type, 0 otherwise.  
This feature is categorical with 16 distinct values 

• language: If two videos are in the same language the language code, 0 otherwise. 
This feature is categorical with 10 distinct values. 

                                                           
1http://www.videolectures.net  
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• parent: The parent property is hierarchical, that is, parents of videos (the events) also have 
parents. We have detected all parents of two lectures to the deepest level.  
The value of this feature is simply the jaccard similarity of the resulting sets. 

• title: After the indexing process, total idf (inverse document frequency) of the common 
terms is the value for this feature. The reason we chose inverse document frequencies over 
term frequencies (or simply 0 or 1) is to make significant words more discriminative.  

• categories: In the dataset, categories are also defined in a hierarchy. We have created 
category indexes for lectures to the deepest level. Because the top categories are very 
common for all videos, we applied the same strategy as we did while computing the value 
for the title feature. The total idf of the common categories of two lectures is the resulting 
value. 

• authors: To increase the effect of ‘same author’s different lectures’ if  she has fewer 
lectures in the web site, we applied the total idf strategy again, for authors feature.  

• description: We computed the value in the same way as we did for the title. 
• co-viewing count: Score is the target value of the predictors defined so far, which is 

frequency of lecture pairs viewed together. 

Each example in the transformed data representing a video pair contains a set of features, 
and a target variable (co-viewing count). The task of estimating a function to predict future co-
viewing counts is a supervised learning, specifically regression problem. We have used linear 
regression with the simplest estimator; ordinary least squares. Linear regression with an 
intercept term estimates a function in the following format: 

 y = ß0 + ß1x1 + ß2x2 + ... + ßkxk (1) 

where y is the target variable to be predicted, xi’s are regressor variables (features), and ßi’s are 
the parameters to be learned. We want to estimate the parameters so that the resulting function 
minimizes the error, which is the difference between the observed (actual) and estimated y 
values. Ordinary least squares is the approach of minimizing the sum of squared errors. Finally, 
one can apply the estimated regression function to an arbitrary video pair to predict the number 
of times the videos will be watched together. Before applying the function, she need to 
transform the video-pair into our joint features space.  

We used R programming language [17] to estimate the linear model. Because language and 
type attributes are categorical and have 10 and 16 distinct values, respectively; the resulting 
size of dimensions is 31, while there are 363880 training example. 

To measure the relative importance of regressor variables on predicting the co-viewing 
count of two videos, we have used the approach Grömping has introduced [18].  Using the 
metric last, we have compared each regressor variable’s contribution to accuracy when all 
other regressors are available. The top five  regressor variables are shown in Table 1. 
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Table 1. Top 5 relatively important regressors 

Feature Importance 
title 0.0065 

categories 0.0043 

parent 0.0040 

description 0.0025 

authors 0.0022 

 
 

Finally, we have assigned values of common term frequencies to features where we have 
used inverse document frequencies previously, and run the same algorithm. The final 
evaluation results will show that using term frequencies decreases the prediction accuracy.  

3.3 Evaluation 

To pre-evaluate the model we have estimated, we applied 3-fold cross-validation to data. 
The cross validated standard error of estimate, which is the square root of the mean of MSE’s 
of 3 folds, is computed as 23.4. 

We have also analyzed the residuals, which is the difference between the actual value and 
estimated value of an observation, when 10% of the observations were used to test the model 
we have estimated from the remaining 90%.  The quartiles of residuals may give an idea about 
its distribution. Table 2 shows the  quartiles with minimum and maximum values of residuals 
we have computed, Figure 1 is a boxplot of quartiles with a range of 20. The quartiles show 
that 50% of residuals are between  -4.14 and -0.27.  

Table 2. Quartiles of residuals 

Minimum 1st quartile 2nd quartile 
(median) 

3rd quartile Maximum 

-151 -4.14 -2.22 -0.27 3170 
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Fig. 1. Boxplot of quartiles of residuals 

Goal of VideoLectures.Net Recommender System Challenge Task 1 is finding a ranked list 
of potential next lectures for each lecture in task1_query data, by retrieving a ranked sublist 
from the test set of lectures. The challenge can be considered as an information retrieval 
problem, and they have defined an R-precision variants of  precision at K and MAP, which are 
standard evaluation measures used in information retrieval [19]. 

To find a ranked list of recommended lectures for a given lecture in task1_query data, we 
have paired the lecture with each  possible test lecture from lectures_test data, computed 
predicted values, ranked them according to the scores we have computed, and submitted the 
top ranked 30 candidate lectures. The evaluation score is computed as 0.2492. The experiments 
also show that choosing term frequencies instead of inverse document frequencies decreases 
the predicting performance. In this case, the evaluation score is computed as 0.2266. The final 
evaluation score, 0.2492, can be considered high, ranked 7th among 1656 submitted solutions 
from 62 active teams of 303 registered teams with 346 members.  

4 Conclusion 

In this paper, we have described our solution to predict item-to-item link scores (co-viewing 
counts, in this case) to solve cold-start problem in recommender systems using 
VideoLectures.Net Recommender System Challenge data. We have used ordinary least squares 
linear regression to predict scores. The results show that the method of defining joint features 
and applying regression on transformed data provides us simple and accurate results in 
relatively small dimensions.  

However, we have only tried ordinary least squares linear regression, which may not be the 
best model for the problem; as a future work other regression methods, especially the non-
linear models may be applied to the problem. In addition, more features may be defined, and an 
efficient feature selection method may be applied to data. We also left this process as a future 
work.  
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