
5-9 September 2011
ATHeNS-GReeCe
www.ecmlpkdd2011.org

european Conference on Machine Learning
and Principles and PRACTICe

of Knowledge Discovery in Databases

eCML PKDD 2011

Athens University
of Economics
& Business

PLATINUM Sponsor GOLD Sponsor

TechNical Support

SILVeR Sponsors BRONZe SponsorS

Organizing Institutions

National and Kapodistrian
UNIVERSITY OF ATHENS

Marathon
Data Systems

General co-Chairs

Prof. A. Likas (University of Ioannina, Greece)

Prof. Y. T heo doridis (University of Piraeus, Greece)

Programme Committee chairs

Prof. D. G unopulos (Universit y of Athens, Greece)

D r. T. Hofmann (G oogle R esearch)

Prof. Donato Malerba (Universit y of Bar i, I taly)

Prof. M. Vazirgiannis (Athens Universit y of Economics and Business, Greece)

PASCAL 2
Φ

Ω
ΤΟ

ΓΡ
Α

Φ
ΙΑ

: Π
αν

τα
ζή

ς
Π

ορ
φ

ύρ
ιο

ς
Α

μβ
ρό

σι
ος

POSTER EMCLPK2011final.indd 1 6/27/11 11:32 AM

2nd MultiClust Workshop:
Discovering, Summarizing and Using Multiple Clusterings

WORKSHOP NOTES

Editors:
Emmanuel Müller
Stephan Günnemann
Ira Assent
Thomas Seidl

ECML PKDD 2011
EUROPEAN CONFERENCE ON MACHINE LEARNING

AND
PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES

2nd MultiClust Workshop:
Discovering, Summarizing and

Using Multiple Clusterings

MultiClust’11

September 5, 2011

Athens, Greece

Editors:
Emmanuel Müller
Karlsruhe Institute of Technology, Germany
Stephan Günnemann
RWTH Aachen University, Germany
Ira Assent
Aarhus University, Denmark
Thomas Seidl
RWTH Aachen University, Germany

c© 2011 for the individual papers by the papers’ authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors. Re-publication of
material from this volume requires permission by the copyright owners.

Preface

Traditional clustering algorithms identify just a single clustering of the data. However, today’s
complex and high dimensional data allow multiple interpretations for each data object, and thus,
several valid groupings (multiple clustering solutions) can be detected. Recently, an emerging
research direction, focusing on detecting, summarizing and using such multiple clustering so-
lutions, has evolved out of this problem. This new clustering paradigm has attracted attention
from many researchers and resulted in a number of important publications at leading data mining
and machine learning conferences. Focusing on this novel paradigm, the MultiClust workshop
attracts a variety of researchers working on different problem instances of multiple clustering
solutions.

MultiClust 2011 establishes a venue for the growing community interested in multiple clus-
tering solutions. As a platform for exchange of ideas, the workshop brings together researchers
from well-established related areas, such as ensemble clustering, constraint-based clustering,
frequent pattern mining, subspace mining and cluster exploration and visualization. The work-
shop covers aspects of these related fields and has its focus on the emerging cross-disciplinary
topics. Overall, the workshop provides a venue for exploring state-of-the-art methods, present-
ing emerging work and discussing with active researchers in this field.

The technical program for this workshop includes seven peer-reviewed papers. They passed
a competitive selection process ensuring high quality publications. Authors present a variety of
aspects out of several research directions, and contribute to the emerging topic of multiple clus-
tering solutions. We would like to highlight “Generating a Diverse Set of High-Quality Cluster-
ings” by Jeff M. Phillips, Parasaran Raman and Suresh Venkatasubramanian. It has been selected
as best contribution and receives the Best Paper Award from the MultiClust 2011 workshop.

Overall, the workshop demonstrates the strong interest from different research communi-
ties, and we are pleased to have some of the core researchers on the MultiClust 2011 program
committee. We are particularly pleased to have two excellent speakers giving invited talks that
provide an overview on challenges in related fields: Michael Houle (National Institute of In-
formatics, Japan) and Bart Goethals (University of Antwerp, Belgium) contribute with their
cross-disciplinary research perspectives in feature selection and frequent itemset mining.

In the spirit of last year’s workshop, the panel opens for a discussion of state-of-the-art, open
challenges and visions for future research. It wraps up the workshop by summarizing several
common challenges in different research directions, establishing novel research collaborations,
and also providing a guideline for important topics to be addressed in following workshops.

We are grateful for the support of the ECML PKDD conference, assisting us in the workshop
organization, and the MultiClust 2011 program committee for conducting thorough reviews of
the submitted technical papers. We also wish to acknowledge the UMIC Research Centre at
RWTH Aachen University in Germany for its support in making MultiClust 2011 possible.

Athens, September 2011 Emmanuel Müller
Stephan Günnemann

Ira Assent
Thomas Seidl

Workshop Organization

Workshop Chairs

Emmanuel Müller Karlsruhe Institute of Technology, Germany
Stephan Günnemann RWTH Aachen University, Germany
Ira Assent Aarhus University, Denmark
Thomas Seidl RWTH Aachen University, Germany

Program Committee

James Bailey University of Melbourne, Australia
Carlotta Domeniconi George Mason University, USA
Ines Färber RWTH Aachen University, Germany
Vivekanand Gopalkrishnan Nanyang Technological University, Singapore
Dimitrios Gunopulos University of Athens, Greece
Michael Houle National Institute of Informatics, Japan
Daniel Keim University of Konstanz, Germany
Themis Palpanas University of Trento, Italy
Magda Procopiuc AT&T Labs, USA
Naren Ramakrishnan Virginia Tech, USA
Jörg Sander University of Alberta, Canada
Lyle Ungar University of Pennsylvania, USA
Jilles Vreeken University of Antwerp, Belgium
Arthur Zimek University of Munich, Germany

Table of Contents

Invited Talks

Combinatorial Approaches to Clustering and Feature Selection . 1
Michael E. Houle

Cartification: Turning Similarities into Itemset Frequencies . 4
Bart Goethals

Research Papers

When Pattern Met Subspace Cluster . 7
Jilles Vreeken and Arthur Zimek

Fast Multidimensional Clustering of Categorical Data . 19
Tengfei Liu, Nevin L. Zhang, Kin Man Poon, Yi Wang and Hua Liu

Factorial Clustering with an Application to Plant Distribution Data 31
Manfred Jaeger, Simon Lyager, Michael Vandborg and Thomas Wohlgemuth

Subjectively Interesting Alternative Clusters . 43
Tijl De Bie

Evaluation of Multiple Clustering Solutions . 55
Hans-Peter Kriegel, Erich Schubert and Arthur Zimek

Browsing Robust Clustering-Alternatives . 67
Martin Hahmann, Dirk Habich and Wolfgang Lehner

Generating a Diverse Set of High-Quality Clusterings . 80
Jeff M. Phillips, Parasaran Raman and Suresh Venkatasubramanian

Author Index . 92

Combinatorial Approaches to
Clustering and Feature Selection

Michael E. Houle

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

http://www.nii.ac.jp/en/

meh@nii.ac.jp

Extended Abstract

1 Introduction

One of the most serious difficulties in the analysis of high-dimensional data sets
involves the treatment of measures of similarity. Although similarity measures
often retain some discriminative ability as the dimension increases, the similarity
values themselves are often difficult to interpret. Methods for search, clustering
and feature selection that perform quantitive tests of similarity values (as op-
posed to comparative tests) are particularly susceptible to this problem. This
presentation will be concerned with combinatorial models of clustering based on
shared neighbor information, and their application to feature selection, subspace
clustering, and multiple clustering. The models assume a secondary, derived form
of similarity measure based on the intersection properties of neighborhoods de-
fined according to the original similarity measure. The use of secondary similarity
has been recently shown to offer solutions that are more robust and more scalable
with respect to the dimension of the data.

2 Secondary Similarity Measures

For similarity search and their applications, the distance measures commonly
used in practice are known to be sensitive to local variations within the data
distribution, as well as the number of data features involved (the dimension).
These dependencies can severely limit the the efficiency and accuracy of the
search, and ultimately the quality of the solution — a phenomenon often referred
to as the curse of dimensionality. Generally speaking, as the number of data fea-
tures increases, pairwise distance values tend to concentrate tightly about their
mean, reducing the overall discriminative ability of the similarity measure. The
effect occurs for a broad range of data distributions and similarity measures, and
can be so pronounced as to cast doubt upon whether efficient nearest neighbor
search is even achievable in higher dimensions [1]. However, when a data set is
composed of many well-formed clusters, the concentration effect will typically
be less severe across cluster boundaries, with distances from a cluster member

1

to other cluster members being relatively easy to distinguish from distances to
non-members, especially when the clusters are well separated [1–3].

In general, any improvement in the discriminative ability of the similarity
measure employed can be expected to yield improvements in the performances
of solutions based on it. Some simple enhancement strategies involve the use of
shared neighbor (SN) information, in which a secondary similarity between two
points v and w is defined in terms of data objects in the common intersection of
neighborhoods based at v and w, where the neighborhoods themselves are deter-
mined according to a supplied primary similarity measure. The primary measure
can be any function that determines a well-defined ranking of the data objects
relative to the query. Recent studies have shown that secondary similarity mea-
sures based on SN information are generally more robust in higher dimensions
than their associated primary distance measures, since the neighborhoods of ob-
ject pairs drawn from a common cluster tend to have significantly more items in
common than to pairs drawn from different clusters [4, 5]. Furthermore, recent
advances in approximate similarity search allow for neighborhood information
to be generated accurately and efficiently for many practical applications [6, 7].

3 Multi-Source RSC Clustering

Shared-neighbor information has been used to guide clustering algorithms for
almost 40 years [8–10]. However, early methods required that the neighborhood
size k be fixed in advance by the user. The use of fixed values of k can introduce
a very significant bias on the sizes and other characteristics of clusters that can
be produced by the methods, in that they tend to favor the discovery of groups
with size of roughly the same order as k.

In order to account for the effects of varying k, the Relevant-Set Correla-
tion (RSC) model for clustering was proposed [11]. The RSC model provides a
consistent and comprehensive framework for the assessment of cluster quality,
based on the statistical significance of a form of correlation between the neigh-
borhood sets of its members. More precisely, the model tests the significance of
any grouping against the assumption that the neighborhoods contain zero infor-
mation (that is, against the assumption that they were generated by means of
random selection). The greater the extent to which the assumption is violated,
the greater the significance of the grouping.

The RSC model quantifies the quality of cluster candidates of any arbitrary
size (allowing the comparison of any two candidates regardless of their size), the
degree of association between pairs of cluster candidates, and the degree of asso-
ciation between clusters and individual data items. An efficient greedy selection
strategy, GreedyRSC, has been developed based on RSC, and was shown to be
very competitive in practice [11]. It requires only two user-supplied parameters,
describing the minimum acceptable cluster size, and the size of the maximum
acceptable overlap between two clusters. Both of these parameters can be chosen
in a natural way with no knowledge of the nature of the data or its distribution.
The number of clusters is not specified by the user.

2

This presentation will be concerned with an extension of the RSC model to
account for multiple sources of neighborhood information. Each of these sources
is assumed to have its own similarity measure based on its own collection of data
features (which may or may not contain features also used by other sources).
Like the original RSC model, the extended model relies only on the neighborhood
rankings produced according to the sources, and has no knowledge of the nature
of the similarity measure or features involved.

The extension of RSC will be seen to have implications for subspace clustering
and feature selection, as well as multiclustering. In particular, the discussion will
include the following potential applications of the extended model:

– The significance of data sets can be simultaneously assessed with respect
to object membership as well as the number of sources of neighborhood
information. If each source is associated with its own collection of features,
the model in effect assesses the significance of the association of a particular
group of objects with a collection of features.

– Under the model, the combination of sources that are most strongly associ-
ated with a putative cluster can be identified very efficiently.

– In applications for which multiple clusterings of the data have been gen-
erated, the model can be used to decide to which clustering a particular
candidate cluster is best aligned. This can potentially serve as a foundation
upon which multiple clustering criteria can be designed.

References

1. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: Proc. ICDT. (1999)

2. Bennett, K.P., Fayyad, U., Geiger, D.: Density-based indexing for approximate
nearest-neighbor queries. In: Proc. KDD. (1999)

3. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
TKDD 3(1) (2009) 1–58

4. Houle, M.E., Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Can shared-
neighbor-distances defeat the curse of dimensionality? In: Proc. SSDBM. (2010)

5. Bernecker, T., Houle, M.E., Kriegel, H.P., Kröger, P., Renz, M., Schubert, E.,
Zimek, A.: Quality of similarity rankings in time series. In: Proc. SSTD. (2011)

6. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: Symp. Foundations of Computer Science. (2006)
459–468

7. Houle, M.E., Sakama, J.: Fast approximate similarity search in extremely high-
dimensional data sets. In: Proc. ICDE. (2005)

8. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared
near neighbors. IEEE TC C-22(11) (1973) 1025–1034

9. Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for cate-
gorical attributes,. Inform. Sys. 25 (2000) 345–366

10. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes,
and densities in noisy, high dimensional data. In: Proc. SDM. (2003)

11. Houle, M.E.: The relevant-set correlation model for data clustering. Stat. Anal.
Data Min. 1(3) (2008) 157–176

3

Cartification:
Turning Similarities into Itemset Frequencies?

Bart Goethals

University of Antwerp, Belgium
bart.goethals@ua.ac.be

Extended Abstract

Suppose we are given a multi-dimensional dataset. For every point in the
dataset, we create a transaction, or cart, in which we store the k-nearest neigh-
bors of that point for one of the given dimensions. This is repeated for every
dimension. The resulting collection of carts can then be used to mine frequent
itemsets; that is, sets of points, or clusters, that are frequently seen together in
one or more of the dimensions. Essentially, this transformation, that we call car-
tification, combines multiple distance measures without suffering from the curse
of dimensionality.

An important observation to make in order to see the potential of cartified
data is, that when the frequency of a single item is high, we know it is often
found in the neighborhoods of many points in one or more of the dimensions;
in fact, we can say that this item lies central in a cluster of data points, and, if
it is most central, its frequency will be among the highest of all items in that
cluster. Moreover, if an item is indeed part of a cluster, it is easy to see that
it will mainly receive its support from those transactions in the database that
correspond to the relevant dimensions of the cluster, as for the other dimensions
it will have wildly varying neighborhoods. This is very important, as it allows us
to identify which dimensions are relevant for the cluster, as well as to circumvent
the dreaded curse of dimensionality. This observation also goes for sets of items:
those itemsets that have relatively high frequency lie centrally in a sub-structure
of the data, and will mainly receive their support from the dimensions relevant
to that sub-structure. In fact, the latter effect will be even more pronounced for
(large) sets than for single items, as it is increasingly unlikely that all points in
the itemset lie closely together in an irrelevant dimension.

For example, assume we are given the two-dimensional dataset as shown in
Figure 1. For cartification, we first need to choose a threshold k, the number
of the nearest neighbors that can be added to each cart. Table 1b shows the
resulting database for k = 3. The first two columns show the cartification for
the x-dimension, and the second two columns for the y-dimension. Every row
corresponds to the cart generated from one of the data points. For example, for
point 3, the three nearest neighbors in the x-dimension are points 2, 3, and 4,
while for the y-dimension these are 1, 3, and 5.

In Figure 2a, we plot the frequencies of all items (points) in this cartified
database. This plot shows there are two points, 3 and 9, with a high frequency.

? work in collaboration with Jilles Vreeken

4

x

y

2 4 6 8 10 12 14 16 18 20 22

2

4

6

8

10

12

14

16

18

20

22

1
2

3

4

5

6

7
8

9

10

11

(a) original

x cart y cart

1 {1, 2, 3} 1 {1, 2, 3}
2 {1, 2, 3} 2 {1, 2, 3}
3 {2, 3, 4} 3 {1, 3, 5}
4 {3, 4, 5} 4 {3, 4, 5}
5 {3, 4, 5} 5 {3, 4, 5}
6 {5, 6, 7} 6 {4, 6, 8}
7 {7, 8, 9} 7 {7, 8, 9}
8 {7, 8, 9} 8 {7, 8, 9}
9 {8, 9, 10} 9 {7, 9, 11}
10 {9, 10, 11} 10 {9, 10, 11}
11 {9, 10, 11} 11 {9, 10, 11}

(b) cartified

Fig. 1. Example dataset

1 2 3 4 5 6 7 8 9 10 11

4

8

12

16

20

24

F
re

q
u

en
cy

(a) k=3

1 2 3 4 5 6 7 8 9 10 11

4

8

12

16

20

24

F
re

q
u

en
cy

(b) k=6

Fig. 2. Item Frequencies

5

As Figure 1 shows, these points are in the centers of the clusters {1, 2, 3, 4, 5}
and {7, 8, 9, 10, 11} respectively. Additionally, point 6 has a very low frequency
which corresponds to the point being an outlier w.r.t. all other points in the
figure.

Obviously, the choice of k is important with regard to which clusters, cen-
ters or outliers can be identified; if only, as for k only itemsets of length k or
smaller can receive support. Essentially, k affects the granularity at which we
are considering centers and outliers. For example, if we look back at the data in
Figure 1, as cartified in Table 1b using k = 3, we already identified items 3 and
9 as cluster centers, and item 6 as an outlier. If we choose k = 6 instead, the
resulting frequencies per item are shown in Figure 2b.

Now item 6 has the maximum frequency of 22, far more than all other items,
and represents the center of the cluster consisting of all items. At this gran-
ularity, no outspoken outliers can be identified, yet the most remote elements
(i.e., 1, 2, 10, and 11) are still identifiable as they have the least support. Hence,
increasing k is like zooming out on the data, and so taking a more global point
of view.

Let us illustrate this in another example, where we show that not only the
centroid items, but also the clusters themselves can be clearly identified. When
keeping a relatively close zoom, with k = 3, for instance, the largest itemsets with
a frequency greater than 2, are {1, 2, 3}, {3, 4, 5}, {7, 8, 9}, and {9, 10, 11}. These
sets correspond to the clusters in the data when we aim at finding small clusters.
Next, we zoom out to k = 5, and now find {1, 2, 3, 4, 5} and {7, 8, 9, 10, 11} as the
largest itemsets with support greater than 2. These sets represent the clusters
in the data well. Note however, these are good clusters at the current level of
zoom. Indeed, if we zoom in ‘too much’, every point is regarded as a cluster, and
if we zoom out ‘too much’ all of the data automatically becomes one big cluster.
Clearly, what is ‘enough’ for the task at hand is subjective, and as clustering
is explorative in nature, it is ultimately up to the data analyst to decide what
types of clusters are potentially of interest, and hence, how to set k.

To conclude, preliminary cartification experiments on real data show that it
allows us to efficiently discover centroid and outlying sets of points, subspace
clusters, and clusterings, while not suffering from the curse of dimensionality.
Multiple dimensions, numerical or categorical, as well as multiple distance mea-
sures, can be combined, and become represented in the frequency of clusters.
Moreover, several efficient and scalable itemset mining techniques can be effec-
tively applied on the cartified database, resulting in meaningful and interesting
discoveries.

6

When Pattern Met Subspace Cluster

a Relationship Story

Jilles Vreeken1 and Arthur Zimek2

1 Advanced Database Research and Modeling, Universiteit Antwerpen, Belgium
http://www.adrem.ua.ac.be/~jvreeken

jilles.vreeken@ua.ac.be

2 Ludwig-Maximilians-Universität München, Germany
http://www.dbs.ifi.lmu.de/~zimek

zimek@dbs.ifi.lmu.de

Abstract. While subspace clustering emerged as an application of pat-
tern mining and some of its early advances have probably been inspired
by developments in pattern mining, over the years both fields progressed
rather independently. In this paper, we identify a number of recent de-
velopments in pattern mining that are likely to be applicable to alleviate
or solve current problems in subspace clustering and vice versa.

1 Introduction

Arguably, the two main proponents of exploratory data mining research are
clustering and pattern mining. Both share the aim of the field—extracting in-
teresting, non-trivial, and previously unknown knowledge from data—yet, they
are orthogonal in their approach, or at least appear so at first glance.

Pattern mining, to start with, is concerned with developing theory and algo-
rithms for identifying groups of attributes and some selection criteria on those;
such that the most ‘interesting’ attribute-values combinations in the data are re-
turned. That is, by that selection we identify objects in the data that somehow
stand out. The prototypical example is supermarket basket analysis, in which by
frequent itemset mining we identify items that are frequently sold together–with
the infamous beer and nappies as an example of an interesting pattern.

Clustering, on the other hand, in general aims at finding groups of similar
objects in a database. Aside from algorithmic variations in the process of identi-
fying these groups, the major differences between various clustering approaches
is in the actual meaning of ‘similar’. Especially in high dimensional data the
notion of similarity is not a trivial one. The so-called ‘curse of dimensionality’ is
often given as the main motivation for ‘subspace clustering’ [34], where our goal
is to identify both sets of objects, as well as subsets of attributes (subspaces),
on which those objects are measured to be highly similar. As such, we see that
both pattern mining and subspace clustering identify sub-parts of the data.

In this paper we explore and discuss a number of connections between these
two active fields of research. We argue that research in subspace clustering,

7

having a common origin with pattern mining and sharing some early ideas, has
deviated from the route of pattern mining subsequently. Interestingly, both fields
now face problems already studied by the other. Here, we would like to point out
interesting recent research topics on pattern mining where research on subspace
clustering can possibly benefit from, and vice versa. For example, the explosion in
numbers of results, and reducing their redundancy, are currently open problems
in subspace clustering but have recently been studied in detail by the pattern
mining community. On the other hand, the notion of alternative results, as well
as the generalization beyond binary data, are topics where pattern miners may
draw much inspiration from recent work in (subspace) clustering.

The goal of this paper is to identify a number of developments in these fields
that should not go unnoticed; we are convinced that solutions for pattern mining
problems are applicable in subspace clustering, and vice versa. In other words,
it is time to meet the relatives.

The remainder of this paper is organized as follows. First, we discuss the
background of subspace clustering, and how it relates to pattern mining. Next,
we go into the similarities between their results. Section 4 discusses developments
in pattern mining that are interesting with regard to subspace clustering—and
vice versa in Section 5. We round up with conclusions in Section 6.

2 It’s a Family Affair

2.1 The Curse

The so-called ‘curse of dimensionality’ is often credited for causing problems
in similarity computations in high dimensional data, and, hence, is given as
motivation for specialized approaches such as ‘subspace clustering’ [34]. Let us
consider two aspects of the ‘curse’ that are often confused in the literature: (i)
the concentration effect of Lp-norms and (ii) the presence of irrelevant attributes.

Regarding the concentration effect (i), the key result of [10] states that, if
the ratio of the variance of the length of any point vector x ∈ Rd (denoted by
‖x‖) with the length of the mean point vector (denoted by E [‖x‖]) converges
to zero with increasing data dimensionality, then the proportional difference
between the farthest-point distance Dmax and the closest-point distance Dmin

(the relative contrast) vanishes, i.e., all distances concentrate around a mean, and
look alike. This observation is often quoted for motivating subspace clustering as
a specialized procedure. It should be noted, though, that the problem is neither
well enough understood (see e.g. [20]) nor actually relevant when the data follows
different, well separated distributions [8, 9, 29].

Regarding the separation of clusters, the second problem (ii) is far more
important for subspace clustering: In order to find structures describing phe-
nomena, abundances of highly detailed data are collected. Among the features
of a high dimensional data set, for any given query object, many attributes can
be expected to be irrelevant to describing that object. Irrelevant attributes can
easily obscure clusters that are clearly visible when we consider only the relevant

8

‘subspace’ of the dataset. Hence, they interfere with the performance of similar-
ity measures in general, but in a far more fundamental way for clustering. The
relevance of certain attributes may differ for different groups of objects within
the same data set. Thus, many subsets of objects are defined only by some of the
available attributes, and the irrelevant attributes (‘noise’) will interfere with the
efforts to find these subsets. This second problem is actually the true motivation
for designing specialized methods to look for clusters in subspaces of a dataset.

2.2 Variants

In general, in subspace clustering similarity is defined in some relation to subsets
or combinations of attributes or dimensions of database objects. Hence, a clus-
tering with n clusters for a database D ×A, with the set of objects D and with
the full set of attributes A, can be seen as a set C = {(C1,A1), . . . , (Cn,An)},
where Ci ⊆ D and Ai ⊆ A, i.e., a cluster is defined w.r.t. a set of objects and
w.r.t. a set of attributes (i.e., a subspace).

Subspace clustering algorithms are typically split into two groups; in ‘pro-
jected clustering’ objects belong to at most one cluster, while ‘subspace cluster-
ing’ (in a more narrow sense) seeks to find all possible clusters in all available
subspaces, allowing overlap [34]. The distinction (and terminology) originates
from the two pioneering papers in the field, namely clique [2] for ‘subspace
clustering’ and proclus [1] for projected clustering; and the two definitions al-
low a broad field of hybrids. Since we are interested in the relationship between
pattern mining and subspace clustering, we will let aside projected clustering
and hybrid approaches and concentrate on subspace clustering in the narrower
sense as defined in [2]. In this setting, subspace clustering is usually related to
a bottom-up traversal of the search space of all possible subspaces, i.e., starting
with all one dimensional subspaces, two-dimensional combinations of these sub-
spaces, three dimensional combinations of the two dimensional subspaces and so
on, all (relevant) subspaces are searched for clusters residing therein.

Considering clique, we find the intuition of subspace clustering promoted
there closely related to pattern mining. To this end, we consider frequent itemset
mining [3], in which we consider binary transaction data, where transactions
are sets of items A, B, C, etc. The key idea of apriori [3] is to start with
itemsets of size 1 that are frequent, and exclude all itemsets from the search
that cannot be frequent anymore, given the knowledge which smaller itemsets are
frequent. For example, if we count a 1-itemset containing A less than the given
minimum support threshold, all 2-itemsets, 3-itemsets, etc. containing A (e.g.,
{A,B}, {A,C}, {A,B,C}) cannot be frequent either and need not be considered.
While theoretically the search space remains exponential, in practice searching
becomes feasible even for very large datasets.

Transferring this problem to subspace clustering, each attribute represents
an item, and each subspace cluster is then an itemset containing the items repre-
senting the attributes of the subspace. This way, finding itemsets with support 1
relates to finding all combinations of attributes constituting a subspace of at least

9

one cluster. This observation is the rationale of most bottom-up subspace clus-
tering approaches: subspaces containing clusters are determined starting from all
1-dimensional subspaces accommodating at least one cluster, employing a search
strategy similar to that of itemset mining algorithms. To apply any efficient
algorithm, the cluster criterion must implement a downward closure property
(i.e. (anti-)monotonicity): If subspace Ai contains a cluster, then any subspace
Aj ⊆ Ai must also contain a cluster. The anti-monotonic reverse implication,
if a subspace Aj does not contain a cluster, then any superspace Ai ⊇ Aj also
cannot contain a cluster, can subsequently be used for pruning.

Clearly, this is a rather näıve use of the concept of frequent itemsets in
subspace clustering. What constitutes a good subspace clustering result is defined
here apparently in close relationship to the design of the algorithm, i.e., the
desired result appears to be defined according to the expected result (as opposed
to: in accordance to what makes sense) — see the discussion in [34]. Resulting
clusters are usually highly redundant and, hence, mostly useless.

This issue is strongly related to the so-called pattern explosion. Taking fre-
quent itemset mining as an example, we see that for high minimal support thresh-
olds, only trivial results are returned, but that for lower thresholds we end up
with enormous amounts of results—a collection that is highly redundant, and
many of the returned patterns are variations of the same theme. Recently, pat-
tern miners have started to acknowledge they have been asking the wrong ques-
tion: instead of asking for all patterns that satisfy some constraints, we should
ask for small, non-redundant, and high quality sets of patterns—where by high-
quality we mean that each of the patterns in the set satisfy the thresholds we
set on interestingness or similarity, and the set is optimal with regard to some
criterion, e.g. mutual information [32], compression [49], area [21].

Research on subspace clustering inherited all the deficiencies from this origi-
nally ill-posed problem. However, early research on subspace clustering as follow-
ups of clique apparently also tried to transfer improvements from pattern min-
ing. As an example, enclus [14] uses several quality criteria for subspaces, not
only implementing the downward closure property, but also an upward closure
(i.e., allowing search for interesting subspaces as specializations as well as gen-
eralizations). This most probably relates to the concept of positive and negative
borders known from closed frequent itemsets [46]. Both can be seen as imple-
mentations of the classical concept of version spaces [38].

3 I Say Pattern, You Say Subspace Cluster

Methods aside, there are two notions we have to discuss that do, or do not, make
the two fields different. First and foremost, what is a result? And, second, can
we relate interestingness and similarity? To start with the former, in subspace
clustering, a single result defined by the Cartesian product of objects C ⊆ D and
attributes A ⊆ A. In order to be considered as a result, each of the objects in the
selection should be similar to the others, over the selected attributes, according
to the employed similarity function. In order to make a natural connection to

10

pattern mining, we adopt a visual approach; if we are allowed to re-order both
attributes and objects freely, we can reorder D and A such that C and A define
a rectangle in the data, or a tile. In pattern mining, the notion of a tile has
become very important in recent years [17, 21, 23, 33]. Originally the definition
of a pattern was very much along the lines of an SQL query, posing selection
criteria on which objects in the data are considered to support the pattern or
not. As such, beyond whether they contribute to such a global statistic, the
selected objects were not really taken into account. In many recent papers, how-
ever, the supporting objects are explicitly taken into account, and by doing so,
patterns also naturally define tiles. In the next section we will link this approach
to the reduction of redundancy. So, both fields identify tiles, sub-parts of the
data. However, both have different ways of arriving at these tiles. In pattern
mining, results are typically selected by some measure of ‘interestingness’—of
which support, the number of selected objects, is the most well-known example.
In subspace clustering, on the other hand, we measure results by how similar
the selected objects are over the considered attributes. Clearly, while this may
lead to discovering rather different tiles, it is important to realize that both
approaches do find tiles, and provide some statistics for the contents of each tile.

We observe that in pattern mining the selection of the objects ‘belonging’
to the pattern is very strict—and that as such those objects will exhibit high
similarity over the subspace of attributes the pattern identifies. For example, in
standard frequent itemset mining, transactions (i.e., objects) are only selected if
they are a strict superset of the pattern at hand—and in fault-tolerant itemset
mining typically only very few attribute-value combinations are allowed to de-
viate from the template the pattern identifies. Linking this to similarity, in this
strict selection setting, it is easy to see that for the attributes identified by the
pattern, the selected objects are highly similar. The same also holds for subgroup
discovery, a supervised branch of pattern mining. In subgroup discovery the pat-
terns typically strongly resemble SQL range-based selection queries, where the
goal is to identify those patterns (intention) that select objects (extension) that
correlate strongly to some target attribute(s). Intuitively, the more strict the
selection criteria are per attribute, the more alike the selected objects will be on
those attributes. So, in the traditional sense, patterns identified as interesting by
a measure using support, are highly likely to correspond to highly-similar sub-
space clusters, the more strict conditions the pattern defines on its attributes.
The other way around, we can say that the higher the similarity of a subspace
cluster, the easier it will be to define a pattern that covers the same area of
the database. And, the larger this highly-similar subspace cluster is, the more
likely it is that it will be discovered by pattern mining using any support-based
interestingness measure.

Besides this link, it is interesting to consider what the main differences are.
In our view, it is a matter of perspective; whether to take a truly local stance
at the objects, and from within a tile, like in subspace clustering, or, whether to
take a slightly more global stance and look at how we can select those objects
by defining conditions on the attributes. Further, we remark that both interest-

11

ingness and similarity are very vague concepts, for which many proposals exist.
A unifying theory, likely from a statistical point of view, would be very welcome.

4 Advances of Interest in Pattern Mining

In this section we discuss some recent advances in pattern mining research that
may likewise be applicable for issues in subspace clustering.

4.1 Summarizing Sets of Patterns

As touched upon in Section 2, reducing redundancy has been studied for a long
period of time in pattern mining. Very roughly speaking, two main approaches
can be distinguished: summarizing the result set, and summarizing the data.

In this subsection we discuss the former, in which we find well-known exam-
ples. The main idea of this approach is that we have a set of results F , consisting
of results that have passed the constraints that we have set, e.g. they all pass
the interestingness threshold. Now, with the goal of reducing redundancy in F ,
we want to select a subset S ⊆ F such that S contains as much information on
the whole of F while being minimal in size.

Perhaps the most well-known examples of this approach are closed [46] and
maximal [7] frequent itemsets, by which we only allow elements X ∈ F into S
for which no superset exists that has the same support, or no superset exists
that does not meet the mining constraints, respectively. As such, for closed sets,
given S we can reconstruct F without loss of information—and for maximal
sets we can reconstruct only the itemsets, not their frequencies. Non-derivable
itemsets [13] follow a slightly different approach, and only provide those itemsets
for which their frequency cannot be derived from the rest. While the concepts of
closed and maximal have been applied in subspace clustering, non-derivability
has not been explored yet, to the best of our knowledge.

Reduction by closure only works well when data are highly structured, and it
deteriorates rapidly with noise. A recent improvement is margin-closedness [39],
where we consider elements into the closure for which our measurement falls
within a given margin. This provides strong reduction in redundancy, and higher
noise resistance; we expect it to be applicable for subspace clusters.

Perhaps not trivially translatable to subspace clusters, another branch of
summarization is that of picking or creating a number of representative results.
Yan et al. [51] choose S such that the error of predicting the frequencies in F is
minimized. Here, it may well be reasonable to replace frequency with similarity.
There are some attempts in this direction, e.g. in biclustering [48].

More examples exist, but for reasons of space, we continue to a more impor-
tant development of reducing redundancy.

4.2 Pattern Set Mining

While the above-mentioned techniques do reduce redundancy, they typically still
result in large collections of patterns, that still do contain many variations of the

12

same theme. As stated in Section 2, a recent major insight in pattern mining is
that we were asking the wrong question. Instead of asking for all patterns that
satisfy some constraints, we should be asking for a small non-redundant group of
high-quality patterns. With this insight, the attention shifted from attempting
to summarize the full result F , to provide a good summarization of the data.
In terms of subspace clustering, this means that we would select that group of
subspace clusters such that we can approximate (explain, describe, etc.) the data
optimally. Here we discuss a few examples of such pattern set mining techniques
that we think are applicable to subspace clustering in varying degrees.

The most straightforward technique we discuss is tiling [21]. It proposes to not
just consider itemsets, but also the transactions they occur in—the same notion
we adopted in Section 3. The main idea here is that patterns that cover a large
area are more interesting than patterns of a small area, where area is defined
as the product of the number of items and number of transactions that support
the itemset. Most importantly, the authors give an algorithm for approximating
the optimal tiling of the data—those k tiles that together cover as much of the
data as possible. As the paper only considers exact tiles, for which exactly what
the data values are, namely 1s, the returned tilings are good summarizations of
the data. It is not trivially translated to subspace clustering. One could extract
a cluster profile, e.g. a centroid, and take the deviation between the current
summary and the real data into account—something that one could minimize.

In this direction, other promising approaches take cues from Information
Theory, the Minimum Description Length principle [25] in particular. That is,
they approach the pattern set selection problem from the perspective of lossless
compression; the best set of patterns is that set of patterns that together com-
press the data best. Gionis et al. [23] propose a hierarchical model for discovering
informative regions (patterns, subspaces) in the data by employing MDL. It does
not consider a candidate set F , but looks for interesting regions directly, assum-
ing a given fixed order of the attributes and objects. The hierarchical nature
potentially does link strongly to subspace clustering, where we could consider
nested clusters—a related method for clusters was proposed by Böhm et al [12].
Siebes et al. [49] proposed the Krimp algorithm to approximate the set of item-
sets that together optimally compress the data from a candidate collection F .
The resulting code tables have been shown to be of very high quality, while
reducing the number of patterns up to 7 orders of magnitude [49]. In turn, Kon-
tonasios and De Bie [33] combine the ideas of MDL and Tiling, although they
do not simply accumulate tiles to maximize the covered area of the database.
Instead, they measure how informative candidate results are with regard to a
static probabilistic background model, while also taking their complexity into
account. In other words, how many bits does adding result X save us when
explaining the data, and how many does it cost to understand X .

Each of the above methods have, as of yet, only been defined for (single and
multi-table) binary data. However, MDL theory does exist for richer data types,
and we would like to point out the strong potential for reducing redundancy
in subspace clustering by aiming at that set of subspace clusters that together

13

describe the data best. That is, those clusters by which we can encode the
data and the model most succinctly. Note that this approach naturally allows
for overlapping clusters, as well as refinements (a big general cluster, and a
smaller sub-region of it)—results will be selected if they provide sufficient extra
information by which the data can be compressed better than without, while
not costing too much to be described themselves.

4.3 Significance and Randomization

Perhaps the largest problem in exploratory data mining is validation. Unlike in
settings where there is a clear formal goal, such as in many supervised machine
learning, our goal is as ill-defined as to find ‘interesting things’. Like in clustering
a plethora of different similarity measures have been considered, all of which
may identify some interesting interplay between objects, also in pattern mining
a broad spectrum of interestingness measures have been discussed, yet there is
no gold standard by which we can compare results.

One approach that recently received ample attention in pattern mining is
that of statistical significance. If a result can be easily explained by background
knowledge, it will most likely not be interesting to the end user, never mind how
large its support or similarity. Webb [50] proposes to rank patterns depending on
their individual statistical significance. A more general framework was proposed
by Gionis et al. [22], who propose to investigate significance of results in general
through randomization. To this end, they introduce swap randomization as a
means to sample random binary datasets of the same row and column margins
as the original data, and so calculate empirical p-values. Ojala et al. [44,45] gave
variants for numerical data, easing the use of the model for subspace clustering.
Hanhijarvi et al. [28] extended the framework such that more complex back-
ground information, such as cluster densities and itemset frequencies, can be
entered into the model—making the approach applicable for iterative data min-
ing. De Bie [17] proposed to model these probability distributions over datasets
analytically, by employing the Maximum Entropy principle. A main advantage
is that this allows for the calculation of exact p-values.

As of yet, with the exception of the latter, each of the above have already
been formalized for a wide variety of data types, and, hence, we expect these
methods to be rather easily applicable for assessing whether a subspace cluster,
subspace clustering or multiple clustering is significant—whether in light of some
basic properties of the data, or with regard to more involved known structure.

5 Interesting Advances in Subspace Clustering

In this section we discuss advances in subspace clustering that may be of par-
ticular worth in progressing pattern mining research.

14

5.1 Half of Success is Knowing When to Stop

In early approaches to subspace clustering, the fixed grid, that allows an easy
translation to frequent itemsets, introduces bias towards certain cluster prop-
erties. Thus, it has found major interest in research on subspace clustering.
The mafia [43] method uses an adaptive grid, while its generation of subspace
clusters is similar to clique. Another variant, nCluster [37], allows overlapping
windows of length δ as 1-dimensional units of the grid. subclu [31] uses the db-
scan cluster model of density-connected sets [18], letting go the grid-approach
completely. Nevertheless, density-connected sets satisfy the downward closure
property. This enables subclu to search for density-based clusters in subspaces
also in an apriori-like style. A global density threshold, as used by subclu and
the grid-based approaches, leads to a bias towards a certain dimensionality: a
tighter threshold separates clusters from noise well in low dimensions, but tends
to loose clusters in higher dimensions. A more relaxed threshold detects high di-
mensional clusters but produces an excessive amount of low dimensional clusters.
This problem has been of major interest in the research on subspace clustering
in the recent years. See e.g. [4, 42], where the density-threshold is adapted in
turn to the dimensionality of the subspace currently being scrutinized during
the run of the algorithm.

A problem closely related to choosing the appropriate density level is the
redundancy issue, that also found much interest recently [5, 26, 41]. These ap-
proaches aim at reporting only the most representative of a couple of redundant
subspace clusters. While technically the approaches differ, in concept, adaptive
density-thresholds show high similarity with selection of patterns based on sta-
tistical significance [33, 50]. Significance of subspace clusters, though, has only
be addressed once so far [40]. Hence, we regard it as highly likely that both
approaches can learn from each other’s endeavours.

5.2 Alternatively...

A recent development in both fields is finding alternatives to results. The tech-
niques we employ in exploratory data mining can only seldom be shown to
provide optimal results, instead typically returning good results heuristically.
However, while one good result might shed light on one aspect of the data, it
might ignore other parts of the data—for which other results will be informative.
A clustering result that can be judged valid by known structures may even be
completely uninteresting [19]. Hence a proposal to improve cluster evaluation
relies on the deviation of a clustering from known structures instead of judging
the coverage of known structures [35].

This is almost literally the approach taken in the subfield of alternative clus-
tering, where one wants to discover a good clustering that is orthogonal from
what we already found, or, alternatively, where we want to find n good cluster-
ings each of which be different from any other. Approaches for finding alterna-
tive clusterings mostly use ensemble techniques [6,15,16,24]. A key requirement
for building good ensembles is a source of diversity for the ensemble members.

15

Clearly, using different feature subsets (i.e., subspaces) can be a very good source
of diversity and actually has occasionally been used in alternative clustering as
one possibility to find different clustering solutions [47]. Alternative clustering
approaches typically seek diversity constrained by non-redundancy. Hence, al-
lowing some degree of redundancy could be meaningful, such as allowing overlap
between clusters. In different subspaces, one subset of objects could belong to two
different, yet meaningful, clusters. While this would increase their redundancy,
reporting both of them instead of only one would not necessarily be useless.
Considerations in this direction can be found w.r.t. subspace clustering [27].

Also it has been conceded that preserving known properties or concepts is
desirable when seeking different clusters [47]. As searching for subspaces that
are (at least partially) different from subspaces of already found clusters, the
more specialized area of multiview clustering [11, 30] is also of interest here,
and can be seen as a special case of seeking alternative results. The constraint
here is the orthogonality of subspaces. It can also be seen as a special case of
subspace clustering allowing maximal overlap yet seeking minimally redundant
clusters by accommodating different concepts (as proposed e.g. in [27]). These
approaches highlight that highly overlapping clusters in different subspaces (i.e.,
certain subsets of objects may belong to several clusters simultaneously) need
not be redundant nor meaningless (see also the discussion in [19, 36]).

6 Conclusion

There exist strong links between Subspace Clustering and Pattern Mining, al-
though the topics of research within the two fields have diverged over time. We
argued the case that both fields are not as different as they might think, and
moreover, that both can learn much from the experience gained by the other. In
other words, we say it is time for the two fields to meet again. To this end, we
gave a (far from complete) overview of proposals from the one field that we find
have strong potential to advance research in the other, and vice versa.

Acknowledgements Jilles Vreeken is supported by a Post-Doctoral Fellow-
ship of the Research Foundation – Flanders (fwo).

References

1. C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast
algorithms for projected clustering. In Proc. SIGMOD, 1999.

2. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining applications. In Proc. SIGMOD,
1998.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
SIGMOD, 1994.

4. I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: dimensionality unbiased
subspace clustering. In Proc. ICDM, 2007.

16

5. I. Assent, E. Müller, S. Günnemann, R. Krieger, and T. Seidl. Less is more: Non-
redundant subspace clustering. In Proc. ACM SIGKDD Workshop MultiClust,
2010.

6. E. Bae and J. Bailey. COALA: a novel approach for the extraction of an alternate
clustering of high quality and high dissimilarity. In Proc. ICDM, 2006.

7. R. Bayardo. Efficiently mining long patterns from databases. In Proc. SIGMOD,
pages 85–93, 1998.

8. K. P. Bennett, U. Fayyad, and D. Geiger. Density-based indexing for approximate
nearest-neighbor queries. In Proc. KDD, 1999.

9. T. Bernecker, M. E. Houle, H.-P. Kriegel, P. Kröger, M. Renz, E. Schubert, and
A. Zimek. Quality of similarity rankings in time series. In Proc. SSTD, 2011.

10. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neigh-
bor” meaningful? In Proc. ICDT, 1999.

11. S. Bickel and T. Scheffer. Multi-view clustering. In Proc. ICDM, 2004.
12. C. Böhm, F. Fiedler, A. Oswald, C. Plant, B. Wackersreuther, and P. Wacker-

sreuther. ITCH: information-theoretic cluster hierarchies. In Proc. ECML PKDD,
2010.

13. T. Calders and B. Goethals. Non-derivable itemset mining. Data Min. Knowl.
Disc., 14(1):171–206, 2007.

14. C. H. Cheng, A. W.-C. Fu, and Y. Zhang. Entropy-based subspace clustering for
mining numerical data. In Proc. KDD, pages 84–93, 1999.

15. X. H. Dang and J. Bailey. Generation of alternative clusterings using the CAMI
approach. In Proc. SDM, 2010.

16. I. Davidson, S. S. Ravi, and L. Shamis. A SAT-based framework for efficient
constrained clustering. In Proc. SDM, 2010.

17. T. De Bie. Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Min. Knowl. Disc., 2010.

18. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. KDD, 1996.

19. I. Färber, S. Günnemann, H.-P. Kriegel, P. Kröger, E. Müller, E. Schubert, T. Seidl,
and A. Zimek. On using class-labels in evaluation of clusterings. In Proc. ACM
SIGKDD Workshop MultiClust, 2010.

20. D. Francois, V. Wertz, and M. Verleysen. The concentration of fractional distances.
IEEE TKDE, 19(7):873–886, 2007.

21. F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Proc. DS’04,
pages 278–289, 2004.

22. A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining
results via swap randomization. ACM TKDD, 1(3), 2007.

23. A. Gionis, H. Mannila, and J. K. Seppänen. Geometric and combinatorial tiles in
0-1 data. In Proc. ECML PKDD’04, 2004.

24. D. Gondek and T. Hofmann. Non-redundant data clustering. In Proc. ICDM,
2004.

25. P. D. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.
26. S. Günnemann, I. Färber, E. Müller, and T. Seidl. ASCLU: alternative subspace

clustering. In Proc. ACM SIGKDD Workshop MultiClust, 2010.
27. S. Günnemann, E. Müller, I. Färber, and T. Seidl. Detection of orthogonal concepts

in subspaces of high dimensional data. In Proc. CIKM, 2009.
28. S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki, N. Tatti, and H. Mannila. Tell

me something I don’t know: randomization strategies for iterative data mining. In
Proc. KDD, pages 379–388, 2009.

17

29. M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Can shared-
neighbor distances defeat the curse of dimensionality? In Proc. SSDBM, 2010.

30. P. Jain, R. Meka, and I. S. Dhillon. Simultaneous unsupervised learning of dis-
parate clusterings. Stat. Anal. Data Min., 1(3):195–210, 2008.

31. K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace clustering
for high-dimensional data. In Proc. SDM, 2004.

32. A. J. Knobbe and E. K. Y. Ho. Pattern teams. In Proc. PKDD, 2006.
33. K.-N. Kontonasios and T. DeBie. An information-theoretic approach to finding

informative noisy tiles in binary databases. In Proc. SDM, 2010.
34. H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high dimensional data: A survey

on subspace clustering, pattern-based clustering, and correlation clustering. ACM
TKDD, 3(1):1–58, 2009.

35. H.-P. Kriegel, E. Schubert, and A. Zimek. Evaluation of multiple clustering solu-
tions. In Proc. ECML PKDD Workshop MultiClust, 2011.

36. H.-P. Kriegel and A. Zimek. Subspace clustering, ensemble clustering, alternative
clustering, multiview clustering: What can we learn from each other? In Proc.
ACM SIGKDD Workshop MultiClust, 2010.

37. G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering with
flexible dimension partitioning. In Proc. ICDE, 2007.

38. T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning.
In Proc. IJCAI, 1977.

39. F. Moerchen, M. Thies, and A. Ultsch. Efficient mining of all margin-closed item-
sets with applications in temporal knowledge discovery and classification by com-
pression. KAIS, 2010.

40. G. Moise and J. Sander. Finding non-redundant, statistically significant regions in
high dimensional data: a novel approach to projected and subspace clustering. In
Proc. KDD, 2008.

41. E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl. Relevant subspace
clustering: Mining the most interesting non-redundant concepts in high dimen-
sional data. In Proc. ICDM, 2009.

42. E. Müller, I. Assent, R. Krieger, S. Günnemann, and T. Seidl. DensEst: density
estimation for data mining in high dimensional spaces. In Proc. SDM, 2009.

43. H.S. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering massive
data sets. In Proc. SDM, 2001.

44. M. Ojala. Assessing data mining results on matrices with randomization. In Proc.
ICDM, 2010.

45. M. Ojala, N. Vuokko, A. Kallio, N. Haiminen, and H. Mannila. Randomization
methods for assessing data analysis results on real-valued matrices. Stat. Anal.
Data Min., 2(4):209–230, 2009.

46. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proc. ICDT, 1999.

47. Z. J. Qi and I. Davidson. A principled and flexible framework for finding alternative
clusterings. In Proc. KDD, 2009.

48. E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic
models for gene expression. Bioinformatics, 17(Suppl. 1):S243–S252, 2001.

49. J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that compress.
Data Min. Knowl. Disc., 23(1):169–214, 2010.

50. G. I. Webb. Discovering significant patterns. Mach. Learn., 68(1):1–33, 2007.
51. X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: a profile-

based approach. In Proc. KDD, 2005.

18

Fast Multidimensional Clustering of
Categorical Data

Tengfei Liu1, Nevin L. Zhang1, Kin Man Poon1, Yi Wang2, and Hua Liu1

1 Department of Computer Science and Engineering
The Hong Kong University of Science and Technology
{liutf, lzhang, lkmpoon, aprillh}@cse.ust.hk

2 Department of Computer Science
National University of Singapore

wangy@comp.nus.edu.sg

Abstract. Early research work on clustering usually assumed that there
was one true clustering of data. However, complex data are typically
multifaceted and can be meaningfully clustered in many different ways.
There is a growing interest in methods that produce multiple partitions
of data. One such method is based on latent tree models (LTMs). This
method has a number of advantages over alternative methods, but is com-
putationally inefficient. We propose a fast algorithm for learning LTMs
and show that the algorithm can produce rich and meaningful clustering
results in moderately large data sets.

Keywords: Multidimensional Clustering, Model-based Clustering, La-
tent Tree Models

1 Introduction

There are several clustering methods that produce multiple partitions. We refer
to them as multi-partition clustering (MPC) methods. MPC methods, accord-
ing to the way that partitions are found, can be divided into two categories:
sequential MPC methods and simultaneous MPC methods.

Sequential MPC methods produce multiple clustering solutions sequentially.
One such kind of method is known as alternative clustering [1–3]. It aims to dis-
cover a new clustering that is different from a previously known clustering. The
key issue is how to ensure the novelty of the new clustering. One can repeatedly
apply such methods to produce a sequence of clusterings.

Simultaneous MPC methods, on the other hand, produce multiple clus-
tering solutions simultaneously. Both distance-based and model-based methods
have been proposed for simultaneous MPC. The distance-based methods pro-
posed by [4, 5] require as inputs the number of partitions and the number of
clusters in each partition. They try to optimize the quality of each individual
partition while keeping different partitions as dissimilar as possible. Model-based
methods fit data with a probabilistic model that contains multiple latent vari-
ables. Each latent variable represents a soft partition and can be viewed as a
hidden dimension of data. So we refer to model-based simultaneous MPC also

19

as multidimensional clustering (MDC). Unlike distance-based methods, model-
based methods can automatically determine the numbers of partitions and the
number of clusters in each partition based on statistical principles.

Among the MDC methods, Galimberti et al. [6] and Guan et al. [7] use
what we call disjoint and independent view (DIV) models. In a DIV model, each
latent variable is associated with a subset of attributes, which gives one view of
data. The subsets for different latent variables are disjoint. A latent variable is
independent of all the other latent variables and all the attributes that are not
associated with it. On the other hand, Zhang [8] and Poon et al. [9] use latent
tree models (LTMs). An LTM can be viewed as a DIV model with the latent
variables connected to form a tree structure.

This paper is concerned with the use of LTMs for producing multiple clus-
tering solutions. Currently, there is a lack of efficient algorithms for learning
LTMs. The fastest algorithm takes weeks to process data sets with around 100
attributes and a few thousands samples. We propose a more efficient algorithm
that can analyze data with hundreds of attributes in a few hours. We also provide
empirical results to show that the algorithm can produce much richer clustering
results than alternative methods.

2 Latent Tree Models

Technically an LTM is a Markov random field over an undirected graph, where
variables at leaf nodes are observed and variables at internal nodes are hidden.
An example of LTM is shown in Figure 1. It is part of the latent tree model
learned from WebKB data which will be described in more details in Section
4.2. The Y-variables are the latent variables. The numbers in parenthesis are
the numbers of states of the latent variables. The leaf nodes here are different
words which take binary values to indicates presence or absence of the word. The
edges represent probabilistic dependence and their width represents dependence
strength.

For technical convenience, we often root an LTM at one of its latent nodes and
regard it as a directed graphical model, i.e., a Bayesian network. For the model in
Figure 1, suppose we use Y43 as the root. Then the edges are directed as pointing
away from Y43. For example, the edges Y43−Y53 and Y53− ut should be directed
as Y43 → Y53 and Y53 → ut. The numerical information of the model includes
a marginal distribution P (Y43) for the root and one conditional distribution
for each edge. For the edge Y43 → Y53, we have distribution P (Y53|Y43); for
the edge Y53 → ut, we have distribution P (ut|Y53); and so on. The product of
those distributions defines a joint distribution over all the latent and observed
variables. In this paper, we assume all variables are discrete.

2.1 The State of the Art

Suppose there is a data set D. The attributes of the data set are the observed
variables. To learn an LTM from D, one needs to determine: (1) the number
of latent variables, (2) the number of states of each latent variable, (3) the
connections among the latent and observed variables, and (4) the probability

20

Fig. 1. Part of the latent tree model produced by new algorithm on the WebKB data.

parameters. We use m to denote the information for the first three items and θ
to denote the collection of parameter values. We aim at finding the pair (m, θ∗)
where θ∗ is the maximum likelihood estimate of the parameters andmmaximizes
the BIC score [10]:

BIC(m | D) = logP (D|m, θ∗)− d(m)

2
logN

where d(m) is the number of free parameters in m and N is the sample size.
Several algorithms for learning LTMs have been proposed. The state-of-the-

art is an algorithm called EAST [11]. It is a search-based method and is capable
of producing good models for data sets with dozens of attributes. However, it is
not efficient enough for data sets with more than 100 attributes. There are two
other algorithms that are more efficient than EAST, but they focus on special
LTMs. Harmeling and Williams [12] consider only binary trees, while Choi et al.
[13] assume all the variables share the same domain. Neither method is intended
for cluster analysis.

3 The Bridged Islands Algorithm

We now set out to present a new algorithm that is drastically more efficient than
EAST. In an LTM, the set of attributes that are connected to the same latent
variable is called a sibling cluster. Attributes in the cluster are said to be siblings.
In the LTM shown in Figure 1, attributes austin, utexas and ut form one sibling
cluster because they are all connected to Y53.

The new algorithm proceeds in five steps:

1. Partition the set of attributes into sibling clusters;
2. For each sibling cluster introduce a latent variable and determine the number

of states of this variable;
3. Determine the connections among the latent variables so that they form a

tree;
4. Determine the values of the probability parameters;
5. Refine the model.

If we imagine the sibling clusters formed in Step 1, together the latent variables
added in Step 2, as islands in an ocean, then the islands are connected in Step
3. So we call the algorithm the bridged islands (BI) algorithm. In the following,
we describe each step of BI in details.

Step 1: BI determines sibling clusters using two intuitions. First, attributes
from the same sibling cluster tend to be more closely correlated than those from

21

different sibling clusters. Second, if two attributes are siblings in the optimal
model for one set of attributes, they should also be siblings in the optimal model
for a subset of the attributes.

BI determines the first sibling cluster as follows. There is a working subset
of attributes. Initially, it contains the pair of attributes with the highest mutual
information(MI). Here MI is computed from the empirical distribution of the
data. BI grows the working subset by adding other attributes into it one by one.
At each step, it chooses the attribute that has the highest MI with the current
subset. (The first intuition is used here.) The MI between a variable X and a
set S is estimated as follows:

I(X ;S) = max
Z∈S

I(X ;Z) = max
Z∈S

∑

X,Z

P (X,Z) log
P (X,Z)

P (X)P (Z)
(1)

BI determines when to stop expanding the working subset using the unidi-
mensionality test or simply the UD-test. This is the most important idea of this
paper. A subset of attributes is unidimensional if the optimal LTM (i.e., the one
with the highest BIC score) for those attributes contains only one latent node.
UD-test determines whether a subset of attributes is unidimensional by first
projecting data onto those attributes and then running EAST on the projected
data. If the resulting model contains only one latent variable, then UD-test con-
cludes that the subset is unidimensional. Otherwise, it concludes the opposite.
For computational efficiency, EAST is allowed to examine only models with 1 or
2 latent variables.

After each attribute is added to the working subset, BI runs the UD-test
on the subset. If the test fails, the attributes in the subset cannot all be in
one sibling cluster in the final model according to the second intuition. So, BI
stops growing the subset and picks, from the local model learned during UD-
test, the sibling cluster that contains (one of or both) the two initial attributes
as the first sibling cluster for the whole algorithm. Attributes in the cluster are
then removed from the data set and the process repeats to find other sibling
clusters. Figure 2 illustrates the process. The working subset initially contains
X1 and X2. Then X3 is added. EAST is run to find an LTM for the expanded
subset {X1, X2, X3}. The resulting model, shown in (a), contains only one latent
variable. So the triplet passes the UD-test. Then X4 is added and the UD-test
is again passed as shown in (b). After that X5 is added. This time EAST yields
a model, shown in (c), with more than one latent variable. So the UD-test fails
and BI stops growing the subset. The sibling cluster {X1, X2, X4} of the local
model is picked as the first sibling cluster for the whole algorithm.

Fig. 2. An example of sibling cluster determination

Step 2: A latent class model (LCM) is an LTM with only one latent node. Figure
2 (a) and (b) show two examples. It is a commonly used finite mixture model

22

for discrete data. At Step 2, BI learns an LCM for each sibling cluster. There
are two substasks: (1) to determine the cardinality of the latent variable and
(2) to optimize the probability parameters. BI starts by setting the cardinality
of the latent variable to 2 and optimizing the model parameters by running the
EM algorithm [14]. Then it considers repeatedly increasing the cardinality. After
each increase, model parameters are re-optimized. The process stops when the
BIC score ceases to increase.

Step 3: After the first 2 steps, BI has obtained a collection of LCMs. We can
visualize those LCMs as islands in an ocean. The next step is to link up the
islands in a tree formation by adding edges between the latent variables.

Chow and Liu [15] give a well-known algorithm for learning tree-structured
models among observed variables. It first estimates the MI between each pair
of variables from data, then constructs a complete undirected graph with the
MI values as edge weights, and finally finds the maximum spanning tree of the
graph. The resulting tree model has the maximum likelihood among all tree
models. Chow-Liu’s algorithm can be adapted to link up the latent variables of
the aforementioned LCMs. We only need to specify how the MI between two
latent variables is to be estimated. Let m1 and m2 be two LCMs with latent
variables Y1 and Y2.

3 Enumerate the data cases as d1, d2, . . . , dN . Let di1 and
di2 (i ∈ {1, 2, . . . , N}) be respectively the projections of di onto the attributes
of m1 and m2. Define the data-conditional joint distribution of Y1 and Y2 as
follows:

P (Y1, Y2|D,m1,m2) = C

N∑

i=1

P (Y1|m1,di1)P (Y2|m2,di2), (2)

where C is the normalization constant. We estimate the MI between Y1 and Y2

from this joint distribution.

Step 4: In this step, BI optimizes the probability parameters of the LTM resulted
from Step 3 using EM.

Step 5: The sibling clusters and the cardinalities of the latent variables were
determined in Steps 1 and 2. Each of those decisions was made in the context of a
small number of attributes. Now that all the variables are connected in a global
model, it is time to re-examine the decisions and to see whether adjustments
should be made.

In Step 5, BI checks each attribute to see whether it should be relocated and
each latent variable to see if its cardinality should be changed. All the potential
adjustments are evaluated with respect to the model, denoted by m̂, resulted
from the previous step. The beneficial adjustments are executed in one batch
after all the evaluations. Adjustment evaluations and adjustment executions are
not interleaved because that would require parameter optimization after each
adjustment and hence be computationally expensive.

For each attribute X and each latent variable Y , BI computes their data-
conditional MI I(X,Y |D, m̂) from the following distribution:

3 Here m1 and m2 include model parameter values.

23

P (X,Y |D, m̂) = C

N∑

i=1

P (X,Y |m̂,di), (3)

where C is the normalization constant. Let Ŷ be the latent variable that has the
highest data-conditional MI with X . If Ŷ is not the current parent node of X in
m̂, then it is deemed beneficial to relocate X from its parent node to Ŷ .

To determine whether a change in the cardinality of a latent variable is
beneficial, BI freezes all the parameters that are not affected by the change, runs
EM locally to optimize the parameters affected by the change, and recalculates
the BIC score. The change is deemed beneficial if the BIC is increased. BI starts
from the current cardinality of each latent variable and considers increasing it
by one. If it is beneficial to do so, further increases are considered.

After model refinement, EM is run on the global model one more time to
optimize the parameters.

Computational Efficiency: BI is much faster than EAST. The reason is that
most steps of BI involves only a small number of variables and the EM algorithm
is run on the global model only twice. We tested BI and EAST on two data sets
with 81/108 attributes and 3021/2763 samples respectively. EAST took 6/24
days, while BI took 35/69 minutes respectively. Detailed running time analysis
will be given in a longer version of the paper.

4 Empirical Results with BI

We now present empirical results to demonstrate BI’s capability in discovering
rich and meaningful multiple clusterings. Comparisons with other methods will
be made in the next section.

4.1 Clustering Synthetic Data

As a test of concept, we first tried BI on synthetic data. The data set was
sampled from an LTM with structure as shown in Figure 3(left). There are 3
latent variables and 15 attributes, and all variables are binary. A total number of
1000 data cases were sampled. Each data case contains values for the attributes
X1-X15, but not for latent variables Y1-Y3. The data set has 3 ‘true’ partitions,
each given by a latent variable. To provide some intuitions on what the partitions
are about, Figure 3(right) depicts the normalized mutual information(NMI)[16]
between each partition and each attribute. The x-axis represents the observed
variables (i.e. X1-X15). The y-axis indicates the value of NMI between each
latent variable(i.e. Y1-Y3) and each attribute. There are three curves, labeled as
Y1-Y3. Those are called feature curves of the true partitions.

The LTM obtained by BI from the synthetic data has the same structure
as the generative model. In particular, it has three latent variables. Each latent
variable represents a soft partition of the data. We obtained a hard partition by
assigning each data case to the state with the highest posterior probability. We
call those partitions the BI partitions. The curves labeled B1-B3 in Figure 3 are

24

Fig. 3. Generative model and feature curves of partitions.

the feature curves of the BI partitions. They match those of the true partitions
almost perfectly. Based on the feature curves, we matched up the BI partitions
with the true partitions, and computed the NMI for each pair. The NMI values
are 0.91(B1,Y1), 0.86(B2,Y2) and 0.98(B3,Y3) respectively. Those indicate that
BI has recovered the true partitions well.

4.2 Clustering Real-World Data

The real-world data set is known as WebKB data. It consists of web pages col-
lected in 1997 from the computer science departments of 4 universities: Cornell,
Texas, Washington and Wisconsin. The web pages were originally divided into
7 classes. Only 4 classes remain after preprocessing, namely student, faculty,
project and course. There are 1041 pages in total and the number of words was
reduced to 336. The words are used as attributes in our analysis. The attributes
are binary and indicate the presence or absence of the words. Both the university
labels and class labels were removed before the analysis.

On the WebKB data set, BI produced an LTM, henceforth called WebKB-
LTM, with 98 latent variables. This means that BI has partitioned the data in
98 different ways. A big question is: Are those partitions meaningful or do they
appear to be arbitrary? It turns out that many of the partitions are meaningful.
We present some of them in the following.

To start with, we give an overview of the structure of WebKB-LTM. It di-
vides itself into three parts. The model of the first part is shown in Figure 1.
It involves words that usually appear in general descriptions of computer sci-
ence departments. So we call it the department subnet. The second part contain
words such as research, interest, papers, ieee, etc. We call it the research subnet.
The third part involves words related to course teaching. So we call it the teach
subnet.

The Department Subnet: We first examine two latent variables Y51 and Y54

in Figure 1. To inspect the meanings of partitions, we can draw the information
curves as shown in Figure 4. Take information curves of Y51 as example, there
are two curves in the figure. The lower one shows the mutual information(MI)
between Y51 and each attribute. The attributes are sorted according to MI and
only the top 5 attributes are shown here. The upper curve shows the cumulative
mutual information(CMI) between Y51 and each attribute plus all the attributes
before it. The numbers on the left vertical axis are MI values. The numbers on
the right axis are the ratios of the MI values over the MI between the partition
and all the attributes. The ratio is called information coverage (IC). The IC of

25

Fig. 4. Information curves of latent variables Y51 and Y54.

the first 5 attributes is around 98%. Intuitively, this means that the differences
among the different clusters on the first 5 attributes account for 98% of the
total differences. So we can say that the partition is primarily based on these
attributes.

The table below shows the occurrence frequencies of the words in the clusters.
We see that Y51 represents a partition based on wisc, madison, wi, dayton and
wisconsin. The clusters Y51=2 and Y51=3 together correspond to U Wisconsin-

Madison. Y54 represents another partition based on austin, texas, utexas and ut.
The cluster Y54=2 corresponds to U Texas-Austin.

Y47: IC=94%
cluster 1 2
cornell .04 1
ithaca 0 .47
ny .01 .39
Size .84 .16

Y48: IC=94%
cluster 1 2 3
washington .03 1 .98
seattle .01 .13 1
wa 0 0 .92
Size .8 .1 .1

Y51: IC=98%
cluster 1 2 3
wisc 0 .86 .96
madison .01 .33 .98
wi 0 .03 .92
dayton 0 .04 .92
wisconsin 0 .31 .94
Size .74 .14 .12

Y54: IC=99%
cluster 1 2
austin 0 .86
texas .01 .33
utexas 0 .03
ut 0 .04
Size .82 .18

We can do similar analysis to Y47 and Y48. As shown in above tables, the
most informative attributes are selected based on information curves, which are
omitted to save space. Information coverages (IC) are given to show how well the
attributes collectively convey the meanings of the latent variables. It is clear that
Y47 and Y48 are also meaningful. Y47=2 seems to identify web pages from Cornell,
and Y48=2 and Y48=3 together seem to identify web pages from U Washington-

Seattle.
The Research Subnet: The following tables contain information about three
latent variables from the faculty subnet.

Y10: IC=92%
cluster 1 2
image .02 .5
images .02 .38
visual .01 .31
pattern 0 .19
vision .02 .3
Size .91 .09

Y11: IC=90%
cluster 1 2
management .02 .57
database .04 .58
storage 0 .29
databases .01 .33
query 0 .3
Size .88 .12

Y14: IC=95%
cluster 1 2
april .02 .42
march .01 .35
february 0 .33
conference .06 .44
symposium .03 .33
proceedings .04 .38
january .02 .31
international .05 .32
Size .86 .14

Latent variable Y10 partitions the web pages based on words such as image,
pattern and vision. Y10=2 seems to identify web pages belonging to faculty mem-
bers who work in the vision/image analysis area. Y11 partitions the web pages
based on words such as database, storage and query. Y11=2 seems to identify
web pages belonging to faculty members who work in the database area. Other

26

latent variables in the faculty subset give us clusters of web pages for other
research areas such as artificial intelligence, networking, etc. Besides research
area-related partitions, the faculty subnet also gives us some other interesting
clusterings. One example is Y14. Y14=2 seems to identify web pages containing
papers published at conferences held in January-April.

The Teach Subnet: The teach subnet gives us partitions based on various
aspects of course information. One example is Y66. It is clear from the informa-
tion given below, Y66=4 identifies web pages on objected-oriented programming
(OOP), while Y66=2 identifies web pages on programming but not mentioning
OOP. Those might be web pages of OOP courses and of introductory program-
ming courses respectively. Y66=3 seems to correspond to web pages of other
courses that involve programming, while Y66=1 seems to mean web pages not
on programming.

Y66: IC=94%
cluster 1 2 3 4
programming .05 .77 1 .71
oriented 0 0 .21 1
object .02 .06 .46 .91
language .05 .32 .86 .59
languages .01 .39 .22 .48
program .09 .26 .96 .27
programs .04 .2 .6 .16
Size .69 .21 .05 .05

In summary, the BI algorithm has identified a variety of interesting clusters
in the WebKB data. The situation is similar on several other data sets that we
tried. It should be noted that not all the results obtained by BI are meaningful
and interesting. After all, it is an explorative data analysis method.

5 Comparisons with Alternative Methods

In this section we compare BI with four other MPC algorithms: orthogonal
projection (OP) [1], singular alternative clustering (SAC) [2], DK [4] and EAST.
Those are the algorithms that we were able to obtain implementations for or
implement ourselves.

The motivation for MPC is the observation that complex data can be mean-
ingfully clustered in multiple ways. As such, we need to consider two questions
when comparing different MPC methods: (1) Do they find meaningful cluster-
ings? (2) How many meaningful clusterings do they find?

5.1 Meaningful Clustering

A common way to evaluate a single-partition clustering algorithm is to start with
labeled data, remove the class labels, perform cluster analysis, and compare the
partition obtained with the partition induced by the class labels. We refer to
those two partitions as the cluster partition and the class partition respectively.
The quality of the cluster partition is often measured using its NMI with the
class partition.

In the context of MPC, we have multiple class partitions and multiple cluster
partitions. How should the evaluation be carried out? Following the literature,

27

we match each class partition up with the cluster partition with which it has the
highest NMI and report the NMI values of the matched pairs. This means that
if one of the cluster partitions closely resemble a class partition, then we claim
that the class partition is recovered from data. Similar partitions have similar
feature curves. So, we sometimes can do the match up based on feature curves,
as was done in Section 4.1. A nice thing with the use of feature curves is that
they tell us what the partitions are about.

Results on Synthetic Data: We tested OP, SAC, DK and EAST on the
same synthetic data that was used to test BI in Section 4.1. The published
version of DK can only produce two partitions. We ran DK on the synthetic data
to obtain two, instead of three, binary partitions. OP and SAC are sequential
MPC methods. Following the authors, we first ran K-means to find a partition
of two clusters, and then continue to run OP and SAC to find two more binary
partitions.

We have run the experiments 10 times for each algorithm. Here are the
NMI values between each true class partition and the matched cluster partition
obtained by the algorithms:

DK SAC OP EAST BI
Y1 .78±.00 .73±.04 .73±.02 .91±.00 .91±.00
Y2 .48±.00 .57±.04 .55±.04 .86±.00 .86±.00
Y3 .97±.00 .59±.49 .91±.20 .98±.00 .98±.00

The NMI values are high for EAST and BI, indicating that those two algo-
rithms have recovered the three true class partitions well. On the other hand,
the NMI values for the other algorithms are relatively lower, indicating that they
have not been able to recover the true class partitions as well as EAST and BI.

The results by EAST and BI are identical in terms of NMI values. However,
BI took much less time than EAST. The running time of BI was 22±3 seconds,
while that of EAST was 485±34 seconds.

Results on Real-World Data: DK, OP and SAC were also tested on the
WebKB data. They were told to find two partitions each with four clusters,
because it is known that there are two true class partitions each with four classes.

One of class partition divides the web pages into four classes according to
the four universities. It is clear from Section 4.2 that BI has recovered the four
classes. However, they were given in the form of four partitions (Y47, Y48, Y51 and
Y54), instead of one. For comparability, we transformed the 4-class class partition
into four logically equivalent binary class partitions. Each binary class partition
divides the web pages according to whether they are from a particular university.
The same transformation was applied to the other class partition and the cluster
partitions obtained by the alternative algorithms. After the transformations, we
matched up the binary class partitions with the cluster partitions and computed
the NMI of each matched pair. The results are shown in following tables. The
average was taken over 10 runs of the algorithms.

We see that the NMI is the highest for BI in almost all cases. This means that
BI has recovered most of the 8 classes better than the alternative algorithms.4
4 As seen in Section 4.2, some of the partitions obtained by BI contain multiple clusters
that correspond to a true class. For example, both Y48 = 2 and Y48 = 3 correspond

28

DK SAC OP BI
course .43±.01 .47±.01 .47±.02 .59±.01
faculty .18±.04 .17±.07 .18±.01 .31±.01
project .04±.00 .04±.00 .05±.04 .07±.00
student .18±.00 .20±.00 .20±.01 .20±.02
cornell .22±.15 .09±.02 .36±.24 .48±.11
texas .31±.18 .20±.20 .45±.23 .60±.02

washington .22±.13 .41±.23 .56±.25 .52±.12
wisconsin .38±.12 .16±.12 .45±.13 .48±.10

We also tested EAST on WebKb data. However, it did not finish in two
weeks. In contrast, BI took only 90 minutes.

5.2 Richness of Clusterings

The WebKB data was analyzed by a number of authors using different methods
[1, 5, 7]. In all cases, only two partitions and a few clusters were obtained. In con-
trast, BI has discovered , as shown in Section 4.2, a rich collection of meaningful
clusters. This is what sets BI far apart from other methods.

Why is it difficult for other methods to produce rich clustering results on
complex data sets? Well, the sequential MPC methods and the distance-based
simultaneous MPC methods cannot determine the numbers of partitions and
clusters. The user has to provide such information as input. In single partitioning,
not being able to determine the number of clusters is not a big problem. One can
manually try a few possibilities and pick the one that yields the best results. In
the case of MPC, however, not being able to determine the numbers of partitions
and clusters is a severe drawback. There are too many possibilities to consider. As
a simplification of the problem, suppose it is known that there are 10 partitions.
Determining the number of clusters for the 10 partitions manually would be very
difficult as there are too many possible combinations to try.

Other model-based simultaneous MPC methods can determine the numbers
of partitions and clusters. However, they are still unable to produce rich clus-
tering results on complex data sets. The algorithm by Galimberti and Soffiritti
[6] is inefficient and has so far been tested only on data sets with fewer than 10
attributes. The EAST algorithm is not efficient enough to handle data sets with
100 or more attributes. The method by Guan et al. [7] is efficient enough to deal
with the WebKb data, but it produces only two partitions.

5.3 A Remark

The evaluation method used in Section 5.1 has one drawback. A näıve method
that generates a huge number of random partitions might get good evaluation.
So, it is important to test MPC methods on real-world data set and see whether
they can help find meaningful clusters. On the WebKB data, BI found 98 par-
titions. By inspecting their information curves, we were able to quickly identify
dozens of meaningful partitions. With the random method, however, one would
have to examine a huge number of partitions before finding a meaningful one.
Hence it is not useful.

to U Washington-Seattle. If such clusters are manually aggregated, the NMI values
for BI would look better.

29

6 Conclusions

This paper is concerned with the use of latent tree models (LTMs) for multiple
partition clustering. We propose a new algorithm, called BI, for learning LTM
that is much faster than the best previous algorithm and can handle data with
hundreds of attributes. The key idea behind the algorithm is UD-test, which
determines whether the interactions among a set of observed variables can be
modeled using one latent variable. Empirical results are presented to show that
BI is able to produce much richer clustering results than alternative methods.

7 Acknowledgements

Research on this work was supported by Hong Kong Research Grants Council
GRF Grant #622408, The National Basic Research Program of China (aka the
973 Program) under project No. 2011CB505101, and HKUST Fok Ying Tung
Graduate School.

References

1. Cui, Y., Fern, X.Z., Dy, J.G.: Non-reduntant multi-view clustering via orthogonal-
ization. In: ICDM-07. (2007)

2. Qi, Z., Davidson, I.: A principled and flexible framework for finding alternative
clusterings. In: KDD-09. (2009)

3. Gondek, D., Hofmann, T.: Non-redundant data clustering. KAIS-07 (1) (2007)
4. Jain, P., Meka, R., Dhillon, I.S.: Simultaneous unsupervised learning of disparate

clusterings. In: SDM-08. (2008) 858–869
5. Niu, D., Dy, J.G., Jordan, M.I.: Multiple non-redundant spectral clustering views.

In: ICML-10. (2010)
6. Galimberti, G., Soffritti, G.: Model-based methods to identify multiple cluster

structures in a data set. CSDA-07 52 (2007) 520–536
7. Guan, Y., Dy, J.G., Niu, D., Ghahramani, Z.: Variational inference for nonpara-

metric multiple clustering. In: MultiClust Workshop, KDD-2010. (2010)
8. Zhang, N.L.: Hierarchical latent class models for cluster analysis. JMLR-04 5

(2004) 697–723
9. Poon, L.K.M., Zhang, N.L., Chen, T., Yi, W.: Variable selection in model-based

clustering: To do or to facilitate. In: ICML-10. (2010)
10. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2)

(1978) 461–464
11. Chen, T., Zhang, N.L., Wang, Y.: Efficient model evaluation in the search-based

approach to latent structure discovery. In: PGM-08, 57-64. (2008)
12. Harmeling, S., Williams, C.K.I.: Greedy learning of binary latent trees. TPAMI-10

(2010)
13. Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree

graphical models. Computing Research Repository (2010)
14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press (2009)
15. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory (1968)
16. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for

combining multiple partitions. JMLR 3 (2002) 583–617

30

Factorial Clustering with an Application to
Plant Distribution Data

Manfred Jaeger1, Simon P. Lyager1, Michael W. Vandborg1, and Thomas
Wohlgemuth2

1 Dept. of Computer Science, Aalborg University, Denmark
2 Swiss Federal Research Institute WSL

Abstract. We propose a latent variable approach for multiple clustering
of categorical data. We use logistic regression models for the conditional
distribution of observable features given the latent cluster variables. This
model supports an interpretation of the different clusterings as represent-
ing distinct, independent factors that determine the distribution of the
observed features. We apply the model for the analysis of plant distri-
bution data, where multiple clusterings are of interest to determine the
major underlying factors that determine the vegetation in a geographical
region.

1 Introduction

There exist a variety of different approaches to learning multiple clusterings.
They can differ not only with regard to their mathematical models and algo-
rithmic methods, but there can also be widely different intuitions and objectives
with regard to the interpretation of the multiple clusterings. On the one hand, in
ensemble clustering, the individual clusterings are essentially regarded as differ-
ent, imperfect versions of a single underlying true clustering (e.g. [10]). In many
multiple clustering methods, on the other hand, the different clusterings are in-
tended to represent different views of the data, each providing a different insight
into the structure of the data. One objective for clustering methods then is to
ensure that different clusterings are in some sense independent, disparate [6], or
non-redundant [8].

Probabilistic latent variable models are used for a variety of data analysis
tasks (in the case of discrete data jointly referred to as latent class analysis), in-
cluding clustering. Several authors have investigated probabilistic latent variable
models for multiple clusterings [13, 4, 2]. For the case of discrete observable fea-
tures, no special assumptions on the distributional form of the features given the
latent variables are made in these approaches, i.e. the conditional distribution of
the features follows an unconstrained multinomial distribution. Latent variable
models are also commonly used for dimensionality reduction of high-dimensional
numeric data. An important example is the factor analysis model, in which the
observed data is interpreted as a noisy linear transformation of a small number
of latent dimensions. While it is quite common to refer to latent class analysis

31

as a “categorical data analogue to factor analysis” [5][1, Chapter 13], it seems
that this correspondence has not been fully exploited for clustering applications,
or put into the context of multi-clustering, via the combined use of multiple
latent variables, and special assumptions on the conditional distribution of the
observed features.

In this paper we propose a probabilistic latent variable model for multiple
clusterings. As in factor analysis, we interpret the observed (discrete) data as a
noisy transformation of underlying, discrete latent dimensions. The linear map-
ping of factor analysis is replaced by a log-linear logistic regression model. The
latent dimensions then define clusterings that can be seen as independent factors
that determine the distribution of the observed features.

In contrast with several other multiple clustering methods (e.g., [4, 8]) our
method is not based on an association of different clusterings with different
feature subsets, even though such associations can emerge.

Our approach is partly motivated by applications to biogeographical data.
Specifically, we are investigating plant distribution data. Segmentations of geo-
graphic units into floristic regions based on similarity of plant species composi-
tion were already undertaken in the 19th century. An early application of formal
methods of clustering in this context is [9]. We apply our method to distribution
data for 2398 plant species in Switzerland. The goal of factorial clustering for
this type of data will be to obtain multiple clusterings, each of which could cor-
respond to one of several underlying environmental, geographical, or historical
factors, which jointly influence the vegetation.

2 Latent Variable Models for Clustering

Latent variable models are routinely used for clustering, both for single and
multiple clustering. However, they can be used in several, slightly different ways.
In order to more clearly explain our approach, we briefly review in this section
possible approaches to using latent variable models for clusterings.

Throughout, we assume that the observable dataX consists of n observations
of k attributes, i.e. X is an n × k matrix. A latent variable model contains m
additional unobserved variables, and we denote with L the n × m matrix of
the latent variables in the n observations. We note that when we assume that
in the n observations both the observable and latent variables are identically
and independently sampled, it will be simpler and more natural to describe
the model in terms of vectors X, L of length n and m, respectively. However,
in some applications, especially segmentation of time sequences or images, the
latent variables are not independent at different data points.

A latent variable model, then, consists of a joint distribution for X and L,
which can be written as

P (X | L, θX|L)P (L | θL). (1)

In hierarchical models, this might be extended by a distribution over θX|L, θL
parametrized by hyperparameters λ.

32

The perhaps most common use of model (1) for clustering is to perform
two steps [13]: first, fit the parameters θX|L, θL by maximizing the marginal
likelihood of the observed data X = x:

(θ∗X|L, θ
∗
L) := argmax

θX|L,θL

∑

l

P (X = x | L = l, θX|L)P (L = l | θL). (2)

This step is usually performed using the EM algorithm. Then, compute the most
probable values of L given X = x:

l∗ = argmax
l

P (L = l | X = x, θ∗X|L, θ
∗
L) (3)

In multiple clustering, a joint configuration of the latent variables defines
multiple cluster indices. For simplicity we may assume for now that each latent
variable defines its own clustering, and that therefore the membership of the ith
data item in the jth clustering is given by l∗i,j . However, in the multi-cluster case,
the second step can also take a slightly different form, and the most probable
latent variable values be computed component-wise. Denoting by lj the jth
column of l (i.e., l = (l1, . . . , lm)), this can be written as

l∗j = argmax
lj

∑

l1,...,lj−1,lj+1,lm

P (L = l | X = x, θ∗X|L, θ
∗
L). (4)

This is the (hard) clustering rule used, e.g., in [13, 14]. The clusterings obtained
from (3) and (4) can differ.

If the ultimate goal is only to compute a most probable configuration of L,
then one may also try to simplify the combination of (2) and (3) into a single
optimization:

l∗ := argmax
l

max
θX|L,θL

P (X = x | L = l, θX|L)P (L = l | θL). (5)

This rule can be justified by a Bayesian interpretation, for example: it amounts to
finding the jointly most probably values of l, θX|L, θL, given the dataX = x, and
assuming a uniform prior for θX|L, θL. Rule (5) may be still further simplified,
if one assumes the model for the latent variables to be fixed, and not subject to
optimization, i.e., P (L = l | θL) = P (L = l | θ∗L) for fixed parameters θ∗L, and
the parameter optimization is only for θX|L. If, furthermore, P (L = l | θ∗L) is
assumed uniform, then (5) reduces to

l∗ := argmax
l

max
θX|L

P (X = x | L = l, θX|L). (6)

Whether it is justified to assume a fixed distribution P (L | θ∗L) can depend on
two considerations: first, assuming that (1) actually represents the generative
process for the data, one might have sufficient background knowledge to identify
the distribution of L a-priori. L being an unobserved variable, whose existence
is essentially hypothesized, and for which it is typically even unclear how many

33

states it has, this is a rather unlikely case in practice, however. Second, clustering
being an exploratory data-analysis tool, one may also consider what settings of
P (L | θ∗L) may lead via (5) to interesting insights into the data, regardless of
whether the underlying probabilistic model is accurate as a generative model.

For example, in the single clustering case, when the data is generated by a
mixture model where one mixture component has a much higher prior proba-
bility than the others, then clustering via (3) can easily lead to only obtaining
a single cluster. If, on the other hand, one eliminates the influence of the prior
distribution by assuming (incorrectly) a uniform distribution over the mixture
components, then clustering via (6) can reveal the mixture structure of the data.

3 The Factorial Logistic Model

In the factor analysis model, both X and L are numerical, the rows in X and
L are iid, and the model (1) is given by distribution

P (Li) ∼ N(0,ΣL)
P (Xi | Li) ∼ N(WLi + μ,ΣX)

where ΣL is an arbitrary covariance matrix, W is a k × m matrix, μ a m-
dimensional mean vector, and ΣX a diagonal covariance matrix. Thus, data
is assumed to be generated by sampling from a lower (k) dimensional Gaus-
sian distribution, linearly mapped into the higher (m) dimensional space, and
independent Gaussian noise added to each coordinate.

The logistic regression model for the distribution of a binary variable X
conditional on numeric latent variables L is given by

logP (X = 1 | L)/P (X = 0 | L) = w0 +wL, (7)

where w = (w1, . . . , wk) is a k-vector of real weights. We write X ∼ LR(w0,wL)
if X follows (7). This model also applies when the latent variables L are ordinal,
i.e. each Lj codes by an integer {0, . . . , rj − 1} one of rj different, ordered cate-
gories. To accommodate nominal predictor variables (i.e., unordered categorical
variables) in the logistic regression model, one encodes a nominal variable Lj

with r states by binary indicator variables Lj,1, . . . , Lj,r, i.e. Lj,h = 1, Lj,h′ = 0
(h′ �= h) means that Lj is in its hth state.

We will consider both ordinal and nominal latent variables for clustering.
An ordinal latent variable defines an ordered clustering, i.e. the cluster indices
define an ordering of the clusters. Whether such an ordering is meaningful and
interpretable is application dependent. For biogeographical data ordinal latent
variables and ordered clusterings are often natural, since data patterns are often
determined by underlying continuous variables. We will, thus, assume that L is
a vector of m latent variables that define c different clusterings. Furthermore, we
assume that one of the following two cases applies: (1) all Lj in L are ordinal;
in this case c = m, and the jth clustering consists of rj distinct cluster. (2)
L is an encoding by binary indicator variables of c distinct nominal variables

34

with r1, . . . , rc distinct states, respectively. In this case m =
∑c

i=1 ri. We refer
to model (1) as the (r1o, . . . , rko) model, and (2) as the (r1n, . . . , rcn) model.
One could also consider models combining ordinal and nominal latent variables,
but we will here focus on “pure” models.

As in the factor analysis model, we assume that P (X | L) ∼ ∏n
i=1 P (X i |

Li) ∼ ∏n
i=1

∏k
j=1 P (X i,j | Li). Assuming that each Xi,j follows a logistic re-

gression model (7) with parameters wj,0,wj , one obtains the model for the ith
data item:

P (Xi | Li) ∼
k∏

j=1

LR(wj,0,wjLi). (8)

This conditional model for X may be combined with various models for
P (L), with or without an iid assumption for the rows of L. We refer to multiple
clustering based on (8) as factorial logistic (FL) clustering.

4 Learning

We apply the simple learning rule (6) for clustering with the logistic regression
model. Thus, we assume that L is uniformly distributed, which implies, in partic-
ular, independence over rows: P (L) ∼ ∏

i P (Li). In case of L encoding nominal
variables, the uniform distribution, of course, is conditional on “legal” states of
L, i.e. at most one indicator variable for any particular nominal variable being
equal to 1.

For the optimization of (6) we then use the obvious iterative procedure, where
after a random initialization L := l0 two steps are alternated:

i θX|Lt
:= argmaxθX|L P (X = x | L = lt, θX|L)

ii lt+1 := argmaxl P (X = x | L = l, θX|Lt
)

Step i is performed in our implementation using the SPSS method of fitting
logistic regression models, which supports both ordinal and nominal predictor
variables. Due to the factorization (8), the optimization reduces to k independent
optimizations for the parameters (wj,0,wj) (j = 1, . . . , k). It is thus linear in k.
It also is linear in n, since the likelihood only depends on the counts |{i | Xi,j =

1,Li = l̂}| for fixed configurations l̂ of the latent variables.

For step ii we have P (X = x | L = l, θX|Lt
) =

∏
i P (Xi = xi | Li =

li, θX|Lt
), so that the problem decomposes into n distinct optimizations for the

li. It can be naively performed by computing P (Xi = xi | Li = li, θX|Lt
) for

each candidate li, which gives a procedure that is still linear in n and k, but
exponential in c.

Overall, we obtain a learning method that is linear in the number of data
items and the observable attributes, and exponential in the number of cluster-
ings.

35

(a) (b)

Fig. 1. Mapping areas with mountain - valley division (a), and previous segmentation
of valley areas into floristic regions [12] (b)

5 Experiments

We apply FL-clustering to geobotanical data. In our experiments we use the
source data for the “Swiss Web Flora” 3 [11]. The dataset contains information
on the distribution of 2697 plant species in Switzerland, which has been divided
into 565 mapping areas. We reduced slightly more detailed species abundance
information in the original data to simple binary presence/absence data. We
also in this process deleted plants with a very sparse and uncertain distribution.
This left us with 2398 species in our data.4 We view each plant species as an
observable attribute, and the mapping areas as independent observations. Thus,
n = 565 and k = 2398 in the notation of Section 2. Figure 1 shows the division
of Switzerland into the mapping areas. Apart from the species occurrence data,
only a single additional variable is recorded for each area: a binary variable that
indicates whether the area is a mountain area (above timberline), or a valley
area (below timberline). The value of this variable is shown if Figure 1 by a
green color for valley, and grey color for mountain areas.

Conventional (single-) clusterings of the data lead to a segmentation of
Switzerland into floristic regions. Figure 1 (b) shows a result obtained by ag-
glomerative hierarchical clustering of the valley areas only [12] (thus, the white
part of the figure does not correspond to a computed cluster; it comprises areas
not included in the clustering).

5.1 Synthetic Data

In order to obtain an initial evaluation of the feasibility of our approach, we first
conduct an experiment with synthetic data. For this we constructed two artificial
segmentations of Switzerland based on the same mapping regions as in the real

3 www.wsl.ch/land/products/webflora/welcome-en.ehtml
4 The data is available at http://www.wsl.ch/info/mitarbeitende/wohlgemu/lehre EN/

36

Fig. 2. Artificial segmentations (top); “Wrong” clusterings (bottom)

data. These segmentations are shown in Figure 2 (top), and henceforth referred
to as “vertical” and “horizontal” segmentation, respectively. For each combina-
tion of a vertical and a horizontal segment, we defined a species distribution type
by a nominal logistic regression model that expresses a preference of the species
for the selected vertical and horizontal segment. The logistic regression weights
were adjusted so as to obtain conditional probability distributions for the pres-
ence of a species of the following form (here showing the case of preference for
the first segment in both segmentations):

Vertical
Horizontal yellow green blue

blue 0.98 0.5 0.5
yellow 0.5 0.02 0.02

(9)

According to each distribution type we created 15 synthetic plant species,
and randomly sampled an occurrence variable for the species at each of the
mapping areas.

We then performed FL clustering based on the 90 synthetic species using the
(3o,2o) model (it is not our ambition at this point to detect the “right” number
of segmentations and segments per segmentation). In approximately 1 out of
3 random restarts the algorithm terminated with the correct segmentations of
Figure 2, or solutions that differed from the correct one in cluster assignments for
2-3 regions. In the remaining restarts the algorithm terminated at local optima,
a representative example of which is shown in Figure 2 (bottom). However, the
(almost) correct solutions were identified by higher log-likelihood scores (between
-19912 and -19783) than that of the wrong solutions (between -23474 and -
21677).

37

For comparison, we also performed an experiment where the logistic regres-
sion model for P (X | L) was replaced by a full multinomial model, i.e. for each
species we fit a conditional probability table of the form (9) with 6 independent
parameters. In this case, almost all restarts terminated with wrong solutions as in
Figure 2, and, more importantly, the correct solutions could not be distinguished
by a higher likelihood score: in the multinomial model, any pair of segmenta-
tions whose combination identifies the 6 different combinations of vertical and
horizontal segments achieves the same, optimal, likelihood score.

We also use this synthetic data experiment to demonstrate that in FL-
clustering there is not necessarily a correlation between clusterings and feature-
subsets. Figure 3 (a) shows for each of the 90 synthetic species the mutual
information between the species occurrence feature and the two clusterings of
Figure 2 (top). The plot shows that there is no strong association of individual
species features with one or the other of the two segmentations.

5.2 Real Data

We now perform experiments with the real data consisting of the actual 2398
species. Again, we do not try at this point to automatically detect an appropriate
number of segmentations, or segments per segmentation. We run the learning
algorithm with a few selected ordinal and nominal logistic models. In all cases
we perform 20 runs of the algorithm with different random initializations of the
latent variables L. The results shown in the following are the segmentations that
achieved the highest likelihood score (6) within the 20 restarts.

Figure 4 shows the result of clustering with the (3o,3o) and (3n,3n) logistic
models. We use different colors to represents segments computed by nominal
logistic models, and greyscale values for ordinal logistic models. The greyscale
values then show the ordering of the segments according to their (ordinal) index.
One first observes that both models have produced one segmentation in which
the mountain areas are identified as one segment: there is an almost perfect
correspondence between the mountain attribute illustrated in Figure 1, and the
dark grey, respectively yellow, segments in the first segmentations of Figure 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.05 0.1 0.15 0.2

H
or

iz
on

ta
l

Vertical

Species

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6

S
eg

m
en

ta
tio

n
2

(N
or

th
/S

ou
th

)

Segmentation 1 (Mountain/Valley)

Species

(b)

Fig. 3. Mutual information: synthetic data (a), real data (b)

38

Fig. 4. Clustering result using (3o,3o) (top) and (3n,3n) (bottom) logistic models

(note that our method does not entail an ordering of the different segmentations;
in particular, in Figure 4 we have just for convenience vertically aligned similar
segmentations, and arbitrarily put the ones containing the mountain segment
first).

Apart from the mountain/valley attribute our data does not contain “hidden
class variables” that could be used for interpreting the segmentations, and there-
fore one has to look for additional, external data sources, and expert knowledge.
As previously mentioned, we expect that the different segmentations to some
extent correspond to ecological factors that determine plant growth. A difficulty
we now encounter is that many such candidate factors (e.g., average annual tem-
perature, average precipitation) are highly correlated with the mountain/valley
division, and often show a secondary gradient in north-south direction. The sec-
ond segmentations of Figure 4 are somewhat dominated by a north-south strat-
ification, and also exhibit some of the patterns visible in Figure 1 (b). However,
it seems impossible to identify these north-south segmentations with any par-
ticular ecological factor. Instead, it can only be taken as aggregating the north-
south dependency of several factors. Moreover, whereas one clustering showing
the mountain/valley division was quite consistently produced in the random
restarts, there were larger variations observed in the north-south clustering.

The range of likelihood values obtained in 20 restarts was −288 · 103 to
−278·103 for (3o,3o) clustering, and −308·103 to −296·103 for (3n,3n) clustering
(since the former model fits more independent parameters, higher likelihood
scores are to be expected).

Figure 3 shows the mutual information values for the plant features and
the (3o,3o) segmentation of Figure 4. This plot shows a relatively strong cor-

39

relation of some species with the mountain/valley clustering, and a somewhat
less pronounced primary correlation of some other species with the north/south
segmentation. The large number of species with very small mutual information
values for either segmentation is largely made up of species that occur in only a
few areas.

Fig. 5. Clustering result using multinomial P (X | L)

In analogy to the experiment with synthetic data, we also perform with the
real data an experiment with full multinomial species distribution models instead
of the logistic ones. The result is shown in Figure 5. While the mountain/valley
pattern is also partly visible in some of the segments, there is no single segment
or segmentation corresponding to this division, and the overall segmentation
result is clearly less useful than the one obtained with the logistic models.

The poor performance of the multinomial model may in part be due to this
model’s inability to isolate in its different clusterings several independent ex-
planatory factors, as illustrated by the synthetic data experiments. In addition,
the multinomial model suffered from severe problems of convergence to local
optima: even though the global likelihood maximum of the multinomial model
must be at least as high as the logistic optimum, the likelihood values found
in 20 restarts were significantly lower for the multinomial than for the logistic
models (range −433 · 103 to −405 · 103).

The average time consumption of a single run (restart) of (3o,3o) or (3n,3n)
clustering was approximately 3 hours, with an average of approximately 15 iter-
ations until convergence. This increased to approximately 6 hours for (3o,3o,3o)
or (3n,3n,3n) clusterings. The time is consumed almost entirely in fitting in each
iteration the 2398 logistic regression models for all the plants. For comparison, a
single run with the multinomial model (taking approximately 8 iterations on av-
erage until convergence) takes only about 1 minute, since the multinomial model
is easily fit by taking simple counts.

6 Discussion and Future Work

Our experiments have shown that using FL-clustering we can find multiple mean-
ingful clusterings of categorical data. The objective in our approach is explana-

40

tory (identify underlying factors that determine the overall data patterns) rather
than descriptive (provide the user with multiple views of the data).

For our purpose, it is clearly essential to use a conditional model P (X | L) of
a restricted functional form, rather than an unconstrained multinomial model.
Logistic regression models are a canonical choice, and can be seen as a categorical
data analogue to the linear mappings between latent and observed dimensions
in the factor analysis model.

A common objective in multiple clustering is that different clusterings are in
some sense orthogonal or complementary. We are not yet able to say in which
sense, or to what extent, FL-clustering satisfies such an objective. Empirically, a
bias towards learning complementary clusterings was difficult to verify with our
data, since most natural candidate segmentations based on hidden environmen-
tal variables would exhibit rather similar patterns (and not at all resemble the
segmentations in Figure 2). Theoretically, one can note that a multi-clustering
L = l in which two clusterings are identical can not be a local maximum of the
likelihood (6) (except for some degenerate, noise-free, data sets). FL-clustering,
thus, is biased away from returning multiple identical clusterings. How this can
be strengthened into a formal result linking likelihood gain and complementarity
of different clusterings is a subject for future work.

In our experiments we have used data with a spatial structure on the data
instances. Within this paper, we have used the spatial structure only for the
visualization of the clustering (i.e., segmentation) results. The model can equally
be used for other categorical data, and is especially suited for high-dimensional
binary data (such as text document data).

On the other hand, our work was also specifically motivated by spatial data,
and the relationship in this case of multiple clustering with factorial hidden
Markov models [3] and factorial Markov random fields [7]. For spatial data one
can impose a Markov random field structure on the latent variables L, i.e.,
the assumption of a uniform distribution for L which we used to derive (6)
is replaced, e.g., by the assumption that P (L = l | θ∗L) is a Gibbs distribution
with fixed parameters θ∗L. Learning in such a setting proceeds in the same way as
described in Section 4, only that P (L = l | θ∗L) has to be added as a likelihood
factor. The optimization in step ii will then usually not be possible precisely,
and require an approximate solution. In this paper we did not employ a Markov
random field model, since this would usually be used to enforce some smoothness
and contiguity properties of the learned segments, which, for our data, seems
unwarranted (considering, e.g., the rugged outline of the mountain areas).

In this paper we focused on the core of a probabilistic (multi-) clustering
model, i.e., the joint distribution of latent and observable variables. In this model,
the number of clusterings, and the number of clusters in each clustering is fixed.
We remark, however, that either model selection techniques like BIC or MDL
scoring, or a nonparametric Bayesian ’wrapper’ around the core model can be
used to also learn the model structure.

41

7 Conclusion

We proposed a latent variable model for multiple clustering of categorical data
based on a logistic regression model for the conditional distribution of the ob-
served features. We believe that in analogy to successful techniques for dimen-
sionality reduction, a restricted distributional form for the noisy transformation
between the latent and the observed features can be instrumental for revealing
relevant patterns in the latent feature space.

For clustering based on a latent variable model we have suggested a simple
optimization of the conditional likelihood of the data given the latent variables,
with a fixed marginal distribution for the latent variables. This leads to a learn-
ing procedure that is linear in the number of observed features, and enables us
to experiment with high-dimensional biogeographical data. Our preliminary re-
sults from these experiments demonstrate the ability of the method to discover
clusterings that represent meaningful explanatory factors for the data. However,
further work is needed to consolidate the results returned for this data, and to
investigate their potential biological meaning.

References

1. A. Agresti. Categorical Data Analysis. Wiley, 2002.
2. T. Chen, N. Zhang, T. Liu, K. M. Poon, and Y. Wang. Model-based multidimen-

sional clustering of categorical data. Artificial Intelligence, 2011. To appear.
3. Z. Ghahramani and M. Jordan. Factorial hidden markov models. Machine Learn-

ing, 29:245–273, 1997.
4. Y. Guan, J. G. Dy, D. Niu, and Z. Ghahramani. Variational inference for nonpara-

metric multiple clustering. In KDD10 Workshop on Discovering, Summarizing and
Using Multiple Clusterings, 2010.

5. J. A. Hagenaars. Loglinear Models with Latent Variables. Number 94 in Quantita-
tive Applications in the Social Sciences. Sage Publications, 1993.

6. P. Jain, R. Meka, and I. Dhillon. Simultaneous unsupervised learning of disparate
clusterings. In SIAM Int. Conf. on Data Mining, pages 858–869, 2008.

7. J. Kim and R. Zabih. Factorial markov random fields. In Proc. of ECCV 2002,
number 2352 in LNCS, pages 321–334, 2002.

8. D. Niu, J. G. Dy, and M. I. Jordan. Multiple non-redundant spectral clustering
views. In Proc. of the 27th Int. Conf. on Machine Learning (ICML-10), 2010.

9. L. Orloci. An agglomerative method for classification of plant communities. The
Journal of Ecology, 55(1):193–206, 1967.

10. H. Wang, H. Shan, and A. Banerjee. Bayesian cluster ensembles. Statistical Anal-
ysis and Data Mining, 4(1):54–70, 2011.

11. T. Wohlgemuth. Biogeographical regionalization of switzerland based on floristic
data: How many species are needed? Biodiversity Letters, 3(6):180–191, 1996.

12. T. Wohlgemuth. Ein floristischer ansatz zur biogeographischen gliederung der
schweiz. Botanica Helvetica, 106:227–260, 1996.

13. N. L. Zhang. Hierarchical latent class models for cluster analysis. Journal of
Machine Learning Research, 5:697–723, 2004.

14. N. L. Zhang, Y. Wang, and T. Chen. Discovery of latent structures: Experience
with the COIL challenge 2000 data set. Journal of Systems Science and Complexity,
21:172–183, 2008.

42

Subjectively Interesting Alternative Clusters

Tijl De Bie

Intelligent Systems Laboratory, University of Bristol, UK
tijl.debie@gmail.com

http://www.tijldebie.net

Abstract. We deploy a recently proposed framework for mining sub-
jectively interesting patterns from data [3] to the problem of clustering,
where patterns are clusters in the data. This framework outlines how
subjective interestingness of patterns (here, clusters) can be quantified
using sound information theoretic concepts. We demonstrate how it mo-
tivates a new objective function quantifying the interestingness of (a set
of) clusters, automatically accounting for a user’s prior beliefs and for
redundancies between the clusters.
Directly searching for the optimal set of clusters defined in this way
is hard. However, the optimization problem can be solved to a prov-
ably good approximation if clusters are generated iteratively, parallel-
ing the iterative data mining setting discussed in [3]. In this iterative
scheme, each subsequent cluster is maximally interesting given the pre-
viously generated ones, automatically trading off interestingness with
non-redundancy. Thus, this implementation of the clustering approach
can be regarded as a method for alternative clustering. Although gener-
ating each cluster in an iterative fashion is computationally hard as well,
we develop an approximation technique similar to spectral clustering al-
gorithms.
We end with a few visual demonstrations of the alternative clustering
approach to artificial datasets.

Keywords: Subjective interestingness, alternative clustering

1 Introduction

A main challenge in research on clustering methods and theory is that clus-
tering is (in a way intentionally) ill-defined as a task. As a result, numerous
types of syntaxes for cluster patterns have been suggested (e.g. clusters as hy-
perrectangles, hyperspheres, ellipsoids, decision trees; clusterings as partitions,
hierarchical partitionings, etc). Additionally, even when the syntax is fixed, there
are often various alternative choices for the objective function (e.g. the K-means
cost function, the likelihood of a mixture of Gaussians, etc).

Despite this variety in approaches, the goal of clustering is almost always
to provide a user with insight in the structure of the data, allowing the user to
conceptualize it as coming from a number of broad areas in the data space. The
knowledge of such a structure can be more or less elucidating to the user, also
depending on the prior beliefs the user held about the data.

43

Here, we take the perspective that a clustering is more useful if it conveys
more novel information. We make a specific choice for a cluster syntax, and we
deploy ideas from [3] to quantify the interestingness of a cluster as the amount
of information conveyed to the user when told about the cluster’s presence.

Our approach attempts to quantify subjective interestingness of clusters, in
that it takes prior beliefs held by the user into account. As a result, different
clusters might be deemed interesting to different users. One particular example is
the situation where a user has already been informed about previously discovered
clusters in the data, which is the alternative clustering setting. In that case,
clusters that are individually informative while non-redundant will be the most
interesting ones. Our approach naturally deals with alternative clustering, by
regarding already communicated clusters as prior beliefs.

Throughout this paper x ∈ Rd denotes a d-dimensional data point, and
X =

(
x′
1 x′

2 · · · x′
n

)′
denotes the data matrix containing n data points as its

rows. The space the data matrix belongs to is denoted as X = Rn×d.

2 A framework for data mining: a brief overview

For completeness, we here provide a short overview of a framework for data
mining that was introduced in [3], and readers familiar with this paper can skip
this section. Earlier and more limited versions of this framework, as well as its
application to frequent pattern mining, can be found in [4, 2, 5]. For concreteness,
here we specialize the short overview of the framework to the case where the data
is a data set, summarized in the data matrix X.

The framework aims to formalize data mining as a process of information
exchange between the data and the data miner (the user). The goal of the data
miner is to get as good an understanding about the data as possible, i.e. to
reduce his uncertainty as much as possible. To be able to do this, the degree of
uncertainty must be quantified, and to this end we use probability distribution
P (referred to as the background distribution) to model the prior beliefs of the
user about the data X, in combination with ideas from information theory.

More specifically, the framework deals with the setting where the prior beliefs
specify that the background distribution belongs to one of a set P of possible
distributions. The more prior beliefs, the smaller this set will be. For example,
the data miner may have a set of prior beliefs that can be formalized in the form
of constraints the background distribution P satisfies:

∫

X∈Rn×d

fi(X)P (X) = ci, ∀i.

Such constraints represent the fact that the expected value of certain statistics
(the functions fi) are equal to a given number. The set P is defined as the set of
distributions satisfying these constraints. (Note that the framework is not limited
to such prior beliefs, although they are convenient from a practical viewpoint.)

We argued in [3] that among all distributions P ∈ P , the ‘best’ choice for P
is the one of maximum entropy given these constraints. This background distri-
bution is the least biased one, thus not introducing any other undue constraints

44

on the background distribution. A further game-theoretic argument in favour of
using the distribution of maximum entropy is given in [3].

In the framework, a pattern is defined as any piece of knowledge about the
data that reduces the set of possible values it may take from the original data
space X = Rn×d to a subset X ′. We then argued that the subjective interest-
ingness of such a pattern can be adequately formalized as the self-information
of the pattern, i.e. the negative logarithm of the probability that the pattern is
present in the data, i.e. by − log (P (X ∈ X ′)). Thus, patterns are deemed more
interesting if their probability is smaller under the background model, and thus
if the user is more surprised by their observation.

After observing a pattern, a user instinctively adapts his beliefs. In [3] we ar-
gued that a natural and robust way to model this is by updating the background
distribution to a new distribution P ′ defined as P conditioned on the pattern’s
presence. The self-information of subsequent patterns can thus be evaluated by
referring to the new background distribution P ′, and so on in an iterative fashion.

In [3] we showed that mining the most informative set of patterns formally
corresponds to a weighted set coverage problem, attempting to cover as many
elements from the set X that have a small probability under the initial back-
ground distribution P . This problem is NP-hard, but it can be approximated
well by a greedy approach, and the iterative data mining approach is equivalent
to such a greedy approximation.

Thus, the alternative clustering method we will detail below generates clus-
ters in an iterative manner, in such a way that at any time the clusters generated
so far are approximately the most informative set of clusters of that size.

3 Subjective interestingness of clusters

3.1 Prior beliefs and the maximum entropy background distribution

Here we consider two types of initial prior beliefs, expressed as constraints on
the first and second order cumulants of the data points. It is conceptually easy
to extend the results from this paper to other types of prior beliefs, although the
computational cost will vary. The background distribution incorporating these
constraints is the maximum entropy distribution that has the prescribed first
and second order cumulants. It is well known that for data with unbounded
domain, this distribution is the multivariate Gaussian distribution with mean
and covariance matrix equal to the prescribed cumulants:

P (X) =
1√

(2π)nd|Σ|n
exp

(
−1

2
trace

[
(X− eμ′)Σ−1(X− eμ′)′

])
. (1)

We note that the prescribed cumulants may be computed from the actual
data at the request of the data miner, such that they are indeed part of the
prior knowledge. However, they may also be beliefs, in the sense that they may
be based on external information or assumptions that may be right or wrong.

45

3.2 A syntax for cluster patterns

The framework from [3] was developed for patterns generally defined as prop-
erties of the data. Thus, a pattern’s presence in the data constrains the set of
possible values the data may have, and in this sense the knowledge of the presence
of a pattern reduces the uncertainty about the data and conveys information.

In this paper we restrict our attention to one specific type of cluster pattern.
The pattern type we consider is parameterized by a set of indices to the data
points and a vector in the data space. The pattern is then the fact that the mean
of the data points for these indices is equal to the specified vector.

More formally, let eI ∈ Rd be defined as an indicator vector containing zeros
at positions i �∈ I and ones at positions i ∈ I, and let nI = |I| = e′IeI denote
the number of elements in I. Then, our patterns are constraints of the form:

1

nI

∑

i∈I

xi = μI ,

⇔ X′ eI
e′IeI

= μI .

Such a constraint restricts the possible values of the data set X, in that the
mean of a subset of the data points is required to have a prescribed value μI .

3.3 The self-information of a cluster pattern

The following theorem shows how to assess the self-information of a pattern.

Theorem 1. Given a background distribution of the form in Eq. (1), the prob-
ability of a pattern of the form X′ eI

e′
IeI

= μI is given by:

P

(
X′ eI

e′IeI
= μI

)
=

1√
(2π)d|Σ|

exp

(
− 1

2|I|e
′
I ·

[
(X− eμ′)Σ−1(X− eμ′)′

]
· eI

)
.

Thus the self-information of the pattern for a cluster specified by the set I,
defined as the negative log probability of the cluster pattern and denoted as
SelfInformationI , is equal to:

SelfInformationI =
1

2
log

(
(2π)d|Σ|

)
+

1

2
QI ,

where QI =
1

|I|e
′
I ·

[
(X− eμ′)Σ−1(X− eμ′)′

]
· eI .

Note that the self-information depends on I only through QI , so we may choose
to use QI as a quality metric for a cluster, as we will do in this paper.

This theorem can be used to quantify the self-information of any cluster
given the background model based on the prior beliefs of the data miner. Note
however that it cannot be used to assess the self-information of a cluster after
other clusters have already been found, as each new cluster will affect the user’s
prior beliefs. How this can be accounted for will be discussed in Sec. 3.4, based on
a generalization of Theorem 1. As Theorem 1 directly follows from Theorem 2,
we will only provide a proof for the latter in Sec. 3.4.

46

3.4 The self-information of a set of cluster patterns

Let us discuss the more general case, where the patterns are constraints of the
form X′E = M with E ∈ Rn×k and M ∈ Rd×k. Clearly, the type of patterns
we wish to consider are a special case of this, with E = eI

e′
IeI

and M = μI .

Furthermore, it allows us to consider a composite pattern, a pattern defined as
the union of a set of k patterns. Indeed, if we have k different cluster patterns
specified by the sets from I = {Ii}, we can write down this set of constraints
concisely as X′E = M where E and M contain

eIi

e′
Ii
eIi

and the mean vector μi

of the i’th cluster as their i’th columns.

Theorem 2. Let the columns of the matrix E be the indicator vectors of the sets
in I = {Ii}, and let PE = E(E′E)−1E′, the projection matrix onto the column
space of E. Then, the probability of the composite pattern X′E = M is given by:

P (X′E = M) =
1√

(2π)kd|Σ|k
exp

(
−1

2
trace

[
PE · (X− eμ′)Σ−1(X− eμ′)′

])
.

Thus the self-information of the set of patterns defined by the columns of E,
defined as its negative log probability and denoted as SelfInformationI , is equal
to:

SelfInformationI =
k

2
log

(
(2π)d|Σ|

)
+

1

2
QI ,

where QI = trace
[
PE · (X− eμ′)Σ−1(X− eμ′)′

]
.

Again, since the self-information depends on I only through QI , we choose to
use QI as a quality metric for a cluster further below.

Proof. A constraint X′E = M constrains the data X to an (n − k) × d di-
mensional affine subspace in the following way. Let us write the singular value
decomposition for E as:

E =
(
U U0

)(Λ 0
0 0

)(
V V0

)′
.

Then, this constraint can be written in the following form:

X = UZ +U0Z0,

where Z = Λ−1V′M′ is a constant fixed by E and M, and Z0 ∈ R(n−k)×d is
a variable. In general, writing X = UZ + U0Z0, we can write the probability
density for X as:

P (X) = P (Z,Z0),

=
1√

(2π)nd|Σ|n
exp

(
−1

2
trace

[
(UZ +U0Z0 − eμ′)Σ−1(UZ+U0Z0 − eμ′)′

])
,

=
1√

(2π)(n−k)d|Σ|n−k
exp

(
−1

2
trace

[
(Z0 −U′

0eμ
′)Σ−1(Z0 −U′

0eμ
′)′
])

· 1√
(2π)(k)d|Σ|k

exp

(
−1

2
trace

[
(Z−U′eμ′)Σ−1(Z−U′eμ′)′

])

47

We can now compute the marginal probability density for Z by integrating over
Z0, yielding:

P (Z) =
1√

(2π)kd|Σ|k
exp

(
−1

2
trace

[
(Z−U′eμ′)Σ−1(Z−U′eμ′)′

])
.

The probability density value for the pattern’s presence, i.e. for X′E = M or
equivalently Z = Λ−1V′M′, is thus:

P (Z = Λ−1V′M′)

=
1√

(2π)kd|Σ|k
exp

(
−1

2
trace

[
(Λ−1V′M′ −U′eμ′)Σ−1(Λ−1V′M′ −U′eμ′)′

])
,

=
1√

(2π)kd|Σ|k
exp

(
−1

2
trace

[
PE · (X− eμ′)Σ−1(X− eμ′)′

])
,

where PE = E(E′E)−1E′ is a projection matrix projecting onto the k-dimensio-
nal column space of E. �

Note that Theorem 1 is indeed a special case of Theorem 2 as can be seen

by substituting E = eI and PE =
eIe

′
I

|I| .

According to the framework, a (composite) pattern specified by matrices E
andM in this way is thus more informative if trace

[
PE · (X− eμ′)Σ−1(X− eμ′)′

]

is larger. Thus, we could search for the most informative set of clusters by max-
imizing this quality measure with respect to a set I = {Ii} of clusters. This is a
hard problem though, even in the case where only one cluster is sought. Thus,
we developed an approximation algorithm.

Our approach is approximate in two ways. First, the search for a set of clusters
is approximated using a greedy algorithm, searching clusters one by one, thus
operating like an alternative clustering algoritm. From [3], it can be seen that this
greedy approximation is guaranteed to approximate the true optimum provably
well. Second, the search for each cluster is relaxed to an eigenvalue problem.
These issues are discussed in greater detail in Sec. 4.

3.5 The cost of describing a cluster

The framework from [3] suggests to take into account not only the self-informa-
tion of a pattern, but also the cost to communicate a pattern, i.e. its description
length. This depends on the coding scheme used, which should reflect the per-
ceived complexity of a pattern as perceived by the data miner. Choosing this
coding scheme can also be done so as to bias the results toward specific patterns.

In the current context, describing a pattern amounts to describing the subset
I and the mean vector μI . For simplicity, we assume the description length is
constant for all patterns, independent of I and μI . However, note that different
costs could be used if patterns with smaller sets I are more easy to understand
(i.e. have a smaller cost), or vice versa.

48

4 Alternative clustering: finding the next most
informative cluster

Here we discuss an iterative approach to optimizing the quality measure QI from
Theorem 2. There are two reasons for choosing an iterative approach.

Firstly, directly optimizing the quality measure is equivalent to a set covering
type problem (see [3] for more background on why this is the case). While NP-
hard, this problem can be approximated well by optimizing over the different
clusters (and thus the columns of E) in a greedy iterative manner.

Secondly, usually it is not a priori clear how many clusters are required for the
data miner to be sufficiently satisfied with his new understanding of the data. The
idea of alternative clustering, as we view it, is to provide the user the opportunity
to request new clusters (or clusterings) as long as more are desired. Optimizing
the quality measure over a growing set of clusters by iteratively optimizing over
a newly added column of E is thus a type of alternative clustering.

Hence, the iterative approach can be regarded as an approximation, but one
with usability benefits over a global optimizing approach.

4.1 The iterative scheme: alternative clustering

To search for the first cluster, we attempt to optimize the quality function from
Theorem 1. This is itself a hard problem, but we explain how we approximately
solve it in Sec. 4.2.

In the subsequent iterations, let us say that we have already found k− 1 ≥ 1
clusters, and the matrices E andM respectively contain the normalized indicator
vectors and cluster means as their columns. We are interested in finding the k’th
cluster so as to optimize the quality measure from Theorem 2 but keeping the
first k − 1 cluster patterns as they are.

To do this, it is convenient to write the quality measure as a function of the
k’th cluster with indicator vector ek. Let QE = I − PE, the projection matrix
on the null column space of E. Furthermore, let us denote E∗ =

(
E ek

)
. Then,

using the definition of a projection matrix and the matrix inversion lemma:

Q{Ii|i=1:k} = trace
[
PE∗ · (X− eμ′)Σ−1(X− eμ′)′

]
,

= trace
[
PE · (X− eμ′)Σ−1(X− eμ′)′

]

+trace

[
QEeke

′
kQE

e′kQEek
· (X− eμ′)Σ−1(X− eμ′)′

]
,

= Q{Ii|i=1:k−1} +
e′k

[
QE · (X− eμ′)Σ−1(X− eμ′)′QE

]
ek

e′kQEek
.

Note that if we define Q∅ = 0 and with QE = I the quality measure from
Theorem 1 is retrieved. We can thus interpret the above reformulation of the
quality metric for the k’th cluster conditioned on the first k−1 clusters as being
the quality metric for a first cluster on data that is projected onto the space

49

orthogonal to the k− 1 columns of E, i.e. the k− 1 previously selected indicator
vectors. It is as if the data was deflated to take account of the knowledge of the
previously found cluster patterns, thus automatically accounting for redundancy.

4.2 A spectral relaxation of the iterations

Each of the iterative steps thus reduces to the maximization of the following
increase of the quality measure:

ΔQk =
e′k

[
QE · (X− eμ′)Σ−1(X− eμ′)′QE

]
ek

e′kQEek
. (2)

If we relax the vector ek to be real-valued instead of containing only 0’s and 1’s,
this Rayleigh quotient is maximized by the dominant eigenvector of the matrix
QE · (X− eμ′)Σ−1(X− eμ′)′QE. Thus, as an approximation technique we will
use this dominant eigenvector, and threshold it to obtain a crisp 0/1 vector
ek. To determine a suitable threshold, we simply do an exhaustive search over
n + 1 threshold values that generate a different set I of indices i ∈ I for which
ek(i) = 1, selecting the threshold that maximizes the quantity in Eq. (2).

4.3 A kernel-based version

Note that for Σ = I, the quality metrics depend on X only through the inner
product matrix XX′. This means that a kernel-variant is readily derived, by
substituting this inner product matrix with any suitable kernel matrix. In this
way nonlinearly shaped clusters can be obtained, similar to spectral clustering
methods and kernel K-Means.

5 Relations to existing work

There appear to be strong relations between spectral clustering and our spec-
tral relaxation of the problem [7]. Additionally, the quality measure is strongly
related to the K-Means cost function [8, 6]. Finally, there seem to be interesting
connections to (0-1) SDP problems used for solving combinatorial optimization
problems such as clustering (e.g. K-Means and graph cut clustering) [6, 1].

6 Experiments

We conducted 3 experiments, each time reporting the result of 6 iterations of the
alternative clustering scheme. Initial prior beliefs are always μ = 0 and Σ = I.

– A plain application to a synthetic dataset of 100 points and 2 dimensions in
4 clusters. See Fig. 1.

– An application to the same data but now with a Radial Basis Function
(RBF) kernel used for the inner products. See Fig. 2.

– An application with an RBF kernel to a different synthetic dataset, with
one central cluster and two half-moon shaped clusters around this central
cluster. See Fig. 3.

50

−10 −5 0 5 10
−10

−5

0

5

10
948.3664

−10 −5 0 5 10
−10

−5

0

5

10
916.308

−10 −5 0 5 10
−10

−5

0

5

10
923.4161

−10 −5 0 5 10
−10

−5

0

5

10
88.7828

−10 −5 0 5 10
−10

−5

0

5

10
55.4025

−10 −5 0 5 10
−10

−5

0

5

10
35.9984

Fig. 1. A synthetic dataset with 25 data points sampled from each of 4 2-dimensional
Gaussian distributions with identity covariance matrix and different means. From left
to right and top to bottom, the plots show the first 6 consecutive alternative clusters
found by our method when a standard inner product is used (data points belonging
to the cluster are plotted using crosses). The numbers above the plots are the values
of ΔQk from Eq. (2) for the cluster shown. Note that it is high for the first 3 clusters,
which reveal the enforced cluster structure, before dropping to a much lower level.

51

−10 −5 0 5 10
−10

−5

0

5

10
27.9164

−10 −5 0 5 10
−10

−5

0

5

10
19.9145

−10 −5 0 5 10
−10

−5

0

5

10
18.9836

−10 −5 0 5 10
−10

−5

0

5

10
13.7828

−10 −5 0 5 10
−10

−5

0

5

10
2.5518

−10 −5 0 5 10
−10

−5

0

5

10
1.8854

Fig. 2. A synthetic dataset with 25 data points sampled from each of 4 2-dimensional
Gaussian distributions with identity covariance matrix and different means. From left
to right and top to bottom, the plots show the first 6 consecutive alternative clusters
when an RBF kernel with kernel width 3 is used. The numbers above the plots are the
values of ΔQk from Eq. (2) for the cluster shown.

52

−2 −1 0 1 2
−2

−1

0

1

2
11.324

−2 −1 0 1 2
−2

−1

0

1

2
10.2221

−2 −1 0 1 2
−2

−1

0

1

2
10.192

−2 −1 0 1 2
−2

−1

0

1

2
8.2983

−2 −1 0 1 2
−2

−1

0

1

2
8.1599

−2 −1 0 1 2
−2

−1

0

1

2
6.9848

Fig. 3. A synthetic dataset with a central set of 20 data points surrounded by two half
moons of 40 data points each. The plots show the first 6 consecutive alternative clusters
when an RBF kernel with kernel width 0.3 is used. The numbers above the plots are
the values of ΔQk from Eq. (2) for the cluster shown. Note that the second cluster
generated contains all data points. This is possible and sensible from the perspective
of our approach if the mean of the entire data set is significantly different from the
expected mean in the initial background model. This may well be the case when working
in a Hilbert space induced by the RBF kernel, where all data points lie in one orthant
such that their mean cannot be in the origin.

53

7 Conclusions

In [3] we introduced a framework for data mining, aiming to quantify the subjec-
tive interestingness of patterns. We showed that Principal Component Analysis
can be seen as implementing this framework for a particular pattern type and
prior beliefs, thus providing an alternative justification for this method. In earlier
work we also showed the potential of the framework in quantifying subjective in-
terestingness for frequent itemset mining [2, 4, 5]. Now, in the present paper, we
showed in detail how the framework can also be applied successfully to the case
of clustering, leading to a new approach for alternative clustering that presents
subjectively interesting clusters in data in an iterative data mining scheme.

In further work, we will investigate the quality of the spectral relaxation, and
consider the development of tighter relaxations (e.g. to semi-definite programs).
We will also further develop links with spectral clustering and other existing
clustering approaches, to provide alternative justifications and insights or to
improve on these approaches. We will also investigate the use of other pattern
syntaxes for cluster(ing)s, and the use of more complex types of prior beliefs.
Lastly, we plan to demonstrate the power of the framework by also applying
these ideas to other types of data and corresponding types of prior beliefs, such
as positive real-valued, integer, binary, and more structured types of data.

Due to space constraints, in this workshop paper we could not situate the
contributions within the wider literature on alternative clustering. We will rectify
this important shortcoming in a later version of this workshop paper.

Acknowledgements
This work is supported by the EPSRC grant EP/G056447/1.

References

1. T. De Bie and N. Cristianini. Fast sdp relaxations of graph cut clustering, trans-
duction, and other combinatorial problems. Journal of Machine Learning Research,
7:1409–1436, 2006.

2. T. De Bie. Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Mining and Knowledge Discovery, 2010.

3. T. De Bie. An information-theoretic framework for data mining. In Proc. of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD11), 2011.

4. T. De Bie, K.-N. Kontonasios, and E. Spyropoulou. A framework for mining inter-
esting pattern sets. SIGKDD Explorations, 2010.

5. K.-N. Kontonasios and T. De Bie. An information-theoretic approach to finding
informative noisy tiles in binary databases. In Proceedings of the 2010 SIAM Inter-
national Conference on Data Mining, 2010.

6. Jiming Peng and Yu Wei. Approximating k-means-type clustering via semidefinite
programming. SIAM Journal on Optimization, 18(1), 2007.

7. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

8. H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral relaxation for k-means
clustering. In Advances in Neural Information Processing Systems 14 (NIPS01),
pages 1057–1064, 2002.

54

Evaluation of Multiple Clustering Solutions

Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek

Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

http://www.dbs.ifi.lmu.de

{kriegel,schube,zimek}@dbs.ifi.lmu.de

Abstract. Though numerous new clustering algorithms are proposed
every year, the fundamental question of the proper way to evaluate new
clustering algorithms has not been satisfactorily answered. Common pro-
cedures of evaluating a clustering result have several drawbacks. Here,
we propose a system that could represent a step forward in addressing
open issues (though not resolving all open issues) by bridging the gap
between an automatic evaluation using mathematical models or known
class labels and the actual human researcher. We introduce an interac-
tive evaluation method where clusters are first rated by the system with
respect to their similarity to known results and where “new” results are
fed back to the human researcher for inspection. The researcher can then
validate and refine these results and re-add them back into the system
to improve the evaluation result.

1 Introduction

A major challenge in the development of clustering algorithms is the proper and
useful evaluation. In most cases, a clustering algorithm is evaluated using (i)
some internal evaluation measure like cohesion, separation, or the silhouette-
coefficient (addressing both, cohesion and separation), (ii) some external evalu-
ation measure like accuracy, precision, or recall w.r.t. some given class-structure
of the data. In some cases, where evaluation based on class labels does not seem
viable, (iii) careful (manual) inspection of clusters shows them to be a somehow
meaningful collection of apparently somehow related objects.

All these approaches certainly have their merits but also serious drawbacks.
(i) The evaluation w.r.t. some internal evaluation measure does nothing more

than evaluate how well the objective function of the clustering algorithm fits to
the chosen evaluation measure. For example, using some compactness measure
would be obviously inappropriate to evaluate the results of some density-based
clustering [1], simply because density-based clustering does not aim at finding
convex clusters. As a consequence, the evaluation does not primarily show that
the clustering is meaningful and fitting for the given data. Clusters attributed
with good grades could be trivial or rather uninteresting.

(ii) The fundamental problem in using class-labels for evaluation of cluster-
ing is the different structure of classes and clusters. Consider for example one

55

of the best known classification data sets, Fisher’s Iris data set [2]. It comprises
four descriptors of the Iris flower, namely length and width of petals and sepals,
respectively. These descriptors are collected for individual flowers of three dif-
ferent species. The classes are well defined (though not trivial to learn) by some
separating borders between members of the classes. The natural clusters in this
data set, however, are certainly not evolved according to such (predefined?) bor-
ders. Cluster analysis of these data would discover that I. setosa is much more
different from both, I. versicolor and I. virginica, than these two are from each
other (in fact, they will usually be considered a single cluster). Accordingly, most
classification algorithms set out with learning some separating borders between
different classes. Opposed to that, clustering algorithms aim at grouping similar
objects together. As a consequence, the evaluation of new clustering algorithms
towards learning a class structure may introduce some strong bias in the wrong
direction into the development and design of new clustering algorithms. Actu-
ally, it could be a good and desirable result if a clustering algorithm detects
structures considerably different from previously known classes. In that case,
the clustering algorithm should not be punished by using some evaluation mea-
sure biased towards rediscovery of classes. A more thorough discussion of this
issue, along with many more examples, has been provided in [3].

(iii) The third approach, (manual) inspection of clusters and reviewing them
for prevalent representation of some meaningful concept, could be figured as
‘evaluation by example’. There are attempts to formalize this as ‘enrichment’
w.r.t. some known concept (this technique is automated to a certain extent in
biological analysis of gene data, e.g. [4–10]). In the context of multiple clusterings
and overlapping clusters (as are expected in gene data – see the Gene Ontology
[11] –, but also in many benchmark data sets that sparked interest of researchers
in alternative or multiview clustering, e.g. [12–17], see also [18]) it becomes
even more important to find methods of evaluating clusterings w.r.t. each other,
w.r.t. existing knowledge, and w.r.t. their usefulness as interpreted by a human
researcher. Though the problem of overlapping ground truths (and, hence, the
impossibility of using a flat set of class labels directly) is pre-eminent in such
research areas as subspace clustering [19], alternative clustering [16], or multiview
clustering [13], it is, in our opinion, actually relevant for all non-näıve approaches
to clustering that set out to learn something new and interesting about the world
(where ‘näıve’ approaches would require the world to be simple and the truth to
be one single flat set of propositions only).

It is our impression, that the third approach is pointing in the right direction
since it tries to assess whether some clustering algorithm actually found some
new, valid, and previously unknown knowledge (which is, after all, the whole
point in performing data mining [20]). As ‘evaluation by example’, however, it
has never been convincingly impartial and always remained tasting somehow
subjective and incomplete. The discussion of evaluation scenarios in [3] pointed
out some requirements in an automation of evaluation based on multiple (and
possibly some unknown) ground truths. Thus we try to establish some first steps
in automation of such a process and to set up an evaluation system to address

56

at least some of the identified requirements. We see this only as some first steps,
the system relies on participation of the community to further advance.

In the following, we describe the preliminary system and the envisioned pos-
sibilities of future enhancements (Section 2). Based on the available system, we
discuss an illustrative example benchmark data set as a case study (Section 3).
We conclude the paper in Section 4.

2 A Clustering Evaluation System

Since a main goal of cluster analysis is the discovery of new and previously
unknown knowledge, our evaluation concept is built around the comparison of
results to known structure in the data. But instead of just computing a score
of how well the clustering resembles a known label structure, we actually try
to detect situations where it deviates from the known structure. Another key
difference is that we not only include the target classes, but essentially include
any structure information that we can obtain for the data set.

A key source of information are features of any kind. In order to process
complex data such as image or video data, feature extraction is essential and a
whole research area of its own. But when working in a cluster analysis context, we
should treat the features as known properties of the data, and instead evaluate
how much additional information the clustering algorithm is able to extract from
the data that goes beyond the data already extracted using the feature extraction
methods: in particular, when feature extraction itself is already very good, almost
any clustering algorithm will appear to perform well, but the performance is
essentially increased to not more than a näıve statistic on the features.

2.1 Assisted Evaluation

The general process of an assisted evaluation is an iterative interaction between
the computer system and the researcher. The system uses the available infor-
mation to find feature descriptions of the clusters. Clusters that can not be
explained sufficiently well using the existing knowledge are then given to the
researcher for further external analysis. Knowledge obtained in this process is
then added back into the system as additional features, resulting in better ex-
planations for some clusters and thus in new candidates to be analyzed by the
human researcher. When assigning a “usefulness” to the different information
fed into the system – for example, a simple color feature will not be considered
particularly useful but preexisting knowledge – this can also be used to qualita-
tively rate the output of an algorithm by the usefulness of the information it was
able to discover in the data. Both a supervised or semi-supervised evaluation is
here possible. For example, the system could perform an initial analysis of the
data set, present these results to the analyst, who can then choose results for
a more expensive refinement, manually choose complex feature combinations or
refine the parameters of found explanations.

57

2.2 Challenges

In the task of analyzing the characteristics of a cluster, various challenges arise.
For example, the cluster size can vary from micro clusters to clusters that span
almost the complete data set, resulting in varying imbalance problems. When
searching complex explanations involving e.g. the combination of features, or
the intersection or union of known classes, the search space is extremely large
and an exhaustive search quickly becomes infeasible. Even comparing a cluster
with a single numerical feature is non-trivial. Such a feature will give you an
ordering (or scoring) of the objects, but the clusters can still occur anywhere
within this scoring. Therefore, we need a general way to measure how relevant
the information of a feature (or combination of features) is with respect to a
particular cluster. Combining such scorings could be based on any linear or
non-linear combination of their scores. The scorings however can be strongly
correlated, so that in the end, finding the optimal combination offers little benefit
to the analyst.

There are many kinds of features, and we will work with two of the most
common types of features in the following: class features that differentiate a
particular group of objects from the remainder and numerically scoring and
ranking features such as the average brightness of an image. Other types such
as “bag of words” can probably be handled well enough by breaking them down
into individual scoring features.

2.3 Comparing with Existing Classes

Comparing two clusters has of course been extensively studied, and various mea-
sures have been developed (see, e.g., [21]). Much of this research (such as pair
counting measures) however is designed to compare two complete partitionings
of the data (containing more than one cluster each). In our setting, we are again
evaluating single clusters with respect to overlapping classes and scorings. Com-
paring two clusters however is done using simple measures such as precision,
recall, or the F-measure (which represents the harmonic mean of these two):

F1 :=
2 · precision · recall

precision + recall

A nice property of the F-measure is that both trivial solutions (the empty set
and the complete data set) score fairly low due to the product in the numerator.
Only when both precision and recall are high at the same time, the F-score will
be good. When precision equals recall, they will also be equal to the F-score.

We also use this measure in evaluation of a cluster with respect to a scoring,
essentially treating these two cases the same, which we will explain next.

2.4 Comparing Clusters with Scorings

A common way of comparing a two-class problem with a scoring is the evaluation
using ROC curves. Instead of evaluating a ranking with respect to a class, we

58

Object Scoring
Cluster Members
Candidate Intervals

...
Highest F-Measure

Fig. 1. Evaluating a cluster using the highest F-measure on an interval

could apply ROC curves to evaluate the cluster with respect to the ranking given
by the scores. However in our experiments, the results were not very useful:
given that the clusters are usually computed on features similar or identical to
the reference scorings, a strong correlation and thus a high ROC AUC score
between them can be expected. Additionally, ROC is only meaningful when
the cluster is at the top or bottom of the scoring, which we would yet have to
generalize to allow it to occur at arbitrary positions.

Instead, we chose an approach based on a kind of compactness based on the
comparison with classes as discussed before: We search for an arbitrary interval
within the scoring that has a high F-measure. Too large an interval will score
badly because of a bad precision, while too narrow an interval will suffer from a
bad recall. A compact interval containing mostly cluster members however will
achieve a high F-measure. In this context, precision can be considered as the
density of the cluster members in the interval, while recall is the coverage. Note
that this measure is independent of the actual position of the interval within the
scoring or the order within the interval. Since we are interested in the potential
of agreement between the scoring and the cluster, we want to use the maximum
F-measure possible; however näıvely there are O(n2) possible intervals to test.
Luckily, we can exploit some monotonicity properties here. Recall obviously is
monotonously decreasing, so any subinterval will have at most the same recall.
Interesting intervals are thus on the skyline of precision and recall. Intervals
which do not have a cluster member on the interval boundary are obviously
dominated by the subinterval that fulfills this property (same recall, but better
precision). This reduces the search space to O(k2) for cluster size k. However,
we perform a greedy search by starting with the smallest interval containing all
cluster members (so at recall 1), then repeatedly narrow down the interval as
sketched in Figure 1 by trying to cut off leading and trailing cluster members
along with any non-member as long as we can improve the F-measure this way
by improving precision at the cost of recall in at most k iterations.

Ties need special handling: an interval may never split within a tie. Then
we can map an existing class to a scoring by setting all members to 1 and non-
members to 0. If there is some overlap between the test cluster and the known
class, the result will be the F-score.

59

2.5 Scoring Combinations

In addition, we perform a greedy search for a simple additive combination of
features. In a preprocessing step, we normalized the scores of each scoring to
unit variance to improve results in this step. In the greedy combination phase,
we now combine the top matching results by just adding their scores and testing
the new scoring. When the combined scoring performs better by a sufficiently
large amount, we add it to the candidate list. While we only test a very simple
combination of features – not even considering full linear combinations – this
greedy search was very successful in our experiments in finding better explana-
tions than single features. We will show examples of this in the next section. But
obviously there is much room for improved heuristics in finding such combined
explanations.

2.6 Result Presentation

There are essentially infinitely many combinations possible, and even when just
using the additive combinations we have theoretically O(2r) scores for each clus-
ter. The top score itself is often not very useful to the analyst: it may be just one
of many very similar explanations. The most interesting analysis results occur
when a combination of scorings offers a significantly better explanation than the
individual single features, or when there was not found any adequate explana-
tion at all. Therefore we need to make a selection of the results to present to the
user. As a heuristic, we will present a result to the user if it is the best single-
feature explanation or if no other score with a single feature added or removed
performed better. Additionally, we will stop once a threshold of matches has
been reached by the accumulated amount explained. Other application-domain
specific heuristics may be useful, for example when there is a large number of
correlated features.

3 A Case Study

For the case study, we started to analyse the ALOI [22] image data set. It
consists of 110250 images of 1000 objects taken from 72 angles and in a series
of controlled light conditions varying both color temperature and lighting angle.
This metadata can be used to obtain a couple of overlapping classes on the data
set, resembling the object number, the viewing angle, the lighting angle, lighting
color temperature, and a stereo image shift. Some of these classes are however
only useful for machine learning tests; in particular the rotation and stereo image
shift usually require a training set and optimized color features.

In addition to these labels we compute some simple color analysis on the
pictures. We defined a set of 77 colors spaced evenly in HSV color space (18
hues with 100% and 50% each in saturation and brightness plus 5 grey values
for saturation 0%), then computed the average pixel color similarity to these
colors for each image to obtain object reference scorings.

60

For the actual algorithm, we independently produced traditional color his-
tograms in HSV color space with 28 dimensions: 7 bins in hue and 2 bins in
saturation and brightness each. In contrast to the features above, the histogram
dimensions are not independent, but each pixel is assigned to the closest his-
togram bin only, so the histograms add up to 1. While the performance of the
histograms is of course expected to be similar to the other color features, we
wanted to avoid using identical features to not overfit our analysis method.

Early analysis on the objects in this data set allowed us to identify various
groups of objects that form sensible clusters aggregating multiple objects such
as different jam cans. These additional human-verified clusters sometimes form
a hierarchy: for example there are multiple yellow rubber ducks that can be
considered a cluster, but there also is a red rubber duck that can be added to
form an “any-color rubber duck” cluster. However, there were also some inter-
esting additional features hidden in the data set that were surprisingly useful in
explaining results. We highlight these features using a bold typeface and we will
explain these features in the discussion below.

We ran OPTICS [23] on the 28 dimensional HSV histograms using Manhattan
distance (since this is a rather large data set, and we can use an R∗-tree [24] for
acceleration here; on normalized vectors, Manhattan distance equals histogram
intersection distance [25]; all implementations featured by ELKI [26]). We chose
minPts = 15, ε = 0.3 (solely for performance improvements) and ξ = 0.03 and
obtained a hierarchy of 1442 clusters. The median size is 40 objects, the largest
cluster contains 343 images. OPTICS is not a subspace clustering algorithm,
but it is a truly hierarchical clustering algorithm, so certain types of overlap
among clusters occur. While the majority of objects was not clustered using these
unoptimized parameters, the detected clusters were still interesting to analyze.
We will give some examples here.

There is a cluster that contains 18 images from object 938 and 19 images from
object 939. Some sample images are shown in Figure 2. The cluster is not very
surprising, as the two objects are indeed very similar – considering the back side
of the objects (images 2(a) and 2(b)). The cluster does not contain the front sides
(images 2(c) and 2(d)), which are much more different. In fact, there is another
cluster, containing the front sides of object 938 only. The F-measure with the
individual clusters is just around 0.25, adding the second object information
improves this only slightly to 0.285 (due to the bad recall), but when using both
clusters and some color features it rises to above 0.9, offering a much better
explanation. Note that one might also be tempted to see a shape cluster, while
this is impossible due to the result being computed from color histograms. From
the perspective of multiview-clustering, this is a very interesting cluster, since
there is a nontrivial cluster that is orthogonal to the original classes, consisting
only of parts of the original classes each. As such, the automatic analysis also
returns the two matching objects along with color annotations for a best match,
thus supporting the analysis as intended. Also note that the reported green colors
do not resemble the picture much – but the images may indeed have a very similar
distance from this reference color. After our initial analysis we added some new

61

(a) Object 938 (b) Object 939 (c) Object 938 (d) Object 939

Score Analysis

0.914 color-408055 color-aaff80 object-938 object-939

0.635 color-808040 color-aaff80 object-938 object-939
0.286 object-938 object-939
0.257 object-939
0.243 object-938

0.877 object-938 object-939 front-to-back
0.618 object-938 front-to-back
0.590 object-939 front-to-back

(e) Analysis result

Fig. 2. Boxes in ALOI image data set

features, including a front-to-back object scoring (ranging from 0 to 1 based on
the angle the image was taken from). Including this scoring returns some new
explanations. However, they do not score as well as the color-based explanations,
making the less interesting color explanation more appropriate. Nevertheless, we
already discovered structure in the data that we had not formalized before.

Another cluster (Figure 3) contains 81 images of object 49 and 2 others (so
it is almost pure in a traditional sense), but only scores 0.848 on the object
itself. Combined with a single color feature, this improves to 0.969. Images 3(a)
and 3(b) were both included in the cluster (as were all other rotations and basic
color situations). Given the strong uniformity of the object’s color representa-
tion under rotation, OPTICS cuts off the color variations of the cluster such as
image 3(c) (having a light color of 2172K as opposed to 3075K for the regular
images) and angular lighting situations such as image 3(d) (with light coming
from the bottom right instead of the center). While the cluster matches the
object very well, the actual subset included can be better explained when also
using color scorings. Some other objects (e.g. the sea shell 228) were clustered
the same way. Furthermore, OPTICS also found a subcluster within this cluster
containing just 33 images. The F-measure for the object class on this sub-cluster
was just a meagre 0.468. Combining it with a feature that contains only the
basic lighting situations, the score rises to 0.606. However, the direct color based
explanations match better than the ground truth lighting information, so the
clustering algorithm does not appear to have recognized the actual light effects
here. In both examples shown so far, the clustering algorithm far from failed:
it discovered that there is a subset of a class that is more similar to each other
than the others.

62

(a) Regular light (b) Regular light (c) Temp. 2172K (d) Light angle l1c2

Cluster Score Analysis

Parent 0.976 color-2a0080 color-80ff80 object-49

Parent 0.969 color-2a0080 object-49

Parent 0.963 color-aaff00 object-49
Parent 0.848 object-49

Parent 0.936 color-ffd580 object-49 light-basic
Parent 0.918 object-49 light-basic

Child 0.909 color-008080 color-800080 color-ffd580 object-49

Child 0.899 color-2a0080 color-ffd580 object-49

Child 0.829 color-2a0080 object-49
Child 0.468 object-49

Child 0.925 color-2a0080 color-800080 color-aaff00 object-49 light-basic

Child 0.923 color-800080 color-80ff80 object-49 light-basic
Child 0.606 object-49 light-basic

(e) Analysis of clusters

Fig. 3. Decorative loop in ALOI image data set (Object 49)

In object 492 another interesting hierarchy was discovered (see Figure 4).
The outer cluster contains 99 images of the object, while the inner cluster con-
tained just 29. The outer cluster obviously is fairly complete, it just misses some
lighting conditions. The inner cluster contains only front views of the object
(images 4(a) and 4(b)), but not of the back side (images 4(c) and 4(d)). This
is not very surprising, given the silver handle present on the front side of the
object, but absent from the back. Note that the inner cluster is explained by
colors much better than by the object class, despite being pure, while the outer
cluster also scored very well when compared with the object itself. For this clus-
ter again we added the front-to-back object scoring. For the main cluster, this
does not improve the result at all (as expected). For the inner cluster, the result
however almost doubles, allowing the claim that the algorithm had successfully
discovered front views of the object. The result slightly improves with additional
color scorings, which is not surprising given that the algorithm had used color
information.

Then there is a cluster that caught our attention by having 155 images,
making it clearly larger than the expected class size. It contained 74 and 75
images of the objects 981 and 982, respectively, two very similar metal pots (see
Figure 5), along with 5 other objects (likely an artifact of the OPTICS ξ “steep
up area” definition). The automated analysis suggests that the cluster is based

63

(a) Front of 492 (b) Front of 492 (c) Back of 492 (d) Back of 492

Cluster Score Analysis

Parent 0.971 color-00ff00 color-408040 object-492

Parent 0.961 color-00802b color-00ff00 object-492
Parent 0.938 object-492

Parent 0.938 object-492 front-to-back

Child 0.812 color-80002b

Child 0.774 color-00802b
Child 0.414 object-492

Child 0.852 color-408040 color-80002b object-492 front-to-back

Child 0.846 color-408040 front-to-back
Child 0.821 object-492 front-to-back

(e) Analysis result

Fig. 4. Green savings box in ALOI image data set

(a) Object 981 (b) Object 981 (c) Object 982 (d) Object 982

Score Analysis

0.955 color-00802b color-2a8000 object-981 object-982

0.940 color-0000ff object-981 object-982

0.925 color-ffff80 object-981 object-982
0.790 object-981 object-982
0.564 object-982
0.556 object-981

0.974 color-00802b object-981 object-982 light-basic
0.939 object-981 object-982 light-basic

(e) Analysis result

Fig. 5. Metal pots in ALOI image data set

on the two objects along with color restrictions. However, when adding the basic
lighting scoring again, the result is explained better. In retrospection, this is not
surprising, given that the metallic object does reflect the light to some extend,

64

and the object color is thus expected to vary much with the light in contrast to
for example the green objects before. Again there is a child cluster and a super
cluster which adds 36 images of another metallic object.

4 Conclusion

Building upon some points taken concerning the evaluation of multiple cluster-
ings in last year’s MultiClust workshop [3], here we developed some first steps
in implementing the vision. We provide a system for evaluation of clusterings,
based on prior knowledge as well as on readily extensible knowledge. Currently,
the system comprises the ALOI data set. We discussed exemplary clustering re-
sults for these data in a case study. The system allows to judge whether some
cluster is rather trivial (given it is related to a known concept at all), whether it
is a combination of such concepts, or whether it might comprise an interesting,
non-trivial, new concept.

During the case study performed on the ALOI data set, we were able to
discover nontrivial structure in the data set that we had not been aware of
before, but that we were able to formalize and add back into the system to
improve the analysis results.

Along with the reference files computed for the ALOI data set, including the
advanced structure we found during our analysis, the analysis toolkit is available
on the ELKI web page: http://elki.dbs.ifi.lmu.de/.

We encourage researchers to use and extend this toolkit for evaluating their
findings and for contributing additional structure information. We also would
welcome the incorporation of other data sets.

References

1. Kriegel, H.P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. WIREs
DMKD 1(3) (2011) 231–240

2. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals
of Eugenics 7 (1936) 179–188

3. Färber, I., Günnemann, S., Kriegel, H.P., Kröger, P., Müller, E., Schubert, E.,
Seidl, T., Zimek, A.: On using class-labels in evaluation of clusterings. (2010)

4. Zeeberg, B.R., Feng, W., Wang, G., Wang, M.D., Fojo, A.T., Sunshine, M.,
Narasimhan, S., Kane, D.W., Reinhold, W.C., Lababidi, S., Bussey, K.J., Riss,
J., Barrett, J.C., Weinstein, J.N.: GoMiner: a resource for biological interpretation
of genomic and proteomic data. Genome Biology 4(4:R28) (2003)

5. Al-Shahrour, F., Diaz-Uriarte, R., Dopazo, J.: FatiGO: a web tool for finding sig-
nificant associations of Gene Ontology terms with groups of genes. Bioinformatics
20(4) (2004) 578–580

6. Datta, S., Datta, S.: Methods for evaluating clustering algorithms for gene expres-
sion data using a reference set of functional classes. BMC Bioinformatics 7(397)
(2006)

7. Gat-Viks, I., Sharan, R., Shamir, R.: Scoring clustering solutions by their biological
relevance. Bioinformatics 19(18) (2003) 2381–2389

65

8. Gibbons, F.D., Roth, F.P.: Judging the quality of gene expression-based clustering
methods using gene annotation. Genome Res. 12 (2002) 1574–1581

9. Lee, S.G., Hur, J.U., Kim, Y.S.: A graph-theoretic modeling on GO space for
biological interpretation of gene clusters. Bioinformatics 20(3) (2004) 381–388

10. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Guissem, W.,
Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of
biclustering methods for gene expression data. Bioinformatics 22(9) (2006) 1122–
1129

11. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat. Genet. 25(1) (2000) 25–29

12. Bickel, S., Scheffer, T.: Multi-view clustering. In: Proc. ICDM. (2004)
13. Cui, Y., Fern, X.Z., Dy, J.G.: Non-redundant multi-view clustering via orthogo-

nalization. In: Proc. ICDM. (2007)
14. Jain, P., Meka, R., Dhillon, I.S.: Simultaneous unsupervised learning of disparate

clusterings. Stat. Anal. Data Min. 1(3) (2008) 195–210
15. Günnemann, S., Müller, E., Färber, I., Seidl, T.: Detection of orthogonal concepts

in subspaces of high dimensional data. In: Proc. CIKM. (2009)
16. Qi, Z.J., Davidson, I.: A principled and flexible framework for finding alternative

clusterings. In: Proc. KDD. (2009)
17. Dang, X.H., Bailey, J.: Generation of alternative clusterings using the CAMI

approach. In: Proc. SDM. (2010)
18. Kriegel, H.P., Zimek, A.: Subspace clustering, ensemble clustering, alternative

clustering, multiview clustering: What can we learn from each other? (2010)
19. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: A survey

on subspace clustering, pattern-based clustering, and correlation clustering. ACM
TKDD 3(1) (2009) 1–58

20. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data min-
ing: Towards a unifying framework. In: Proc. KDD. (1996)

21. Pfitzner, D., Leibbrandt, R., Powers, D.: Characterization and evaluation of simi-
larity measures for pairs of clusterings. KAIS 19(3) (2009) 361–394

22. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.: The Amsterdam Library of
Object Images. Int. J. Computer Vision 61(1) (2005) 103–112

23. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points
to identify the clustering structure. In: Proc. SIGMOD. (1999)

24. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient
and robust access method for points and rectangles. In: Proc. SIGMOD. (1990)

25. Swain, M., Ballard, D.: Color indexing. Int. J. Computer Vision 7(1) (1991) 11–32
26. Achtert, E., Hettab, A., Kriegel, H.P., Schubert, E., Zimek, A.: Spatial outlier

detection: Data, algorithms, visualizations. In: Proc. SSTD. (2011)

66

Browsing Robust Clustering-Alternatives

Martin Hahmann, Dirk Habich, and Wolfgang Lehner

TU Dresden; Database Technology Group; Dresden, Germany
{martin.hahmann, dirk.habich, wolfgang.lehner}@tu-dresden.de

Abstract. In the last years, new clustering approaches utilizing the no-
tion of multiple clusterings have gained attention. Two general directions
— each with its individual benefits — are identifiable: (i) extraction of
multiple alternative clustering solutions from one dataset and (ii) com-
bination of multiple clusterings of a dataset into one robust consensus-
solution. In this paper, we propose a novel hybrid approach to generate
and browse robust, alternative clustering results. Our hybrid approach is
based on frequent-groupings as specialization of frequent-itemset mining.
In this way, the different benefits of the existing directions are combined,
offering new opportunities for knowledge extraction.

1 Introduction

Depending on which notion you follow, the information age has been around
for 20 to 40 years and brought with it a massive trend for digitalization and
data collection. Just like coal and steel in the prior age of industrialization,
information and data have become a crucial resource for today’s work. In contrast
to the diminishing natural raw materials, the deposits of data are constantly
growing. While data itself is already valuable, it is only capitalized to the full
extent if knowledge can be obtained from it. For this task, analysis techniques
like clustering have been developed [10]. The goal of clustering is to group a set
of data objects into different clusters, so that members of one cluster are similar
to each other, while different clusters are dissimilar.

A multitude of clustering algorithms has been proposed over the years [10],
whereas these traditional algorithms have several limitations. On the one hand,
they are not generally applicable or robust meaning that certain algorithms and
parametrizations only suit certain datasets and will yield poor results otherwise.
On the other hand, traditional techniques generate only a single clustering, but
as todays datasets become more complex and high-dimensional, in general there
are more clustering results possible for a dataset. Besides these data centric
problems, usability and applicability have become important issues as clustering
evolves from a niche application in research to a widespread analysis technique
employed in more and more areas. With this trend, new users come into contact
with clustering, who are often experts of their respective application domain but
have no experience in the area of clustering. This calls for clustering approaches
that can be versatilely applied and lack the complicated algorithm selection and
configuration of traditional approaches.

67

In recent years, a number of approaches have been proposed to tackle some of
these issues. The area of alternative clustering [2, 3] provides multiple clustering
solutions for a dataset. With this, several views on complex data can be offered,
while the availability of multiple clusterings in the first place, usually frees the
user from adjusting a single clustering that proves unsatisfactory. An opposing
approach is ensemble clustering [11, 4] in which a set of multiple clusterings is
integrated to form a single consensus clustering result. This input set is also
called clustering-ensemble and contains results that are generated using differ-
ent algorithms and parameters. The consensus result is often more robust than
clusterings generated by a single algorithm and set of parameters, which means
that this technique is more versatile in terms of the application scenario. Addi-
tionally, algorithm selection and configuration is eased as a range of methods and
parameters is utilized. On the downside, ensemble clustering provides just one
solution and therefore resembles traditional clustering at that point. To create
an alternative clustering solution, the user has to switch and/or re-parametrize
the employed clustering algorithms. This is a very challenging task because a set
of algorithms must be selected and configured.

To summarize, alternative clustering and ensemble clustering both have ben-
efits compared to traditional clustering approaches. However, from the user’s
point of view there is a decision to make. The user must decide if multiple al-
ternative solutions are chosen over one robust solution or vice versa, as it is not
possible to have both. In this paper we address this issue by proposing an idea
for combining the approaches of alternative and ensemble clustering, that makes
the creation of robust alternatives possible. We start with a short description
of alternative and ensemble clustering in Section 2. Then, we describe frequent-
groupings as the core concept our our novel hybrid approach in Section 3. Our
frequent-grouping technique is based in the idea of frequent-itemset mining [1]
and allows the identification of robust clusters, occurring throughout the clus-
tering ensemble. Subsequently, we present how these frequent-groupings can be
combined in order to create multiple robust alternatives in Section 4. We outline
an algorithm-driven as well as a user-driven approach that enables the creation
of alternatives by browsing and switching frequent-groupings. We conclude our
paper with a discussion of open issues in Section 5 and a short summary in
Section 6.

2 Related Work

The problems of traditional clustering, that we sketched in the introduction often
lead to multiple iterations in which different parameters or clustering algorithms
are tried out until a satisfactory clustering result is obtained. This trial-and-
error practice implicitly generates multiple clustering solutions for the analyzed
dataset. Over the last years, new approaches to clustering emerged, that explic-
itly utilize multiple clustering solutions for the knowledge discovery process. In
this section, we briefly review two of these approaches, namely: alternative clus-
tering, which provides the user with multiple clustering solutions for a dataset

68

and ensemble clustering, which integrates multiple clusterings of a dataset into
a single robust solution.

2.1 Alternative Clustering

The main goal of this clustering approach is to provide alternative clustering
solutions to the user. To create alternative solutions, at first an initial clustering
result is made, using a traditional clustering algorithm. Based on the informa-
tion contained in this initial clustering, alternative solutions are generated so
that these alternatives are dissimilar to the initial solution. As an example for
alternative clustering, we describe the COALA [2] algorithm. Given a Clustering
C with k clusters this method generates a dissimilar alternative S also having
k clusters. To express dissimilarity the authors use instance-based ’cannot-link’
constraints, that are derived from the initial clustering and are employed in the
construction of the alternative. Such a constraint can be expressed as a pair of
objects (xi, xj) with i 6= j. A clustering satisfies this constraint if xi and xj

are not located in the same cluster. In order to reach the maximum degree of
dissimilarity from C, the alternative S should place as much objects as possible
in different clusters, that were in the same cluster in C. Although this approach
seems plausible, strict adherence to it can lead to meaningless solutions, as a
clustering that maximizes dissimilarity most likely does not comply with the
general requirements of clustering, namely similar objects belong to the same
cluster while clusters are dissimilar. This means besides being dissimilar, an al-
ternative clustering must also satisfy a certain quality, that is, in the case of
COALA, expressed by the similarity of a pair of objects. The two goals of dis-
similarity and quality can be inversely related, for which case COALA offers a
parameter ω to control the trade-off between both. COALA works in an iterative
way: the initial clusters contain one object each and are successively merged un-
til k is reached. In each iteration two merge candidates are identified: one cluster
pair that pursues the quality goal by having the smallest distance (dqual) of all
pairs and one cluster pair pursuing dissimilarity, that has the smallest distance
(ddiss) of all pairs that fulfill the cannot-link constraints. The decision between
both candidates is based on an inequation: if dqual ≤ ω · ddiss the quality pair
is merged, else the dissimilarity pair. Another alternative clustering technique is
CAMI[3] which is also based on the goals of quality and dissimilarity but models
them in a different way as it represents clusters using gaussian mixtures.

2.2 Ensemble Clustering

In contrast to alternative clustering, ensemble clustering does not present mul-
tiple clusterings to the user, but uses them to generate a single clustering result.
This set of multiple clusterings is also called clustering-ensemble and contains
clustering results generated by executing multiple algorithms with multiple sets
of parameters. As is known, certain algorithms or parametrizations do not suit
certain datasets, thus producing poor results. By utilizing a wide range of dif-
ferent clustering algorithms and parametrizations, this problem can be tackled.

69

Thus, the final clustering solution—called consensus clustering—generated from
such a clustering ensemble is more robust and often has an increased quality [11].
In order to create such a clustering a consensus function is needed, that integrates
the cluster assignments of all ensemble members into a new clustering. The use
of the term consensus already shows that the goal of this integration is to iden-
tify clusters/structures that are detected by the majority of ensemble members
and preserve them in the final solution. In other words, similarities throughout
the clustering-ensemble are identified and used to create the consensus cluster-
ing. Two main classes of ensemble clustering techniques can be distinguished:
pairwise-similarity approaches and approaches based on cluster-labels.

Pairwise-Similarities: Algorithms working on the basis of pairwise simi-
larities model the cluster assignment information by evaluating the assignments
of each object pair over the whole ensemble [4, 11]. There are two cases of pair-
wise similarity: (i) a pair objects is part of the same cluster or (ii) a pair of
objects is part of different clusters. For each local clustering of the ensemble
these similarities can be represented in the form of a so called coassociation
matrix, in which a cell contains a 1 if the respective pair of objects is located
in the same cluster or a 0 if an object pair is assigned to different clusters. By
adding up all the local matrices and normalizing each cell using the ensemble
size, a global coassociation matrix is build that contains the relative frequency
in which each pair of objects is located in the same cluster throughout the whole
ensemble. Based on this matrix, different consensus functions can be employed
to extract the final solution. As an example. we describe a very simple function
based on [4], which generates a consensus clustering on the following basis: if a
pair of objects is located in the same cluster in the majority of the ensemble, i.e.
at least 50% of the clusterings, it should also be part of the same cluster in the
consensus solution. Vice versa this also holds for object pairs mostly located in
different clusters. Therefore, the consensus clustering shows minimal dissimilar-
ities to the ensemble in terms of pairwise similarities. The consensus function is
realized by removing all cells from the global coassociation matrix that contain
a value smaller than 0.5 and use the remaining cells to generate the clustering.

Cluster-Labels: In contrast to pairwise-similarity based approaches, other
techniques for ensemble clustering directly use the cluster assignments from the
ensemble by working with the provided cluster labels only. As no coassociation
matrices are used, they are often less time-consuming. Various algorithms exist
in this class e.g. Ensemble-Merging [9] which assumes a clustering ensemble
having a constant number of clusters k, that are each represented by a centroid.
By grouping similar centroids of the ensemble, k global centroids are generated
which are then used to build the consensus clustering.

3 Finding Frequent Groupings

In the previous section, we described that ensemble clustering creates a sin-
gle consensus clustering out of a set of different multiple clusterings. We out-
lined the two major approaches to this task, namely cluster-labels and pairwise-

70

similarities. While the techniques of both approaches differ in their mode of
operation, they share the common goal to incorporate those parts of the dataset
into the final solution, whose cluster assignments agree with the majority of the
clustering-ensemble. In other words, clusters of the consensus solution are sets
of objects, that were frequently assigned to the same cluster throughout the
clustering-ensemble. For the purpose of illustration, we use the small clustering-
ensemble depicted in Figure 1 as a running example. Our example contains
a dataset D = {x1, x2, . . . , x9} of nine objects in a 2D feature space. For D
exists a clustering-ensemble C = {C1, C2, C3, C4} that contains four cluster-
ings, each with a different number of clusters and different cluster composition.
To model and evaluate the similarities of the cluster assignments of an object
in the ensemble, label-based approaches match cluster ids or representations,
while approaches based on pairwise-similarities count the co-occurence of object
pairs. To give an example for a consensus clustering, we apply the pairwise ap-
proach mentioned in Section 2 to C and obtain a clustering with the clusters
c1 = {x1, x2, x3}, c2 = {x4, x5}, and c3 = {x6, x7, x8, x9}. In addition to these
two principles, we propose a novel third way to identify the frequent assignment
of objects to the same cluster, which is based on the concept of frequent itemsets
[1].

Assuming a set of n items I = {i1, i2, . . . , in} and a set of transactions
T = {t1, . . . , tm} of which each transaction has a unique id an contains a subset
of I, a set of items X is called frequent if its support exceeds a given threshold.
The support of an itemset X is defined by the fraction of transactions of T that
contain X . At this point, the analogy to ensemble clustering should be obvious:
while frequent itemsets aim to identify items that co-occur in many transitions
while ensemble clustering searches for objects occuring together in the majority
of clusters. In the following, we map the concepts of I, T and support to the
domain of ensemble clustering in order to describe a method that allows the
identification of frequent-groupings.

While it is obvious that the items of I correspond to the objects of the dataset
for a clustering, the matching of the transaction concept is more intricate. As T
is a set of transactions, that each contain elements of I. At first sight, it could be
mapped to the clustering-ensemble, because the ensemble also consists of mul-
tiple clusterings, containing the elements of the dataset. However this mapping
should not be used, because it effectively prevents the identification of frequent
sets of objects, as in general, all objects of a dataset are assigned to a cluster.
Assuming the transaction-clustering analogy, this means that each transaction
contains all items of I, which makes it impossible to identify interesting, frequent
object groupings. Therefore we model T as the set of clusters from all members
of the clustering-ensemble, as each of them normally only contains a subset of
the data. Using the mappings made so far, the support of a set of data objects
X shows the fraction of the clustering-ensemble, in which X is part of the same
cluster. If support(X) exceeds a certain threshold, we call X a frequent-grouping.
A high support of X also shows that this set of objects is robust, because it was

71

(a) Clustering C1 (b) Clustering C2

(c) Clustering C3 (d) Clustering C4

Fig. 1. The clustering-ensemble of the running example.

identified as part of a cluster in many clusterings, regardless of the employed
algorithm and/or parameters.

With regard to our running example, this means that D acts as itemset,
while the clustering-ensemble C provides a set of 14 clusters/transactions. As
transactions are required to have unique identifiers, we label them in a special
way e.g. c1.2 marks cluster 2 of clustering C1. To simplify the calculation of
support, we make the following assumption: each xi ∈ D is assigned to exactly
one cluster in each Ci ∈ C. With this, an object can only occur in one cluster
resp. transaction per clustering. To illustrate what this means, we regard the
group of objects (x1, x2, x3) from our running example. These objects occur in
the three clusters c1.1, c2.2, and c4.1 thus this itemset has a support of 3/4 resp.
0.75 as it occurs in three clusterings C1, C2, and C4.

In order to generate the frequent-groupings from our running example, we
first must specify a threshold for the support to decide whether a group of
objects occurs frequently or not. Following the assumptions of [4] we regard a
set of objects as frequent, if it occurs at least in 50% of the clustering-ensemble,
which means two clusterings in our example. The obtained frequent-groupings
are depicted in Figure 2 in the form of a graph structure. Each node represents a

72

Fig. 2. Structure of the frequent-groupings generated from the running example.

frequent-grouping and contains its associated objects as well as its support, while
edges indicate subset/superset relations between nodes. To build this structure
we initially create and insert a node for each cluster found in the ensemble. If a
node already exists in the graph structure it is not inserted again but the support
of the existing node is increased by one e.g. the objects {x1, x2, x3} are contained
in the clusters c1.1, c2.2, and c4.1, thus only one node with a support of three
is generated. From the initial graph all nodes that are not frequent, i.e. with a
support less than two are filtered—e.g. c3.2—and are displayed in a faded grey.
For each remaining frequent-grouping a new set of nodes is created, containing
all of its possible subsets. At last all frequent-grouping nodes that are not closed
are filtered i.e. each node, having a direct superset with the same support is
removed from the graph. Eventually this procedure leads to the nine frequent-
groupings fg1, fg2, . . . , fg9 displayed in Figure 2. Please note that the described
procedure only illustrates the formation of the depicted graph structure. There
already exist sophisticated methods for mining closed frequent itemsets, that
can be applied to generate frequent-groupings more efficiently [12].

By interpreting the obtained frequent-groupings as clusters, we can gener-
ate a consensus clustering by combining them in a way, that all objects of D are
located in a cluster. As the frequent-groupings overlap, multiple alternative com-
binations can be produced. For our running example, six alternative consensus
clusterings can be created, which are shown in Table 1. We will discuss the ac-
tual construction of these alternatives in the following section. In contrast to the
alternative clusterings generated by existing approaches, our solutions feature a
certain degree of robustness, as for each cluster a consensus exists throughout the
ensemble, which is defined via the support threshold. Thus our frequent-grouping
approach represents a hybrid between alternative and ensemble clustering, that
combines the benefits of both domains, namely alternative solutions and robust-
ness. In addition our approach has some advantages over the cluster-label and
pairwise-similarity based techniques. Most label based approaches require that
the number of clusters in the consensus solution is specified in advance. This
is not necessary with pairwise-similarities or frequent-groupings as the number
of consensus clusters results from the co-occurrence of objects in the ensemble.
Although this characteristic is a similarity between both techniques there is a
difference. As pairwise-similarity methods work with the smallest possible group-

73

A1 {x1, x2, x3} {x4, x5} {x6} {x7, x8, x9}
A2 {x1, x2, x3} {x4, x5} {x6, x8} {x7, x9}
A3 {x1, x2, x3} {x4, x5} {x6} {x8} {x7, x9}
A4 {x1, x3} {x2} {x4, x5} {x6} {x7, x8, x9}
A5 {x1, x3} {x2} {x4, x5} {x6, x8} {x7, x9}
A6 {x1, x3} {x2} {x4, x5} {x6} {x8} {x7, x9}

Table 1. Alternative consensus clusterings of the running example.

ings i.e. pairs, they are prone to transitive effects. Assume two object pairs (p, q)
and (q, r), each one occuring in the same cluster in 50% of the ensemble. Such
a setting can lead to (p, q, r) being placed in the same cluster of the consensus
solution, even if (p, r) never occurs in the same cluster in the whole ensemble.
This cannot happen with frequent-groupings as it evaluates co-occurrence in a
different way.

4 Browsing Alternatives

Aside from being able to identify frequent-groupings, we need a combination
procedure to generate alternative solutions. The challenging part here is the high
combinatorial diversity resulting from the concept of frequent-itemsets and our
idea of combination. To illustrate this issue we again look at our running example
D, which contains nine objects. All possible frequent-groupings that can occur in
a dataset D are contained in the power set of D. As we do not need the empty set,
there are 2|D| − 1 possible groupings—i.e. 511 for our example—to begin with.
This extremely high number indicates the general scale, we are dealing with but
has no direct impact on our approach, as we only consider the groupings that
were found in the ensemble and their respective subsets. Besides the reduction
by clustering, further candidates for frequent-groupings are removed via the
support threshold and the condition that frequent-groupings must be closed.
Notably this last filter criterion is important as it keeps the number of small
and singleton frequent-groupings low. These small groupings inflate the number
of possible alternative consensus clusterings by allowing additional combinations
that differ only in the assignment of one or two objects. For our running example
this is neglectable but for larger data, this issue must be considered i.e. too
small frequent-groupings must be removed. In section 3, we have assumed that
each object is assigned to one cluster in each clustering of the ensemble, which
means that potentially |D| singleton groupings with a support of 100% exist,
each containing one element of D. If these are not considered, the number of
alternative solutions rises and even the trivial solution of a clustering that assigns
each object to its own cluster is possible.

Having discussed the necessity of frequent-grouping filtering we are now faced
with the question of obtaining different alternative clustering solutions. To get all
possible alternatives it would be necessary to generate all possible combinations
of frequent-groupings—the power set of the set of frequent-groupings—and select

74

all combinations that contain D and only consist of disjoint frequent-groupings.
Obviously this approach is very expensive, thus we propose the use of a greedy
approach for the construction of alternatives. By varying the optimization crite-
rion a set of alternatives can be generated. Using the frequent-groupings shown in
Figure 2, we extracted the three alternatives depicted in Figure 3 by using three
different selection criterions. The alternative in Figure 3(a) was generated with
the goal of maximizing cluster size, therefore it contains the frequent-groupings
fg2, fg4, fg6, fg7 and matches alternative A1 from Table 1. Furthermore, alterna-
tive A6 of Figure 3(b) maximizes the support, while A5 of Figure 3(c) aims to
maximize the number of equal-sized clusters. Naturally it is possible to employ
other optimization goals than frequent-grouping size and support. The identi-
fication of such goals and more complex greedy heuristics is a topic for future
research.

(a) A1: maximize cluster
size

(b) A6: maximize support (c) A5: equal cluster size

Fig. 3. Alternative consensus clusterings extracted with different greedy approaches.

Using greedy approaches to extract alternatives means that the user needs
to specify the number of alternatives, a number of greedy heuristics, and maybe
additional parameters. Regarding different levels of user experience and the char-
acteristics of different application domains, this can be a challenging task. There-
fore, we propose a second way to generate robust alternatives that allows users
to actually browse through alternatives using high-level feedback. This approach
relies on our previous work described in [5], where we propose a feedback-driven
process for ensemble clustering that allows users to iteratively refine a consen-
sus clustering using a visual-interactive interface [6, 7] and a special paiwise-
similarity based ensemble clustering approach [8]. Our proposed process provides
an initial clustering solution, which the user interpretes in terms of intra-cluster
composition and inter-cluster relations via the proposed visual-interactive in-
terface. Depending on the users evaluation, the initial result can be adjusted
using a set of four feedback operations: merge, split, refine, and restructure. In
the following we transfer the general idea of this process and its feedback op-
tions to the setting of our frequent-groupings approach. Therefore we assume

75

that the user is provided with an initial alternative, created by an arbitrary
greedy approach. Furthermore we assume that access to some sort of clustering
visualization is available. In this setting the user can now use the four feedback
operations to browse through the structure given by our frequent-groupings and
their subset/superset relations. In doing so, the user can create different robust
alternative clusterings. Subsequently, we use our running example to illustrate
this feedback-driven browsing and describe the implementation of our feedback
operations in this context. An overview of the implementation is depicted in
Figure 4. As intial consensus clustering, we assume alternative A5 shown in Fig-
ure 3(c). Should the user not be satisfied with the clusters fg1, fg3 it is possible
to combine them into one cluster by applying the merge feedback operation to
both. To realize the merge, the superset relations resp. the ascending edges of
fg1 and fg3 are checked inside the graph structure. If these relations meet in a
frequent-grouping that is a superset of the originating clusters and equals their
union, both original clusters are replaced by the new found superset. In our run-
ning example this requirement is fulfilled, thus fg1 and fg3 are replaced by fg2

which effectively transforms A5 into A2. By issuing this simple operation the user
has generated a new robust alternative. If there exists no suitable superset, then
merge is not applicable. Based on this, the split operation is implemented by
traversing the subsets resp. the descending edges of a frequent-grouping towards
the nearest set of frequent-groupings, that are subsets of the original grouping
and exactly contain all of its members. In our example, the split of fg5 would
replace this frequent-grouping with fg6 and fg8, thus transforming A5 into A6.
Again, if there are no suitable subsets—e.g. for fg4—then a split is not possible.
By analyzing the frequent-groupings in advance, availability of split an merge
operations can be determined for each frequent-grouping and displayed in the
visualization.

Fig. 4. Implementation of high-level feedback for browsing frequent-groupings.

The remaining feedback operations refine and restructure are always appli-
cable as they do not navigate through the frequent-groupings but are used to
remove or re-create them. With refine, frequent-groupings that do not exceed a

76

certain size are filtered. This allows the removal of clusters considered too small,
in the respective application domain and the already mentioned singletons, thus
reducing the number of available alternative consensus clusterings. Applying re-
fine in order to eliminate singletons in our running example results in the pruning
of fg3, fg6, and fg9, and thus would reduce the available alternatives to A2. Al-
though this seems like a harsh reduction in our small scale example this method
has its merits for larger datasets. Furthermore, use of the refine operation can
result in objects of D not being covered by any frequent-grouping. In this case
these objects can be considered as noise in the consensus clustering, as they
cannot be assigned to a robust cluster of significant size. This notion of noise
also influences the number of available alternatives which we will demonstrate
using the already mentioned application of refine to the running example. If we
rule out the existence of noise, the only possible consensus clustering is A2. On
the other hand, the existence of noise makes new alternatives possible, for exam-
ple A1 would become {x1, x2, x3} {x4, x5} {x7, x8, x9} with x6 being noise, thus
presenting a clustering solution that not only contains robust clusters but also
identifies those parts of the dataset for which satisfactory consensus cannot be
found. Based on this, it could be possible to draw conclusions regarding dataset
structure and pre-processing. Therefore the handling and implications of this
kind of noise will be part of our future research.

At last, restructure allows the reconfiguration of certain frequent-groupings.
Lets assume that a user is especially interested in a specific area of the dataset,
but the available frequent-groupings provide no or not enough alternatives resp.
split/merge possibilities for this area. In this case restructure builds a new
clustering-ensemble and new frequent-groupings for the specified subset of D.
Application of this operation to fg7 means for example, that fg7, fg8, and fg9 are
replaced by the frequent-groupings, resulting from a new clustering-ensemble
generated for {x7, x8, x9}. The restructure operation should only be used if,
based on domain knowledge, other frequent-groupings can be expected in the
respective area.

5 Open Issues

Regarding the generation of frequent-groupings, existing algorithms for frequent
itemset mining should be adapted to this domain, focusing especially on pruning
techniques, measures for interestingness and the influence of different support
thresholds. Other areas of interest are the creation of frequent-groupings from
fuzzy clustering-ensembles and more generally the evaluation of support without
the assumptions, that an object is always assigned to exactly one cluster in each
clustering.

For the automatic extraction of robust alternatives, it is necessary to develop
additional greedy heuristics. These heuristics should incorporate the notions of
quality and dissimilarity that are found in many existing alternative-clustering
approaches into the extraction process in an advatageous way. As frequent-
groupings and their superset/subset relations can be interpreted as nodes and

77

edges of a graph, methods for graph-partitioning also promise to be a viable op-
tion for the creation of alternative clustering solutions. Additionally, the notion
of noise introduced in the previous section must be explored further. On the
one hand, methods for filtering too small frequnet-groupings must be developed
in order to keep the number of robust alternative clusterings manageable. On
the other hand, the meaning of this noise i.e. of objects for which no satisfying
consensus can be found, needs to be explored further, as this could allow con-
clusions regarding the pre-processing of the data or the fit between dataset and
employed algorithms/parameters.

Regarding the proposed user-driven browsing of robust alternatives there are
open issues like the integration of specific information like support or relations
between frequent-groupings into our visual-interactive interface. Furthermore it
is necessary to find a way to handle large numbers of alternatives i.e. meth-
ods for communicating the availability of many alternatives to the user must
be found. In additon the stepping for navigating through alternatives must be
chosen adequately. We are positive that our frequent-groupings approach offers
many additional opportunities for further research.

6 Summary

In this paper we proposed our idea of combining the concepts of alternative
and ensemble-clustering. Based on the well-known technique of frequent item-
set mining, we introduced our notion of frequent-clusters as robust/frequently
occuring parts of the clustering ensemble. After describing the creation process
of frequent-clusters, we proposed an algorithmic and an user-driven approach
for the construction of alternative consensus-clusterings from frequent-clusters.
The algorithmic approach uses greedy extraction methods and different opti-
mization goals and thus needs to be parametrized by the user. The user-driven
browsing on the other hand employs a small set of high-level feedback options,
that allows users to navigate and adjust frequent-clusters in order to compose
different consensus-clusterings. The clustering results that are obtained with
our approach combine benefits from the domains of alternative and ensemble-
clustering, namely multiple alternative solutions that are robust.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. pages
487–499, 1994.

2. E. Bae and J. Bailey. Coala: A novel approach for the extraction of an alternate
clustering of high quality and high dissimilarity. In Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM 2006), pages 53–62, 2006.

3. X. H. Dang and J. Bailey. Generation of alternative clusterings using the cami
approach. In Proceedings of the Tenth SIAM International Conference on Data
Mining, pages 118–129, 2010.

4. A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. In Proc. of ICDE,
2005.

78

5. M. Hahmann, D. Habich, and W. Lehner. Evolving ensemble-clustering to a
feedback-driven process. In Proceedings of the IEEE ICDM Workshop on Visual
Analytics and Knowledge Discovery (VAKD), 2010.

6. M. Hahmann, D. Habich, and W. Lehner. Visual decision support for ensemble-
clustering. In Proceedings of the 22nd International Conference on Scientific and
Statistical Database Management (SSDBM), 2010. (to appear).

7. M. Hahmann, D. Habich, and W. Lehner. Touch it, mine it, view it, shape it. In
Proceedings der 14. GI-Fachtagung für Datenbanksysteme in Business, Technology
und Web (BTW 2011, February 28 - March 4 2011, Kaiserslautern, Germany),
2011.

8. M. Hahmann, P. Volk, F. Rosenthal, D. Habich, and W. Lehner. How to control
clustering results? flexible clustering aggregation. In Advances in Intelligent Data
Analysis VIII, pages 59–70, 2009.

9. P. Hore, L. Hall, and D. Goldgof. A cluster ensemble framework for large data
sets. In IEEE International Conference on Systems, Man, and Cybernetics, 2006.

10. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.
Surv., 31(3), 1999.

11. A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for
combining multiple partitions. Journal of Machine Learning Research, 3, 2002.

12. M. J. Zaki and C. jui Hsiao. Charm: An efficient algorithm for closed itemset
mining. pages 457–473, 2002.

79

Generating a Diverse Set
of High-Quality Clusterings?

Jeff M. Phillips, Parasaran Raman, and Suresh Venkatasubramanian

School of Computing, University of Utah
{jeffp,praman,suresh}@cs.utah.edu

Abstract. We provide a new framework for generating multiple good
quality partitions (clusterings) of a single data set. Our approach decom-
poses this problem into two components, generating many high-quality
partitions, and then grouping these partitions to obtain k representatives.
The decomposition makes the approach extremely modular and allows
us to optimize various criteria that control the choice of representative
partitions.

1 Introduction

Clustering is a critical tool used to understand the structure of a data set.
There are many ways in which one might partition a data set into representative
clusters, and this is demonstrated by the huge variety of different algorithms for
clustering [9], [35], [8], [27], [45], [31], [43], [14], [28].

Each clustering method identifies different kinds of structure in data, reflect-
ing different desires of the end user. Thus, a key exploratory tool is identifying
a diverse and meaningful collection of partitions of a data set, in the hope that
these distinct partitions will yield different insights about the underlying data.

Problem specification. The input to our problem is a single data set X. The
output is a set of k partitions of X. A partition of X is a set of subsets Xi =
{Xi,1, Xi,2, . . . , Xi,s} where X =

⋃s
j=1Xi,j and for all j, j′ Xi,j ∩Xi,j′ = ∅. Let

PX be the space of all partitions of X; since X is fixed throughout this paper,
we just refer to this space as P.

There are two quantities that control the nature of the partitions generated.
The quality of a partition, represented by a function Q : P → R+, measures
the degree to which a particular partition captures intrinsic structure in data; in
general, most clustering algorithms that identify a single clustering attempt to
optimize some notion of quality. The distance between partitions, represented by
the function d : P×P→ R, is a quantity measuring how dissimilar two partitions
are. The partitions Xi ∈ P that do a better job of capturing the structure of the
data set X will have a larger quality value Q(Xi). And the partitions Xi,Xi′ ∈ P

that are more similar to each other will have a smaller distance value d(Xi,Xi′).

? This research was partially supported by NSF award CCF-0953066 and a subaward
to the University of Utah under NSF award 0937060 to the Computing Research
Association.

80

A good set of diverse partitions all have large distances from each other and all
have high quality scores.

Thus, the goal is this paper is to generate a set of k partitions that best
represent all high-quality partitions as accurately as possible.

Related Work. There are two main approaches in the literature for computing
many high-quality, diverse partitions. However, both approaches focus only on
a specific subproblem. Alternate clustering focuses on generating one additional
partition of high-quality that should be far from a given set (typically of size
one) of existing partitions. k-consensus clustering assumes an input set of many
partitions, and then seeks to return k representative partitions.

Most algorithms for generating alternate partitions [38, 16, 6, 5, 13, 21, 12] op-
erate as follows. Generate a single partition using a clustering algorithm of choice.
Next, find another partition that is both far from the first partition and of high
quality. Most methods stop here, but a few methods try to discover more alter-
nate partitions; they repeatedly find new, still high-quality, partitions that are
far from all existing partitions. This effectively produces a variety of partitions,
but the quality of each successive partition degrades quickly.

Although there are a few other methods that try to discover alternate par-
titions simultaneously [10, 29, 37], they are usually limited to discovering two
partitions of the data. Other methods that generate more than just two par-
titions either randomly weigh the features or project the data onto different
subspaces, but use the same clustering technique to get the alternate partitions
in each round. Using the same clustering technique tends to generate partitions
with clusters of similar shapes and might not be able to exploit all the structure
in the data.

The problem of k-consensus, which takes as input a set of m � k parti-
tions of a single data set to produce k distinct partitions, has not been studied
as extensively. To obtain the input for this approach, either the output of sev-
eral distinct clustering algorithms, or the output of multiple runs of the same
randomized algorithm with different initial seeds are considered [46, 47]. This
problem can then be viewed as a clustering problem; that is, finding k clusters
of partitions from the set of input partitions. Therefore, there are many possible
optimization criteria or algorithms that could be explored for this problem as
there are for clustering in general. Most formal optimization problems are in-
tractable to solve exactly, making heuristics the only option. Furthermore, no
matter the technique, the solution is only as good as the input set of partitions,
independent of the optimization objective. In most k-consensus approaches, the
set of input partitions is usually not diverse enough to give a good solution.

In both cases, these subproblems avoid the full objective of constructing a
diverse set of partitions that represent the landscape of all high-quality partitions.
The alternate clustering approach is often too reliant on the initial partition, has
had only limited success in generalizing the initial step to generate k partitions.
The k-consensus partitioning approach does not verify that its input represents
the space of all high-quality partitions, so a representative set of those input
partitions is not necessarily a representative set of all high-quality partitions.

81

Our approach. To generate multiple good partitions, we present a new paradigm
which decouples the notion of distance between partitions and the quality of par-
titions. Prior methods that generate multiple diverse partitions cannot explore
the space of partitions entirely since the distance component in their objective
functions biases against partitions close to the previously generated ones. These
could be interesting partitions that might now be left out. To avoid this, we
will first look at the space of all partitions more thoroughly and then pick non-
redundant partitions from this set. Let k be the number of diverse partitions
that we seek. Our approach works in two steps. In the first step called the gener-
ation step, we first sample from the space of all partitions proportional to their
quality. Stirling numbers of the second kind, S(n, s) is the number of ways of
partitioning a set of n elements into s nonempty subsets. Therefore, this is the
size of the space that we sample from. We illustrate the sampling in figure 1. This
generates a set of size m� k to ensure we get a diverse sample that represents
the space of all partitions well, since generating only k partitions in this phase
may “accidentally” miss some high quality region of P. Next, in the grouping
step, we cluster this set of m partitions into k sets, resulting in k clusters of
partitions. We then return one representative from each of these k clusters as
our output alternate partitions.

Space of all partitionsP1 PS(n,s)RP

Q
u
al
it
y(
P
i)

: Samples generated proportional to quality

Fig. 1. Sampling partitions proportional to its quality from the space of all partitions with
s clusters.

Note that because the generation step is decoupled from the grouping step,
we treat all partitions fairly, independent of how far they are from the existing
partitions. This allows us to explore the true density of high quality partitions
in P without interference from the choice of initial partition. Thus, if there
is a dense set of close interesting partitions our approach will recognize that.
Also because the grouping step is run separate from the generation step, we can
abstract this problem to a generic clustering problem, and we can choose one of
many approaches. This allows us to capture different properties of the diversity

82

of partitions, for instance, either guided just by the spatial distance between
partitions, or also by a density-based distance which only takes into account the
number of high-quality partitions assigned to a cluster.

From our experimental evaluation, we note that decoupling the generation
step from the grouping step helps as we are able to generate a lot of very high
quality partitions. In fact, the quality of some of the generated partitions is bet-
ter than the quality of the partition obtained by a consensus clustering technique
called LiftSSD [39]. The relative quality w.r.t. the reference partition of a few
generated partitions even reach close to 1. To our best knowledge, such parti-
tions have not been uncovered by other previous meta-clustering techniques. The
grouping step also picks out representative partitions far-away from each other.
We observe this by computing the closest-pair distance between representatives
and comparing it against the distance values of the partitions to their closest
representative.

Outline. In Section 2, we discuss a sampling-based approach for generating many
partitions proportional to their quality; i.e. the higher the quality of a partition,
the more likely it is to be sampled. In Section 3, we describe how to choose k
representative partitions from the large collection partitions already generated.
We will present the results of our approach in Section 4. We have tested our
algorithms on a synthetic dataset, a standard clustering dataset from the UCI
repository and a subset of images from the Yale Face database B.

2 Generating Many High Quality Partitions

In this section we describe how to generate many high quality partitions. This
requires (1) a measure of quality, and (2) an algorithm that generates a partition
with probability proportional to its quality.

2.1 Quality of Partitions

Most work on clustering validity criteria look at a combination of how compact
clusters are and how separated two clusters are. Some of the popular measures
that follow this theme are S Dbw, CDbw, SD validity index, maximum likelihood
and Dunn index [23, 24, 36, 44, 15, 4, 32, 17]. Ackerman et. al. also discuss similar
notions of quality, namely VR (variance ratio) and WPR (worst pair ratio) in
their study of clusterability [1, 2]. We briefly describe a few specific notions of
quality below.

k-Means quality. If the elements x ∈ X belong to a metric space with an un-
derlying distance δ : X × X → R and each cluster Xi,j in a partition Xi is
represented by a single element x̄j , then we can measure the inverse quality of a
cluster by q̄(Xi,j) =

∑
x∈Xi,j

δ(x, x̄j)
2. Then the quality of the entire partition

is then the inverse of the sum of the inverse qualities of the individual clusters:
Q̄(Xi) = 1/(

∑s
j=1 q̄(Xi,j)).

83

This corresponds to the quality optimized by s-mean clustering 1, and is
quite popular, but is susceptible to outliers. If all but one element of X fit
neatly in s clusters, but the one remaining point is far away, then this one point
dominates the cost of the clustering, even if it is effectively noise. Specifically,
the quality score of this measure is dominated by the points which fit least well
in the clusters, as opposed to the points which are best representative of the true
data. Hence, this quality measure may not paint an accurate picture about the
partition.

Kernel distance quality. We introduce a method to compute quality of a parti-
tion, based on the kernel distance [30]. Here we start with a similarity function
between two elements of X, typically in the form of a (positive definite) kernel:
K : X × X → R+. If x1, x2 ∈ X are more similar, then K(x1, x2) is smaller
than if they are less similar. Then the overall similarity score between two clus-
ters Xi,j , Xi,j′ ∈ Xi is defined κ(Xi,j , Xi,j′) =

∑
x∈Xi,j

∑
x′∈Xi,j′

K(x, x′), and

a single clusters self-similarity for Xi,j ∈ Xi is defined κ(Xi,j , Xi,j). Finally, the
overall quality of a partition is defined QK(Xi) =

∑s
j=1 κ(Xi,j , Xi,j).

If X is a metric space, the highest quality partitions divide X into s Voronoi
cells around s points – similar to s-means clustering. However, its score is dom-
inated by the points which are a good fit to a cluster, rather than outlier points
which do not fit well in any cluster. This is a consequence of how kernels like the
Gaussian kernel taper off with distance, and is the reason we recommend this
measure of cluster quality in our experiments.

2.2 Generation of Partitions Proportional to Quality

We now discuss how to generate a sample of partitions proportional to their
quality. This procedure will be independent of the measure of quality used, so
we will generically let Q(Xi) denote the quality of a partition. Now the problem
becomes to generate a set Y ⊂ P of partitions where each Xi ∈ Y is drawn
randomly proportionally to Q(Xi).

The standard tool for this problem framework is a Metropolis-Hastings ran-
dom-walk sampling procedure [34, 25, 26]. Given a domain X to be sampled and
an energy function Q : X → R, we start with a point x ∈ X, and suggest a new
point x1 that is typically “near” x. The point x1 is accepted unconditionally if
Q(x1) ≥ Q(x), and is accepted with probability Q(x1)/Q(x) if not. Otherwise,
we say that x1 was rejected and instead set x1 = x as the current state. After
some sufficiently large number of such steps t, the expected state of xt is a
random draw from P with probability proportional to Q. To generate many
random samples from P this procedure is repeated many times.

In general, Metropolis-Hastings sampling suffers from high autocorrelation,
where consecutive samples are too close to each other. This can happen when

1 it is commonplace to use k in place of s, but we reserve k for other notions in this
paper

84

far away samples are rejected with high probability. To counteract this prob-
lem, often Gibbs sampling is used [41]. Here, each proposed step is decomposed
into several orthogonal suggested steps and each is individually accepted or re-
jected in order. This effectively constructs one longer step with a much higher
probability of acceptance since each individual step is accepted or rejected inde-
pendently. Furthermore, if each step is randomly made proportional to Q, then
we can always accept the suggested step, which reduces the rejection rate.

Metropolis-Hastings-Gibbs sampling for partitions. The Metropolis-Hastings pro-
cedure for partitions works as follows. Given a partition Xi, we wish to select
a random subset Y ⊂ X and randomly reassign the elements of Y to different
clusters. If the size of Y is large, this will have a high probability of rejection,
but if Y is small, then the consecutive clusters will be very similar. Thus, we
use a Gibbs-sampling approach. At each step we choose a random ordering σ of
the elements of X. Now, we start with the current partition Xi and choose the
first element xσ(1) ∈ X. We assign xσ(1) to each of the s clusters generating s

suggested partitions X
j
i and calculate s quality scores qj = Q(Xji). Finally, we

select index j with probability qj , and assign xσ(1) to cluster j. Rename the new
partition as Xi. We repeat this for all points in order. Finally, after all elements
have been reassigned, we set Xi+1 to be the resulting partition.

Note that auto-correlation effects may still occur since we tend to have par-
titions with high quality, but this effect will be much reduced. Note that we do
not have to run this entire procedure each time we need a new random sample.
It is common in practice to run this procedure for some number t0 (typically
t0 = 1000) of burn-in steps, and then use the next m steps as m random samples
from P. The rationale is that after the burn-in period, the induced Markov chain
is expected to have mixed, and so each new step would yield a random sample
from the stationary distribution.

3 Grouping the Partitions

Having generated a large collection Z of m � k high-quality partitions from
P by random sampling, we now describe a grouping procedure that returns k
representative partitions from this collection. We will start by placing a metric
structure on P. This allows us to view the problem of grouping as a metric clus-
tering problem. Our approach is independent of any particular choice of metric;
obviously, the specific choice of distance metric and clustering algorithm will
affect the properties of the output set we generate. There are many different
approaches to comparing partitions. While our approach is independent of the
particular choice of distance measure used, we review the main classes.

Membership-based distances. The most commonly used class of distances is
membership-based. These distances compute statistics about the number of pairs
of points which are placed in the same or different cluster in both partitions, and
return a distance based on these statistics. Common examples include the Rand
distance, the variation of information, and the normalized mutual information
[33, 40, 42, 7]. While these distances are quite popular, they ignore information

85

about the spatial distribution of points within clusters, and so are unable to
differentiate between partitions that might be significantly different.

Spatially-sensitive distances. In order to rectify this problem, a number of spatially-
aware measures have been proposed. In general, they work by computing a con-
cise representation of each cluster and then use the earthmover’s distance (EMD)
[20] to compare these sets of representatives in a spatially-aware manner. These
include CDistance [11], dADCO [6], CC distance [48], and LiftEMD [39]. As
discussed in [39], LiftEMD has the benefit of being both efficient as well as a
well-founded metric, and is the method used here.

Density-based distances. The partitions we consider are generated via a sam-
pling process that samples more densely in high-quality regions of the space of
partitions. In order to take into account dense samples in a small region, we use
a density-sensitive distance that intuitively spreads out regions of high density.
Consider two partitions Xi and Xi′ . Let d : P × P → R+ be any of the above
natural distances on P. Then let dZ : P × P → R+ be a density-based distance
defined as dZ(Xi,Xi′) = |{Xl ∈ Z | d(Xi,Xl) < d(Xi,Xi′)}|.

3.1 Clusters of Partitions

Once we have specified a distance measure to compare partitions, we can cluster
them. We will use the notation φ(Xi) to denote the representative partition X

is assigned to. We would like to pick k representative partitions, and a simple
algorithm by Gonzalez [22] provides a 2-approximation to the best clustering
that minimizes the maximum distance between a point and its assigned center.
The algorithm maintains a set of centers k′ < k in C. Let φC(Xi) represent
the partition in C closest to Xi (when apparent we use just φ(Xi) in place of
φC(Xi)). The algorithm chooses Xi ∈ Z with maximum value d(Xi, φ(Xi)). It
adds this partition Xi to C and repeats until C contains k partitions. We run
the Gonzalez method to compute k representative partitions using LiftEMD
between partitions. We also ran the method using the density based distance
derived from using LiftEMD. We got very similar results in both cases and we
will only report the results from using LiftEMD in section 4. We note that other
clustering methods such as k-means and hierarchical agglomerative clustering
yield similar results.

4 Experimental Evaluation

In this section, we show the effectiveness of our technique in generating parti-
tions of good divergence and its power to find partitions with very high quality,
well beyond usual consensus techniques.

Data. We created a synthetic dataset 2D5C with 100 points in 2-dimensions,
for which the data is drawn from 5 Gaussians to produce 5 visibly separate
clusters. We also test our methods on the Iris dataset containing 150 points in

86

4 dimensions from UCI machine learning repository [18]. We also use a subset
of the Yale Face Database B [19] (90 images corresponding to 10 persons and 9
poses in the same illumination). The images are scaled down to 30x40 pixels.

Methodology. For each dataset, we first run k-means to get the first partition
with the same number of clusters specified by the reference partition. Using this
as a seed, we generate m = 4000 partitions after throwing away the first 1000
of them. We then run the Gonzalez k-center method to find 10 representative
partitions. We associate each of the 3990 remaining partitions with the closest
representative partition. We compute and report the quality of each of these
representative partitions. We also measure the LiftEMD distance to each of these
partitions from the reference partition. For comparison, we also plot the quality
of consensus partitions generated by LiftSSD [39] using inputs from k-means,
single-linkage, average-linkage, complete-linkage and Ward’s method.

4.1 Performance Evaluation

Evaluating partition diversity. We can evaluate partition diversity by determin-
ing how close partitions are to their chosen representatives using LiftEMD. Low
LiftEMD values between partitions will indicate redundancy in the generated
partitions and high LiftEMD values will indicate good partition diversity. The
resulting distribution of distances is presented in Figures 2(a), 2(b), 2(c), in
which we also mark the distance values between a representative and its closest
other representative with red squares. Since we expect that the representative
partitions will be far from each other, those distances provide a baseline for dis-
tances considered large. For all datasets, a majority of the partitions generated
are generally far from the closest representative partition. For instance, in the
Iris data set (2(a)), about three-fourths of the partitions generated are far away
from the closest representative with LiftEMD values ranging between 1.3 and
1.4.

Evaluating partition quality. Secondly, we would like to inspect the quality of the
partitions generated. Since we intend the generation process to sample from the
space of all partitions proportional to the quality, we hope for a majority of the
partitions to be of high quality. The ratio between the kernel distance quality QK
of a partition to that of the reference partition gives us a fair idea of the relative
quality of that partition, with values closer to 1 indicating partitions of higher
quality. The distribution of quality is plotted in Figures 3(a)3(b)3(c). We observe
that for all the datasets, we get a normally distributed quality distribution with
a mean value between 0.62 and 0.8. In addition, we compare the quality of
our generated partitions against the consensus technique LiftSSD. We mark the
quality of the representative partitions with red squares and that of the consensus
partition with a blue circle. For instance, chart 3(a) shows that the relative
quality w.r.t. the reference partition of three-fourths of the partitions is better
than that of the consensus partition. For the Yale Face data, note that we have
two reference partitions namely by pose and by person and we chose the partition
by person as the reference partition due to its superior quality.

87

Visual inspection of partitions. We ran multi-dimensional scaling [3] on the all-
pairs distances between the 10 representatives for a visual representation of the
space of partitions. We compute the variance of the distances of the partitions
associated with each representative and draw Gaussians around them to depict
the size of each cluster of partitions. For example, for the Iris dataset, as we
can see from chart 4(a), the clusters of partitions are well-separated and are
far from the original reference partition. In figure 5, we show two interesting
representative partitions on the Yale face database. We show the mean image
from each of the 10 clusters. Figure 5(a) is a representative partition very similar
to the partition by person and figure 5(b) resembles the partition by pose.

5 Conclusion

In this paper we introduced a new framework to generate multiple non-redundant
partitions of good quality. Our approach is a two stage process: in the generation
step, we focus on sampling a large number of partitions from the space of all
partitions proportional to the quality and in the grouping step, we identify k
representative partitions that best summarizes the space of all partitions.

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
40

0.1

0.2

0.3

0.4

0.5

LiftEMD(Pi, Rep(Pi))

N
o.

P
ar
ti
ti
on

s/
T
ot
al

P
ar
ti
ti
on

s (a) Iris

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
40

0.1

0.2

0.3

0.4

LiftEMD(Pi, Rep(Pi))

N
o.

P
ar
ti
ti
on

s/
T
ot
al

P
ar
ti
ti
on

s (b) Yale Face

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
40

0.1

0.2

0.3

0.4

0.5

LiftEMD(Pi, Rep(Pi))

N
o.

P
ar
ti
ti
on

s/
T
ot
al

P
ar
ti
ti
on

s (c) 2D5C

Fig. 2. Distance between partition and its representative.

88

0.
6

0.
64

0.
68

0.
72

0.
76 0.
8

0.
84

0.
88

0.
92

0.
96 10

200

400

600

800

1,000

1,200

Quality(Pi)/Quality(RP)
N
o.

P
ar
ti
ti
on

s

(a) Iris

0.
48

0.
52

0.
56 0.
6

0.
64

0.
68

0.
72

0.
76 0.
8

0.
84

0.
88

0.
92

0.
96 10

200

400

600

800

1,000

Quality(Pi)/Quality(RP)

N
o.

P
ar
ti
ti
on

s

(b) Yale Face

0.
6

0.
64

0.
68

0.
72

0.
76 0.
8

0.
84

0.
88

0.
92

0.
96 10

200

400

600

800

1,000

1,200

Quality(Pi)/Quality(RP)

N
o.

P
ar
ti
ti
on

s

(c) 2D5C

Fig. 3. Quality of Partitions.

References

1. M. Ackerman and S. Ben-David. Measures of Clustering Quality: A Working Set
of Axioms for Clustering. In proceedings of the 22nd Neural Information Processing
Systems, 2008.

2. M. Ackerman and S. Ben-David. Clusterability: A theoretical study. Journal of
Machine Learning Research - Proceedings Track, 5:1–8, 2009.

3. A. Agarwal, J. M. Phillips, and S. Venkatasubramanian. Universal multi-
dimensional scaling. In proceedings of the 16th ACM SIGKDD, 2010.

4. J. Aldrich. R. A. Fisher and the making of maximum likelihood 1912–1922. Statist.
Sci., 12(3):162–176, 1997.

5. E. Bae and J. Bailey. Coala: A novel approach for the extraction of an alternate
clustering of high quality and high dissimilarity. In proceedings of the 6th ICDM,
2006.

6. E. Bae, J. Bailey, and G. Dong. A clustering comparison measure using density
profiles and its application to the discovery of alternate clusterings. Data Mining
and Knowledge Discovery, 2010.

7. A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering
structure in clustered data. In Pacific Symposium on Biocomputing, 2002.

89

(a) Iris (b) Yale Face (c) 2D5C

Fig. 4. MDS rendering of the LiftEMD distances between all representative partitions.

(a)

(b)

Fig. 5. Visual illustration of two interesting representative partitions on Yale Face.

8. P. Berkhin. A survey of clustering data mining techniques. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data, pages
25–71. Springer, 2006.

9. R. E. Bonner. On some clustering techniques. IBM J. Res. Dev., 8:22–32, January
1964.

10. R. Caruana, M. Elhawary, N. Nguyen, and C. Smith. Meta clustering. Data
Mining, IEEE International Conference on, 0:107–118, 2006.

11. M. Coen, H. Ansari, and N. Fillmore. Comparing clusterings in space. In ICML,
2010.

12. X. H. Dang and J. Bailey. Generation of alternative clusterings using the CAMI
approach. In proceedings of 10th SDM, 2010.

13. X. H. Dang and J. Bailey. A hierarchical information theoretic technique for the
discovery of non linear alternative clusterings. In proceedings of the 16th ACM
SIGKDD, 2010.

14. S. Das, A. Abraham, and A. Konar. Metaheuristic Clustering. Springer Publishing
Company, Incorporated, 1st edition, 2009.

15. R. N. Dave. Validating fuzzy partitions obtained through c-shells clustering. Pat-
tern Recogn. Lett., 17:613–623, May 1996.

16. I. Davidson and Z. Qi. Finding alternative clusterings using constraints. In pro-
ceedings of the 8th ICDM, 2008.

17. J. C. Dunn. Well separated clusters and optimal fuzzy-partitions. Journal of
Cybernetics, 1974.

18. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
19. A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination

cone models for face recognition under variable lighting and pose. IEEE Trans.
Pattern Anal. Mach. Intelligence, 23(6):643–660, 2001.

20. C. R. Givens and R. M. Shortt. A class of wasserstein metrics for probability
distributions. Michigan Math Journal, 31:231–240, 1984.

21. D. Gondek and T. Hofmann. Non-redundant data clustering. In proceedings of the
4th ICDM, 2004.

90

22. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985.

23. M. Halkidi and M. Vazirgiannis. Clustering validity assessment: finding the optimal
partitioning of a data set. In proceedings of the 1st ICDM, 2001.

24. M. Halkidi, M. Vazirgiannis, and Y. Batistakis. Quality scheme assessment in the
clustering process. In proceedings of the 4th PKDD, 2000.

25. W. K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57:97–109, 1970.

26. P. D. Hoff. A First Course in Bayesian Statistical Methods. Springer, 2009.
27. A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett., 2010.
28. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.

Surv., 31:264–323, September 1999.
29. P. Jain, R. Meka, and I. S. Dhillon. Simultaneous unsupervised learning of dis-

parate clusterings. Stat. Anal. Data Min., 1:195–210, November 2008.
30. S. Joshi, R. V. Kommaraju, J. M. Phillips, and S. Venkatasubramanian. Compar-

ing distributions and shapes using the kernel distance (to appear). 27th Annual
Symposium on Computational Geometry, 2011.

31. G. G. C. Ma; and J. Wu. Data Clustering: Theory, Algorithms, and Applications.
SIAM, Society for Industrial and Applied Mathematics, illustrated edition, May
2007.

32. D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cam-
bridge University Press, New York, NY, USA, 2002.

33. M. Meilă. Comparing clusterings–an information based distance. J. Multivar.
Anal., 2007.

34. N. Metropolis, A. W. Rosentbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of Chemical
Physics, 1953.

35. P. Michaud. Clustering techniques. Future Generation Computer Systems, 1997.
36. G. Milligan and M. Cooper. An examination of procedures for determin-

ing the number of clusters in a data set. Psychometrika, 50:159–179, 1985.
10.1007/BF02294245.

37. D. Niu, J. G. Dy, and M. I. Jordan. Multiple non-redundant spectral clustering
views. In ICML’10, pages 831–838, 2010.

38. Z. Qi and I. Davidson. A principled and flexible framework for finding alternative
clusterings. In proceedings of the 15th ACM SIGKDD, 2009.

39. P. Raman, J. M. Phillips, and S. Venkatasubramanian. Spatially-aware comparison
and consensus for clusterings (to appear). Proceedings of 11th SDM, 2011.

40. W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336):846–850, 1971.

41. G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling
of random walk metropolis algorithms. Annals of Applied Probability, 7:110–120,
1997.

42. A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for
combining multiple partitions. JMLR, 3:583–617, 2003.

43. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

44. S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier, 2006.
45. R. Xu and D. Wunsch. Clustering. Wiley-IEEE Press, 2009.
46. Y. Zhang and T. Li. Consensus clustering + meta clustering = multiple consensus

clustering. Florida Artificial Intelligence Research Society Conference, 2011.
47. Y. Zhang and T. Li. Extending consensus clustering to explore multiple clustering

views. In proceedings of 11th SDM, 2011.
48. D. Zhou, J. Li, and H. Zha. A new Mallows distance based metric for comparing

clusterings. In ICML, 2005.

91

Author Index

De Bie, Tijl, 43

Goethals, Bart, 4

Habich, Dirk, 67
Hahmann, Martin, 67
Houle, Michael E., 1

Jaeger, Manfred, 31

Kriegel, Hans-Peter, 55

Lehner, Wolfgang, 67
Liu, Hua, 19
Liu, Tengfei, 19
Lyager, Simon, 31

Phillips, Jeff M., 80
Poon, Kin Man, 19

Raman, Parasaran, 80

Schubert, Erich, 55

Vandborg, Michael, 31
Venkatasubramanian, Suresh, 80
Vreeken, Jilles, 7

Wang, Yi, 19
Wohlgemuth, Thomas, 31

Zhang, Nevin L., 19
Zimek, Arthur, 7, 55

	Invited Talks
	Combinatorial Approaches to Clustering and Feature Selection
	Cartification: Turning Similarities into Itemset Frequencies

	Research Papers
	When Pattern Met Subspace Cluster
	Fast Multidimensional Clustering of Categorical Data
	Factorial Clustering with an Application to Plant Distribution Data
	Subjectively Interesting Alternative Clusters
	Evaluation of Multiple Clustering Solutions
	Browsing Robust Clustering-Alternatives
	Generating a Diverse Set of High-Quality Clusterings

