
Towards Integration of Semantically Enabled Service
Families in the Cloud

Marko Bošković1,2, Ebrahim Bagheri1,3, Georg Grossmann4, Dragan Gašević1,2,
Markus Stumptner4

1Athabasca University, Canada
{firstname.lastname}@athabascau.ca

2Simon Fraser University Surrey, Canada
3University of British Columbia, Vancouver, Canada

4University of South Australia, Australia
{georg|mst}@cs.unisa.edu.au

Abstract. Success of a Software Product Line (SPL) typically induces increase
of requirements that expand over the expertise of its initial company. In the con-
text of cloud computing, where SPLs are deployed in the form of business process
families that are offered over the Internet, this expansion requires partnering with
other available families. With the increasing number of companies that offer their
solutions in the cloud, there is a need for tools and methods for integration of
configurable business processes. In this position paper, we propose a methodol-
ogy for integration that employs ontologies and Semantic Web technology, and
propose a tool support that supports the proposed methodology.

1 Introduction

Motivated by the fact that different stakeholders have similar requirements, Software
Product Line Engineering [1] (SPLE) argues the development of similar software sys-
tems as a whole, herewith sharing many assets and increasing reuse ability. An SPL
is customized for every customer by selecting the set of most desirable features. Be-
side SPLE, Service-oriented Computing is another computing paradigm that promotes
reuse where services enable rapid and easy composition of loosely coupled distributed
software applications, and provide general computational elements that can be reused
across different domains [2]. At this moment, there is a significant research for integrat-
ing these two software engineering paradigms, e.g. [3,4,5,6,7,8]. Recently, benefits of
this synergy have been seen in the context of cloud computing [9], where synergistic
solutions for service-oriented applications and SPLs are delivered over the Internet in
the form of Business Process Families (BPFs) that are being configured for each user
independently, while keeping BPFs, supporting systems software, hardware and main-
tenance, away from her [10].

The success of SPLs usually leads to their expansion that reaches a level that ex-
ceeds the innovation capabilities of one organization [11]. In such an expansion, com-
panies converge different domains, often those that were not their primary business.
In the context of BPFs in the cloud, this requires partnering of already existing BPFs.
Therefore, there is a need for methods and tools for integration of BPFs.

Contemporary methods for integration of SPLs are mostly formal, and assume only
feature equivalents across different families, e.g. [12,13,14,15]. However, in practice,
because features are typically not equivalents, we consider integration of families as

CSWS2011 Proceedings - Poster 58



BPFM1

BPFM2

BPFM3

BPFM4

Processes1 Tenant1

Processes1 Tenant2 Processes1 Tenant3

Processes2 Tenant1

Processes2 Tenant2
Processes2 Tenant3

Processes3 Tenant1

Processes3 Tenant2

Processes3 Tenant3

Processes4 Tenant1

Processes4 Tenant2

Processes4 Tenant3

BPF2C1

BPF2C2

BPF2C1

BPF1C3
BPF1C2

BPF1C1

BPF3C1

BPF3C2

BPF3C3

BPF4C1

BPF4C3

BPF4C2

Fig. 1. Families of business processes in cloud computing (inspired by van der Aalst [10]).
(BPFM=business process family model, BPFC=configuration)

an engineering task that cannot be fully automated. Therefore, we provide a method
and propose a tool support that heavily uses ontologies [16] and Semantic Web tech-
nologies [17] for semantic annotation of BPFs, that can be used to automatically derive
interdependencies and allows for semi-automated integration.

2 The Proposed Method

Cloud computing is an emerging computing paradigm that promotes delivery of ap-
plications to users as services over the Internet while keeping the hardware, systems
software and system maintenance away from her [9]. Therefore, each BPF in the cloud
is distributed and independently deployed [10], as illustrated in (Figure 1).

Each BPF is specified with Business Process Family Models (BPFMs) consisting
of artifacts specifying the problem space, the solution space, and the mappings between
problem and solution spaces [18]. The solution space is typically a Business Process
Model Template (BPMTs) [19], i.e., superimposition of all business process variants.
The problem space, on the other hand, represents all possible features of family mem-
bers and typically is captured with feature models, a tree-like structure [20]. A BPF is
configured for each user by selecting the desired features of the family. A feature selec-
tion, with the help of mappings, forms the final business process for a particular user. In
the context of BPFs in the cloud, problem, solution, and mapping models are deployed
to an external location on the Internet, while each tenant has his own customized con-
figuration of the family, as shown in Figure 1.

SPLE generally consists of two life-cycles: Domain Engineering (DE) and Applica-
tion Engineering (AE) [21][1]. In short, DE aims at the development of common assets
(e.g. models, components, documentation) and configuration knowledge (typically fea-
ture models and mappings). AE is dedicated to the selection of appropriate features.

Our integration methodology considers integration of BPFs as a form of the DE. It
builds upon the framework proposed by Linden et al. [21] and is depicted in Figure 2.

DE consists of requirements engineering, domain design, domain realization and
domain testing. In our methodology, requirements engineering results in a fully inte-

CSWS2011 Proceedings - Poster 59



Fig. 2. Integration of families of service-oriented systems

grated feature model, while the domain design and domain implementation are one
phase that results in integrated BPF. Domain testing is out of the scope of this paper.

In the requirements engineering phase we propose the following activities:

1. Examination of relationships between features of independent families. For ex-
ample, in the integrated feature model, we can have features of different fami-
lies that represent identical business processes by intention, but their actual real-
izations (extensions) are different. Some other examples of relationships are that
can be found is that features represent business processes of different families
with the same intension and extension (they use the same service), or that they
are history related, meaning that one business process must be executed before
the other one. We base our relationships on the ones identified by Grossmann et
al. [22,23] (More on the relationships and their integration options can be found
at: https://files.semtech.athabascau.ca/public/TRs/TR-SemTech-03052011.pdf). To
automate this recognition we employ ontologies and Semantic Web technologie;

CSWS2011 Proceedings - Poster 60



Fig. 3. A feature model of Graph Product Line

2. Verification and Validation of relationships. In the process of defining integrated
feature models, there is a need for the validation of relationships between features
with target customers and developers of different families, and verification whether
the relationships are well specified, e.g., to recognize whether there are inconsis-
tencies in the integrated feature model;

3. Integration selection is an activity where an integration engineer selects the appro-
priate choices for integration. Every relationship between features does not uniquely
specify the configuration relationship, but rather provides a set of possible choices.
For example, the integration engineer might choose to have in the integrated fea-
ture model, two features that are identical by intension but different by realization
(extension). In such a case, the integration engineer might also choose to allow for
mutually exclusive configuration, or that both can appear in the final application.
The integration engineer selects this relationship from the set of available configu-
ration relationships 0;

4. Transformation is the final activity, where selected integration patterns and initial
feature models are inputs, and output is a feature model of the integrated families.

In the context of integration, domain design and domain implementation are the
same phase, because the outcome is a business process template of already implemented
families. We propose the same activities as in the requirements engineering model,
namely: 1)Examination of relationships between business processes in business pro-
cess models as proposed by Grossmann et al [22,23]; 3) Verification and Validation
of relationships for semantic and well-formedness; 3) Integration selection, i.e., the
selection of predefined integration options(e.g., the services with the same intention but
different extension can be integrated in a way that at runtime their results are accumu-
lated or that exactly one can be executed); 4) Transformation from input BPMTs to
the integrated BPMT.

3 Foundations

3.1 Feature Modeling

A feature model is a means for representing the possible configuration space of all the
products of a system product line (system family) in terms of its features. Typically, fea-
ture models are represented with feature diagrams in the form of a tree whose root node

CSWS2011 Proceedings - Poster 61



represents a domain concept, e.g., a domain application, and the other nodes concept
property, e.g., domain application functionality, modeled in a way to capture common-
alities and variability among product family variants. The rest of features are classified
as:

– Mandatory feature: the feature must be included in a product if its parent feature
is selected.

– Optional feature: the feature may or may not be included if its parent is selected.
– Or feature group: from a set of Or feature group, any non-empty subset of features

can be included if their parent feature is selected.
– Alternative feature group: from a set of alternative features, only one feature can

be included if their parent feature is selected.

Additional constraints are defined on the feature models, named integrity constraints.
Two main constraints are: includes – selection of a given feature requires the inclusion
of another feature; and excludes – that specifies mutual exclusion of two features. An
example of a feature model of Graph Product Line is given in Figure 3.

3.2 Semantically-enhanced Business Process Model Templates

As previously stated, a Business Process Model Templates is a superimposition of all
members of a BPF [19]. Web services are seen as main means for operationalization of
business processes and accordingly, BPMTs [2,24].

The main characteristic of Web services is that they can be deployed over large scale
networks such as the Web; hence, they need to and indeed carry machine processable
descriptions that properly inform other programs of their operations and how they can
be properly invoked. One of the limitations of contemporary Web services is that their
description lacks meaningful explanations or in other words semantic descriptions. Se-
mantic Web services add capability of describing structural and behavioral semantics
to Web services by providing the means to expressively annotate Web services with
shared conceptualizations in the form of ontological concepts [25]. Ontologies provide
agreed upon and formal domain specifications [16] based on Semantic Web markup
languages such as OWL and DAML and are shared by different software systems and
applications. Not only does this sharing of knowledge allow software systems to search
for suitable Web services based on syntactical matches, but to also consider semantic
relevance within the matchmaking process. BPMTs that use Semantic Web Services
as operationalizations, are called Semantically-enhanced Business Process Model Tem-
plates.

4 The proposed tool support

4.1 Feature Model Representations

Several different formats for storing and manipulating feature models have been pro-
posed in the software product line community including XToF, SXFM and TVL [26].
Although the representations of these serializations are different, the semantics of the
languages are quite similar and they can be easily transformed to one another. Within
our framework, Figure 4, we model feature models with Semantic Annotations for Fea-
ture Model Description Language (SAFMDL), and serialize them as profile for feature

CSWS2011 Proceedings - Poster 62



Fig. 4. The Onion Architecture for SAFMDL

modeling based on Web Ontology Language (OWL). However, AUFM Suite that sup-
ports our framework, provides mechanisms to convert to and from other serialization
into SAFMDL.

As shown in Figure 4, the core of SAFMDL is a Description Logic based model
specified with Feature Model Description Language (FMDL). FMDL is a feature mod-
eling profile that provides the standard concepts for developing a feature model. It is
modeled based on OWL and can essentially be seen as an ontology for feature model-
ing. The structure of FMDL consists of the required concept and property definitions for
instantiating a feature model, which corresponds to the feature modeling meta-model.
The instantiation of the feature modeling meta-model is performed by providing ontol-
ogy individuals (concept instances) for the FMDL concept definitions. Figure 5 depicts
the details of FMDL in the Protégé ontology editor. FMDL feature models can also
be developed within our AUFM Suite, which is a graphical Eclipse plugin for feature
modeling.

As shown in Figure 5, the structure of a feature model is based on the two main
concepts of Root and Feature, and two of its sub-concepts Mandatory and Optional.
These concepts are shown on the Class Hierarchy panel (Box 1). A new feature model
can be instantiated by providing individuals for each of these concepts. For instance, the
Algorithm and GraphType features have been added to this feature model as mandatory
features (Box 2). The relationships between the features are modeled through proper-
ties. The list of possible relationships between the features of a fetture model is shown
in Figure 3 (Box 4). For instance, it can be seen that Algorithm has a siblingRelation-
ship with both GraphType and Search features. It can also be seen that the Root of the
feature model is named GPL (Graph Product Line) and that Algorithm is one of the
direct children of the Root (Box 3).

The benefit of using DL-based feature models is that standard DL reasoning mecha-
nisms can be used to derive and validate feature model configurations and also extended
DL algorithms can even be used to detect and resolve inconsistencies within feature
models. Besides the exact syntax and semantics of FMDL, it provides an additional
advantage of providing grounds for being extended with additional capabilities without
requiring structural changes. Since, FMDL is based on OWL, additional information or
data can be added to it through the introduction of new Class or Property definitions.
This has been exploited to further extend FMDL to support the semantic annotation of
its elements, referred to as SAFMDL.

SAFMDL profile introduces three new properties that reference concepts within
external shared ontologies. These additional properties, selfModelReference, preCon-

CSWS2011 Proceedings - Poster 63



Fig. 5. The Structure of FMDL in Protégé

Fig. 6. Semantically annotating feature model elements

ditionModelReference, and postConditionModelReference allow each feature to be fur-
ther described by presenting what concept or notion the feature represents in the domain
of discourse, what other notions it relies on for being realized, and which other concepts
will be impacted by this feature, respectively. Given this capability, SAFMDL allows
designers to qualify their design with meaning and hence avoid ambiguity and enhance
communication, model sharing, better model realization, and finally integration. Fig-
ure 6 depicts an example where the Algorithm feature is grounded/annotated using the
Algorithm concept within the MONET ontology. MONET is an ontology for describing
and provisioning web-based mathematical services. With this annotation, the Algorithm
feature is now confined with the semantic meaning attached to Algorithm in MONET
and its scope is restricted by what defined clearly in that ontology.

4.2 Connecting Problem and Solution Spaces

As discussed earlier, we will need to move from the problem space (i.e., the feature
model) into the suitable solution space (i.e., BPMTs). The main challenge towards the
operationalization is to find the right Web services that both syntactically and semanti-
cally implement features that are available in a feature model.

Given that SAFMDL provides the means for describing feature models with seman-
tic descriptions, it is possible to create a correspondence between the problem space

CSWS2011 Proceedings - Poster 64



feature models and solution space semantic Web services. The semantic descriptions
shared between both spaces can be seen as glue that can enhance the discovery of
the most appropriate services for realizing the abstract software applications. In order
to operationalize abstract product representations of the problem space, here are three
sources of information that need to be completely integrated, namely 1) semantically
annotated feature models; 2) semantically annotated Web services; 3) the sources of the
semantic information,

These three sources of information are either expressed in a valid XML format or
through some extensions of the RDF triple format; therefore, appropriate XSPARQL [27]
queries can consolidate these sources of information and provide for the realization of
problem space models using Semantic Web services. If we return to the example from
Figure 6, and assume that a set of Web services is available to us that are annotated
using SAWSDL [28] with concepts from subsets of the MONET ontology. In the ex-
ample in Figure 7, we show that the Search feature from GPL can be operationalized
using XSPARQL. As seen in the process shown in Figure 7, the first step is to extract the
semantic annotation that describes the feature of interest (♣). This will provide the basis
to search for Web services that are also annotated similarly. The valuable aspect of onto-
logical semantic descriptions is that they provide meaningful hierarchical relationships;
therefore, even if two concepts are not identical, they can still be related lower down or
higher up the subsumption hierarchy. Concepts below another concept in the hierarchy
can be seen as further specializations of that concept and can hence be relevant in the
matchmaking process. For this reason, it is reasonable to look for Web services that are
either directly annotated with the semantic annotation of the feature of interest or other
concepts that are below it in the hierarchy (r). The last step is to explore the set of avail-
able Web services that are annotated with acceptable ontological concepts (♠) using a
suitable query. The outcome of this query is a list of Web services that have appropriate
matching semantic descriptions to the feature of interest (Search).An expert designer
or software developer would then need to review the matches and select the best one
to operationalize that feature. In Figure 7, we have only checked for matches based on
sfmdl:selfModelReference to save space but in reality checks also should be put in place
for pre and postconditions as well.

4.3 Recognizing Relationships

As previously mentioned, by employing ontologies and Semantic Web technologies,
all of our artifacts (feature models and business process templates) are annotated with
semantic descriptions. These semantic descriptions can also be used to automatically
derive the integration relationships between different features. For example, a similar
query to the one presented in Figure 6, can be used to search for the features represent-
ing the identical business process. The only change in the query is that it should search
for the exact match of the Algorithm concept.

In order to provide automatic recognition of interrelationships between feature mod-
els, we intend to provide a library of XSPARQL Queries, that automatically recognize
relationships between features in feature models and business processes in business pro-
cess templates. These queries are intended to be triggered in the Elicitation phase of the
Domain Requirements Engineering for identifying of relationships between features in
different feature models and in Domain Design and Implementation for finding of rela-
tionships between business processes in business process templates. Furthermore, more
soffisticated ontology based techniques for automatic recognition can be employed, like

CSWS2011 Proceedings - Poster 65



the ones used for service matchmaking [29,30] and business process matchmaking [31]
based on similarity metrics proposed by Dijkman et al. [32].

4.4 Implementation Aspects

To support software developers for working with our proposed framework, we have
started to implement the AUFM Suite - a chain of Eclipse based tools for development
of Semantically-enhanced Families of Business Processes. So far, we have implemented
the following tools:

– SAFDML Editor: This tool provides ontology representation of feature models, as
described in Section 4.1

– rBMPN tool: for modeling the composition of features (represented as activities)
using Business Process Modeling Notation 2.0 (BPMN2). Additionally, the tool
provides facilities for modeling business rules over BPMTs.

– S-AHP tool: This tool goes beyond the work presented in this paper, and is used
in AE phase of integrated BPF. The tool captures stakeholders’ preferences in the
terms of relative importance, and ranks features according using the implementa-
tion of our S-AHP algorithm [33].
For the next stage of our development, we are working to integrate the XSPARQL
language with our tooling support for formulating and executing queries on the
repository of semantic Web services.

5 Related Work

Up to this day, several formal approaches exist for composition of feature models and
solution space models. Feature model composition has been a topic of Acher et al. [15]
and Segura et al. [14]. Acher et al. [15] introduce a domain-specific language for inte-
gration of feature models with operators for merging and inserting. Segura et al. [14],
introduce an approach for automated merging of feature models, using graph transfor-
mations. In their work they provide a set of rules, and with the means of graph trans-
formation, they perform the merge. Beside the fact that both of these approaches are
focused only on feature models, they are formal and assume that there is a semantic
equality between features that are merged. Our work takes an engineering perspective
and assumes that there can be also different levels and semantics of equivalence. Due to
this fact, our approach is semi-automated, and does not take the developers out of the
process of integration. Rather it is an interactive process, where developers specify the
semantic interrelationships and choose between different integration options.

Similar to formal composition of feature models, there are several approaches for
formal composition of features in solution space models. Batory et al. [34] has intro-
duced also an algebraic framework for specification of composition of features. Sim-
ilarly, Erwig et al [12] also introduces a formal calculus for composition of different
features in solution space models. However, our work, goes beyond these approaches
and provides a semantics-based composition. Furthermore, Batory et al. and Erwig et
al. focus on composing features of a single SPL, while in our work we focus on inte-
gration of SPLs. Finally, Apel et al. [13][35] introduces a feature algebra for language
independent feature compositions. A feature is represented as a feature structure tree
(FST), a language independent representation of a subset of the abstract syntax trees.

CSWS2011 Proceedings - Poster 66



Fig. 7. A sample of XSPARQL Query for mapping problem and solution spaces

With this algebra, when two features are composed, they are merged only in the case
when they have the same name and type. Our integration, goes beyond just a name and
type based integration and facilitates semantics based integration.

To our knowledge, van Ommering was the first to observe composition (integra-
tion) of SPLs from the engineering perspective. In his work [36][37][38], he has in-
troduced a notion of product populations, a set of SPLs whose members share many
commonalities. In such context, (semi-) independent SPLs are developed by separated
intra-organizational teams and later integrated into one variant rich product population.
To support development of product population, van Ommerling introduces a lock-step
process and a component model. The component model supports integration with the
means of glue code. Our specification of interrelationships goes beyond glue code, and
enables semantic based specification of interrelationships and semi-automated integra-
tion based on these semantic correspondences.

Recently, Bosch et al. [39] have proposed different process models for development
and integration of SPLs in various global software engineering contexts. Our work fo-
cuses on the technical level of integration and can be applied in all engineering pro-
cesses proposed by Bosch et al.

6 Conclusions and Future Work

In this paper, we have described a semantically enabled approach to the integration of
Service Families in the Cloud. This task is a challenge specific to a leading edge en-

CSWS2011 Proceedings - Poster 67



vironment where software engineering techniques are currently breaking new grounds
along multiple dimensions: business processes evolve into service processes dynami-
cally deployed in the Cloud; software product lines evolve into service families, with
feature models being used to describe a more dynamic and flexible architectural style;
integration technologies developed for business processes need to be extended to fit the
service environment and so provide high level tool support in situations where tradi-
tional methods could not keep up.

We have described how a business process integration technology based on the se-
mantic classification of correspondences and selection of integration patterns can be
adapted to service families by using a process fragment classification approach for the
extended feature models describing the services. Furthermore, we demonstrate how on-
tologies and Semantic Web technologies can be employed to automatically identify
correspondences between business processes and features. We have given an example
and described the tool support that can be employed for these tasks.

In the future, we are going to focus on completing the tool support and evaluation
of the approach by applying it on realistic case studies.

Acknowledgments. This research was in part supported by Alberta Innovates –
Technology Futures through the New Faculty Award program,

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer (2005)

2. Papazoglou, M.: Whats in a service? In Oquendo, F., ed.: Software Architecture. Volume
4758 of LNCS. Springer (2007) 11–28

3. Lee, J., Muthig, D., Naab, M.: A feature-oriented approach for developing reusable product
line assets of service-based systems. J. of Systems and Software 83(7) (2010) 1123–1136

4. Medeiros, F.M., de Almeida, E.S., Meira, S.R.L.: SOPLE-DE: An Approach to Design
Service-oriented Product Line Architectures. In: Proc. of the 14th Int. Conf on SPLsd.
SPLC’10, Springer (2010) 456–460

5. Koning, M., Sun, C.a., Sinnema, M., Avgeriou, P.: Vxbpel: Supporting variability for web
services in bpel. Inf. Softw. Technol. 51 (2009) 258–269

6. van der Aalst, W.M.P., Dreiling, A., Gottschalk, F., Rosemann, M., Jansen-Vullers, M.H.:
Configurable process models as a basis for reference modeling. In: Proc. of BPM 2005
Workshops. Volume 3812 of LNCS. (2005) 512–518

7. Boffoli, N., Cimitile, M., Maggi, F.M.: Managing business process flexibility and reuse
through business process lines. In: ICSOFT 2009 - Proc. of the 4th Int. Conf. on Software
and Data Technologies, Vol. 2, Springer (2009) 61–68

8. Schnieders, A., Puhlmann, F.: Variability mechanisms in e-business process families. In:
Proc. of the 9th Int. Conf. on BIS. Volume 85 of LNI., GI (2006) 583–601

9. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Communications of
ACM 53(4) (April 2010) 50–58

10. van der Aalst, W.: Configurable services in the cloud: Supporting variability while enabling
cross-organizational process mining. In: On the Move to Meaningful Internet Systems: OTM
2010. Volume 6426 of LNCS. Springer (2010) 8–25

11. Bosch, J.: The challenges of broadening the scope of software product families. Communi-
cations of ACM 49 (December 2006) 41–44

12. Erwig, M., Walkingshaw, E.: The choice calculus: A representation for software variation.
ACM Trans. on SE and Methodology (to appear)

CSWS2011 Proceedings - Poster 68



13. Apel, S., Lengauer, C., Mller, B., Kstner, C.: An algebra for features and feature composition.
In: Alg. Meth. and Softw. Technology. Volume 5140 of LNCS. Springer (2008) 36–50

14. Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated merging of feature
models using graph transformations. In Lämmel, R., Visser, J., Saraiva, J.a., eds.: Gen. and
Transf. Techniques in SE, Springer (2008) 489–505

15. Acher, M., Collet, P., Lahire, P., France, R.: Composing feature models. In: 2nd Int. Conf.
on SLE (SLE 2009). Volume 5969 of LNCS., Springer (2010) 62–81

16. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.
Int. J. on Human-Computer Studies 43 (December 1995) 907–928

17. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (May 2001)
18. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and applications.

ACM Press/Addison-Wesley Pub. Co. (2000)
19. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on

superimposed variants. In: Proc. of the Int. Conf. on GPCE. LNCS, Springer (2005) 422–437
20. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.S.: Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute (1990)

21. Linden, F.J.v.d., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Springer (2007)

22. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior based integration of composite
business processes. In: BPM. Volume 3649 of LNCS. Springer (2005) 186–204

23. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Definition of business process integra-
tion operators for generalization. In: ICEIS (3), Springer (2005) 510–517

24. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer
(2007)

25. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Int. Sys. 16 (2001) 46–53
26. Boucher, Q., Classen, A., Heymans, P., Bourdoux, A., Demonceau, L.: Tag and prune: a

pragmatic approach to software product line implementation. In: Proc. of the IEEE/ACM
Int. Conf on Aut SW Eng. ASE ’10, ACM (2010) 333–336

27. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: Xsparql: traveling between the xml
and rdf worlds - and avoiding the xslt pilgrimage. In: Proc. of the 5th European Sem. Web
Conf. ESWC’08, Springer (2008) 432–447

28. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for wsdl and
xml schema. IEEE Internet Computing 11 (November 2007) 60–67

29. Kiefer, C., Bernstein, A.: The creation and evaluation of isparql strategies for matchmaking.
In: Proc. of the 5th European Sem. Web Conf. ESWC’08, Springer (2008) 463–477

30. Klusch, M., Kaufer, F.: Wsmo-mx: A hybrid semantic web service matchmaker. Web Intelli.
and Agent Sys. 7 (January 2009) 23–42

31. Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic process retrieval with
isparql. In: Proc. of the 4th E. Conf. on the Sem. Web. ESWC ’07, Springer (2007) 609–623

32. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of busi-
ness process models: Metrics and evaluation. Inf. Syst. 36(2) (2011) 498–516

33. Bagheri, E., Asadi, M., Gašević, D., Soltani, S.: Stratified analytic hierarchy process: Prior-
itization and selection of software features. In: The 14th Int. SPL Conf., Springer (2010)

34. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Proc. of the
25th ICSE. ICSE ’03, IEEE Computer (2003) 187–197

35. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebraic foundation for automatic
feature-based program synthesis. Sci. Comp. Prog. 75(11) (2010) 1022–1047

36. van Ommering, R., Bosch, J.: Widening the scope of software product lines from variation
to composition. In: Software Product Lines. Volume 2379 of LNCS. Springer (2002) 31–52

37. van Ommering, R.: Building product populations with software components. In: Proc. of
the 24th ICSE Conf. ICSE ’02, ACM (2002) 255–265

38. van Ommering, R.: Software reuse in product populations. IEEE Transactions on Software
Engineering 31 (July 2005) 537–550

39. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of software
product lines, global development and ecosystems. J. of Sys. and Softw. 83(1) (2010) 67–76

CSWS2011 Proceedings - Poster 69


	Towards Integration of Semantically Enabled Service Families in the Cloud



