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Abstract. The connection method earned good reputation in the field of 
automated theorem proving for around three decades, due to its simplicity, 
clarity, efficiency and parsimonious use of memory. This seems to be a very 
appealing feature, in particular in the context of Semantic Web, where it is 
assumed that the knowledge bases might be of arbitrary size. In this paper, I 
present a connection method especially tailored to infer over the description 
logic (DL) ALC. Our ALC connection method is formalized in sequent style, 
although matrices should be employed for practical reasons. 

1. Introduction 
The problem of reasoning over ontologies written in Description Logic (DL) [Baader et 
al 2003] has been receiving strong interest from researchers, particularly since the 
Semantic Web inception. Regarding this issue, the use of memory is certainly one 
important asset for a good reasoning performance. I am proposing a formalized 
inference system which seems adequate to address understandability and the use of a 
small amount of memory. Our inference system is based on the connection method 
(CM) [Bibel 1987], which is a simple, clear and effective inference method that has 
been used successfully over first order logic (FOL). Its main features clearly meet with 
the demands: (i) it keeps only one copy of each logical sentence in memory; and (iii) it 
does not derive new sentences from the stored ones. 

Definition 1 (Disjunctive normal form (DNF), clause, positive matricial form). A 
formula in DNF is a disjunction of conjunctions, being in the form 𝐶1 ∨ … ∨  𝐶𝑛, where 
each 𝐶𝑖 is a clause (or dual clause). Clauses are conjunctions of literals like 𝐿1 ∧ … ∧ 𝐿𝑚, 
also denoted as  {𝐿1, … , 𝐿𝑚}. Formulae can be also expressed in disjunctive clausal form 
as {𝐶1, … ,𝐶𝑛}. Formulae stated this way are also in positive matricial form, since they can 
be represented as a matrix. In the matrix, each clause occupies a column. 

Definition 2 (Skolemization). Instead of existential quantifiers, universal quantifiers 
(∀) are replaced by constants or Skolem functions, since I will work with the whole  
knowledge based negated (see next section). Variables in the resulting DNF are then 
(implicitly) existentially quantified. 

  I started with the Description Logic ALC (Attributive Concept Language with 
Complements) [Baader et al 2003], since it constitutes the foundations of many other 
DLs. I now present an ALC  normal form and the ALC CM calculus. 

2. An  ALC   Positive Matricial Normal Form 
To reach this normal form, the first two actions to be made over the axioms are: (i) 
splitting equivalence axioms of the form C ≡ D into two axioms C ⊑ D and D ⊑ C, and 
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(ii) converting all the axioms into a Negated Normal Form (NNF), in which negations 
occurs only on literals [Baader et al 2003]. Next, I define the normal form and 
impurities with regard to it. 

Definition 3 (ALC  disjunction, ALC conjunction). An ALC disjunction is either a 
literal, a disjunction  𝐸0 ⊔ 𝐸1 or an universal restriction  ∀𝑟.𝐸0 .  An ALC conjunction is 
either a literal, a conjunction 𝐸0 ⊓ 𝐸1 or an existential restriction ∃𝑟.𝐸0.  𝐸0 and  𝐸1 are 
arbitrary concept expressions. 
Definition 4 (ALC  pure disjunction). The set 𝑆𝐷 of ALC pure disjunctions is the 
smallest set where: (i) 𝐷0 ∈  𝑆𝐷 for every literal 𝐷0; (ii) If  𝐷0,𝐷1 ∈  𝑆𝐷, then 𝐷0 ⊔ 𝐷1 
∈  𝑆𝐷; and (iii) if 𝐷0 ∈  𝑆𝐷 then  ∀𝑟.𝐷0 ∈ 𝑆𝐷. An element 𝐷� ∈  𝑆𝐷 is an ALC  pure 
disjunction. An ALC  non-pure disjunction is an ALC disjunction that is not pure.  
Definition 5 (ALC pure conjunction). The set 𝑆𝐶 of ALC pure conjunctions is the 
smallest set where: (i) 𝐶0 ∈  𝑆𝐶 for every literal 𝐶0; (ii) if 𝐶0,𝐶1 ∈  𝑆𝐶   then 𝐶0 ⊓ 𝐶1 ∈
 𝑆𝐶; and (iii) if 𝐶0 ∈  𝑆𝐶 then ∃𝑟.𝐶0 ∈  𝑆𝐶. An element �̌̂� ∈  𝑆𝐶  is an ALC pure 
conjunction. An ALC  non-pure conjunction is an ALC conjunction that is not pure.  
Definition 6 (Impurity of a non-pure expression). Impurities of non-pure ALC DL 
expressions are either conjunctive expressions in a non-pure disjunction or disjunctive 
expressions in a non-pure conjunction. The set of impurities is called ALC impurity set, 
and is denoted by 𝑆𝐼. 
Example 1 (Impurities on non-pure expressions). 
The expression (∀𝑟. (𝐷0 ⊔ … ⊔ 𝐷𝑛 ⊔ (𝐶0 ⊓ … ⊓ 𝐶𝑚) ⊔ (𝐴0 ⊓ … ⊓ 𝐴𝑝)), a non-pure 
disjunction, contains two impurities: (𝐶0 ⊓ … ⊓ 𝐶𝑚) and �𝐴0 ⊓ … ⊓ 𝐴𝑝�. 
Definition 7 (Positive normal form). An ALC  axiom is in positive normal form iff it is 
in one of the following forms: (𝑖)�̂� ⊑ 𝐷���; (𝑖𝑖)𝐶 ⊑ ∃𝑟. �̂�;  and (𝑖𝑖𝑖) ∀𝑟.𝐷�  ⊑ 𝐶; where C 
is a concept name, �̂� a pure conjunction and 𝐷� a pure disjunction. 
   [Freitas et al 2011] contains ALC transformation algorithms to this normal form. 

2.1. Translation Rules for the normalization 
With all axioms in normal form, it is easy to map them both to FOL and to the matricial 
form, by applying the rules given in Table 1. Table 2 brings the mapping treatment of 
recursive sub-cases of existential and universal restrictions, when they occur inside any 
of the three normal forms. An improvement of the approach is, as the usual DL notation, 
we do not need variables, since all relations are binary.  

 In order to prove KB ⊨ α,  the whole knowledge base KB is negated during this 
transformation, once we wish to prove ¬KB ∨ α valid. Because of that, subsumption 
axioms of the form C ⊑ D, which are logically translated as C → D, because negated 
(¬(C → D), indeed), are now translated to C ∧ ¬D, instead of  ¬C ∨ D. Moreover, to 
establish a uniform set of rules to apply over formulae, we deal with  ¬𝛼 instead of 𝛼, 
so we consider formulae as ¬𝐴1∨ …∨ ¬𝐴𝑛∨ ¬¬𝛼  where 𝐴𝑖∈T  (axioms in the TBox). 
The translation rules can then be applied over ¬𝛼 and all 𝐴𝑖. 

 Regarding skolemization, one representational advantage of the approach resides 
in the clearer matrix representation of universally quantified roles’ (∀𝑟.𝐶 or in the 
matrices, the negated ∃𝑟.𝐶). This construct, by definition, has the interpretation 
(∀𝑟.𝐶)𝐼 = {∀𝑏, (𝑎, 𝑏) ∈ 𝑅𝐼 → 𝑏 ∈ 𝐶𝐼}. Hence, for an axiom of the form 𝐴 ≡ ∀𝑟.𝐶, the 
definition does not oblige concept A to dispose of instances – this is indeed a very 
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common error from DL users. But maybe it is not their fault: for instance, tableaux 
proofs over such axioms don’t stress this semantics, in the sense that it allows instances 
of A without any role instances from r associated to it. In the ALC CM, the matricial 
representation explicits this situation: either there are no role instances (¬𝑟) or when it 
has a role instance (a,b), b has to be an instance of concept C. 

Table 1. Translation rules to map ALC  into FOL positive NNF and matrices. 

Axiom type FOL Positive NNF 
mapping 

Matrix 

C ⊑ ∃r. Ĉ , where Ĉ =
1

n

i
i

A
=
 , 

with iA ∈ CS  (pure conjunction) 

(C(x)∧ ¬r(x,f(x))) ∨  
(C(x)∧¬ 1A (f(x))) 

v... v 
(C(x)∧¬ nA (f(x))) 

 

1 n

C CC

A Ar¬ ¬¬

 
 
 




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1

'
m

j
j

A
=
 , 

with ' jA ∈ DS  (pure disjunction) 

(¬r(x,f(x))∧¬C(x)) ∨  
(¬ 1'A (f(x))∧¬C(x)) 
v...v 

(¬ 'mA (f(x))∧¬C(x)) 
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¬
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Ĉ =
1
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i
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A
=
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'
m

j
j

A
=
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iA ∈ CS  (pure conjunction), 

' jA ∈ DS (pure disjunction) 
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1
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'

n
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A
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Table 2. Recursive sub-cases of existential and universal restrictions. 
Axiom type FOL Positive 

DNNF 
mapping 

NNF  
Positive  
Matrix  

Direct 
Matrix  

iA  is an existencial 
restriction: 

… ⊓ ∃r.A ⊓ ... ,  
with A ∈ CS  

(pure conjunction) 

... ∧ 
r(x,y)∧ 
A(y)∧ 

... 

( , )

( )

r x y

A y

 
 
 
 
  




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


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restriction: 
… ⊔ ∀r.A’ ⊔ …, 

with A’ ∈ CS  
(pure disjunction) 

…∧ 
r(x,y) ∧ 
¬A’(y) ∧ 

… 

( , )

'( )

r x y

A y¬
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 
 
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'

r
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 
 
 
 
  


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3. An ALC Connection Calculus in Sequent Style 

Definition 3 (Path, connection, unifier, substitution). A path is a set of literals from a 
matrix in which every clause (or column) contributes with one literal. A connection is a 
pair of complementary literals from different clauses, like {𝐿1𝜎 , ¬𝐿2𝜎}, where σ(𝐿1) 
(or 𝜎(𝐿2���))  is the most general unifier (mgu) between predicates 𝐿1and ¬𝐿2. σ is the set of 
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substitutions, which are mappings from variables to terms.  

Definition 4 (Validity, active path, set of concepts). An ALC formula represented as a 
matrix is valid when every path contains a connection {𝐿1, ¬𝐿2 }, provided that 𝜎(𝐿1) =
𝜎(𝐿2���). This is due to the fact that a connection represents the tautology 𝐿1𝜎 ∨ ¬𝐿2𝜎  in DNF. 
As a result, the connection method aims at finding a connection in each path, together 
with a unifier for the whole matrix. During the proof, the current path is called active 
path and denoted by ℬ. The set of concepts 𝜏 of a variable or instance x during a proof is 
defined by 𝜏(𝑥) ≝ {𝐶|𝐶(𝑥) ∈ ℬ} [Schmidt & Tishkovsky 2007]. 

Definition 5 (ALC connection sequent calculus). Figure 1 brings the rules in sequent 
style of the ALC connection calculus, adapted from [Otten 2010].  

𝐴𝑥𝑖𝑜𝑚 (𝐴𝑥) 
{ },𝑀,𝑃𝑎𝑡ℎ

 

𝑆𝑡𝑎𝑟𝑡 𝑅𝑢𝑙𝑒 (𝑆𝑡) 
𝐶2,𝑀, {}
𝜀,𝑀, 𝜀

 

𝑤ℎ𝑒𝑟𝑒 𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐾𝐵 ⊨ 𝛼,  𝐶2 𝑖𝑠 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1 ∈ 𝛼 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝑅𝑒𝑑) 
𝐶𝜎 ,𝑀,𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝐶 ∪ {𝐿1},𝑀,𝑃𝑎𝑡ℎ ∪ {𝐿2}
𝑤𝑖𝑡ℎ 𝜎(𝐿1) = 𝜎(𝐿2���)

 

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝐸𝑥𝑡) 
𝐶2𝜎\{𝐿2𝜎},𝑀,𝑃𝑎𝑡ℎ ∪ {𝐿1}      𝐶𝜎 ,𝑀,𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀,𝑃𝑎𝑡ℎ
 

𝑤𝑖𝑡ℎ  𝐶2 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1 ∈ 𝑀, 𝐿2 ∈ 𝐶2,𝜎(𝐿1) = 𝜎(𝐿2���), 

𝐶𝑜𝑝𝑦 𝑅𝑢𝑙𝑒 (𝐶𝑜𝑝) 
𝐶 ∪ {𝐿1},𝑀 ∪ {𝐶2

𝜇},𝑃𝑎𝑡ℎ ∪ {𝐿2}
𝐶 ∪ {𝐿1},𝑀,𝑃𝑎𝑡ℎ ∪ {𝐿2}  

𝑤𝑖𝑡ℎ 𝐿2 ∈ 𝐶2,𝜇 ← 𝜇 + 1,𝑎𝑛𝑑 �𝑥𝜇𝜎 ∉ 𝑁𝑂 𝑜𝑟 𝜏(𝑥𝜇𝜎� ⊈ 𝜏�𝑥𝜇−1𝜎 )�, 𝜎(𝐿1) = 𝜎(𝐿2���) (𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) 

Figure 1. The ALC connection calculus rules in sequent style (adapted from 
[Otten 2010]). 

 Blocking didn’t occur in the original CM due to FOL semi-decidability, but it 
consists in a common practice in DL to guarantee termination. Here, to assure 
termination, we have to check if the set of concepts 𝜏 associated to the variable  𝑥𝜇𝜎  (i.e., 
if the new 𝑥𝜇 was unified) of the new literal 𝐿2

𝜇 being created by the Cop rule is not 
contained in the set of concepts of the original x from 𝐿2(𝑥) (in the rule, 𝜏(𝑥𝜎)) 
[Schmidt & Tishkovsky 2007]. Examples of the ALC CM calculus, as well as an 
algorithm of the system based on [Bibel 1987] can be found at [Freitas et al 2010]. 

 In terms of complexity, the system is PSPACE in case of non-cyclical ontologies 
and EXPTIME for cyclical. Proofs of its completeness, soundness and termination are 
presented in [Freitas et al 2010]. 

Example 1 (ALC  connection calculus).  
Animal ⊓ ∃hasPart.Bone  ⊑ Vertebrate  
Bird ⊑ Animal ⊓ ∃hasPart.Bone  ⊓ ∃hasPart.Feather        
In FOL positive matricial clausal form, where the variables y and t were respectively 
skolemized by the function f(x) and the constant c, the formula is represented by   

⊨Bird ⊑ Vertebrate 
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{{Bird(x) ,¬Animal(x)}, {Bird(x) ,¬hasPart(x,f(x))}, {Bird(x) ,¬Bone(f(x))}, {Bird(x) 
,¬hasPart(x,g(x))}, {Bird(x) ,¬Feather(g(x))}, {Animal(w), hasPart(w,z), Bone(z), 
¬Vertebrate(w)}, {¬Bird(c)}, {Vertebrate(c))}}.  

  Figure 2 deploys the query proof. In the figure, literals of the active path are in 
boxes and arcs denote connections. For building a proof, we first choose a clause from 
the consequent (Start rule), say, the clause {¬Bird(c)} and a literal from it (¬Bird(c)).  

  

y 

 

( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c
Animal hasPart Bone hasPart Feather hasPart
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Figure 2. A connection proof example in matricial form. 

(c,y) 
 

c 

c 

c 

c 

c 

(c,y) 
 

(c,y) 
 

(c,y) 
 

y 

c 

1. 

2.

3. 

4. 

5. 

6 &7. 

c 

 
  Step 1 connects this clause with the first matrix clause. An instance or variable - 
representing a fictitious individual we are predicating about -, appears in each arc, for 
this connection, the instance c. The arrow points to literals to be checked in the clause 
(¬Animal in Step 1), that should be checked afterwards. After step 2, the connection 
{¬Animal, Animal} is not enough to prove all paths stemming from the other clause, the 
one with literal ¬Animal. In order to assure that, the remaining literals from that clause, 
viz hasPart, Bone and ¬Vertebrate, have still to be connected. Then, in step 3, when we 
connect hasPart, we are not talking about instance c any more, but about a relation 
between it and another variable or fictitious individual, say y (indicated  by (c,y)).  

  Until that moment, we were only applying the Extension rule. However, in step 
4, we use the Reduction rule, triggered by its two enabling conditions: (i) there is a 
connection for the current literal already in the proof; and (ii) unification can take place. 
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Unification would not be possible if we were referring to different individuals or 
skolemized functions (in ALC, equality among individuals is not necessary).  

  A small note on unification is necessary here, because it brings a small trick to 
the calculus. Since horizontal dashlines represent universal restrictions (∀𝑟.𝐶), the 
qualifier concept (C, represented as ¬𝐶 in the matrix) correspond to a skolemized 
concept (say C(f(c))). Therefore, it can only be unified with variables, but not with 
concrete individuals or other skolemized qualifier concepts. 

  In case the system is able to summon the query, the processing finishes when all 
paths are exhausted and have their connections found. In case a proof cannot be 
entailed, the system would have tried all available options of connections, unifiers and 
clause copies, having backtracked to the available options in case of failure. 

4. Conclusions and Future Work 
I have formalized a connection method to take on the DL ALC, by adapting the CM 
calculus formalized in sequent style from [Otten 2010] and including a new rule. I also 
introduced some notational improvements, the key one being the representation without 
variables. Of course, I plan to continue this work in many research directions, such as 
implementations, other DLs, Semantic Web, etc.  

 I intend to extend the work presented here to more complex description logic 
languages in a near future. Particularly, formalizations and implementations for the DLs 
EL++, SHIQ and SROIQ will be practically useful for applications related to the Semantic 
Web and for some other biomedical applications that I am involved in.  

 Last but not least, lean implementations written in Prolog, in the flavor of 
leanCop [Otten & Bibel 2003], that demand small memory space, can serve 
applications that are constrained in memory, such as stream reasoning in mobile 
applications, for instance. They are also in my research agenda. 
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