Answer Set Programming with Templates

Giovambattista Ianni, Giuseppe Ielpa, Adriana Pietramala, and Maria Carmela
Santoro

Mathematics Dept., Universita della Calabria,
Via Pietro Bucci, 30B
87036 Rende (CS), Italy

Abstract. This work' aims at introducing a new form of code reusabil-
ity in Answer Set Programming languages. It is shown how ASP can be
extended with ‘template’ predicate’s definitions by introducing a well-
suited form of second order logics, and an unfolding semantics. A pri-
mary feature of the language is the possibility to quickly introduce and
prototype new constructs, and new data structure primitives extending
ASP languages. We present language syntax and give its operational
semantics. We show that the theory supporting our ASP extension is
sound, and that expressiveness of ASP is preserved. Examples show how
the extended ASP language greatly increases declarativity, readability,
compactness of program encodings and code reusability.

1 Introduction

Answer Set Programming (ASP, in the following) research produced several, ma-
ture, implemented systems featuring clear semantics and efficient program eval-
uation [10,11,24,27,1,7,23,26,6]. Answer set programming has recently found
a number of promising applications: several tasks in information integration
require complex reasoning capabilities, which are explored in the INFOMIX
project (funded by the European Commission, project IST-2002-33570)[19]. An-
other EC-funded project, ICONS [18] (IST-2001-32429), employs a DLP system
as intelligent query engine for knowledge management. The Polish company Ro-
dan Systems S.A. integrates a DLP system in a tool for the detection of price
manipulations and unauthorized uses of confidential information, which is used
by the Polish securities and exchange commission. ASP solvers are used also for
decision support in the Space Shuttle [25], for product and software configuration
tasks [28,29], for model checking applications [16], and more.

Such engineering applications of answer set programming often require the in-
troduction of very repetitive pieces of standard code. Indeed, a major need of
complex and huge ASP applications such as [13,25] is dealing efficiently with
large pieces of such code. Furthermore, the non-monotonic reasoning commu-
nity has continuosly produced, in the past, several extensions of nonmonotonic

! This work has been partially funded by the EU project IST 2001-37004 (WASP),
IST 2001-32426 (ICONS) and IST 2001-33570 (INFOMIX).

240 Giovambattista Ianni et al.

logic languages, aimed at improving readability and easy programming through
the introduction of new constructs, employed, e.g., in order to specify standard
constraints, search spaces, data structures, new forms of reasoning, new special
predicates [2,9, 20], like, for instance, aggregate predicates [4].

The language DLPT we propose here has two purposes. First of all, DLPT
moves the ASP field towards industrial applications, where code reusability is
a crucial issue. Second, DLP7T aims at minimizing develop time in ASP sys-
tem prototyping. ASP Systems’ developers wishing to introduce new constructs
are made able to fast prototype their languages, make their language features
quickly available to the scientific community, and successively concentrate on
efficient (and long lasting) implementations. Therefore, it is necessary a sound
specification language for ASP extensions. This kind of language should fulfill
two important properties: first, it should be highly declarative, and second, its
expressiveness should not be higher than ASP itself. ASP itself proves to fit very
well for this purpose.

To these ends, the DLPT language introduces a form of second order logic
programming, intended in order to ease the job of extending Answer Set Pro-
gramming by means of new constructs. The proposed framework introduces the
concept of ‘template’ predicate, whose definition can be instantiated whenever
needed through binding to usual predicates.

Template predicates can be seen as a way to define intensional predicates by
means of a subprogram, where the subprogram is generic and reusable as many
times as necessary. This eases coding and improves readability and compactness
of ASP programs. For instance, the following template definition

template max[p(1)]1(1)

1{
exceeded(X) :- p(X),p(Y), Y > X.
max(X) :- p(X), not exceeded(X).
}

introduces a generic template program, defining the predicate max, intended to
compute the maximum value over the domain of a given unary predicate p. A
template definition may be invoked as many times as necessary, through template
atoms, like in the following program

:— max[weight (*)1(M), M > 100.
:— max[student (Sex,$,*)J(M), M > 25

Template definitions may be unified with a template atom in many ways. The
above program contains a plain invocation (max[weight (*)]1(M)), and a com-
pound invocation (max[student(Sex,$,*)] (M)). The latter allows to employ
max definition on a ternary predicate, discarding the second attribute of student,
and grouping values on the first attribute.

The semantics of the language is introduced through a suitable algorithm (the
Explode algorithm) which is able to produce, from a set of template definitions
and a DLP” program, an equivalent ASP program.

There are some important theoretical questions to be addressed, such as the
termination of the Explode algorithm, and the expressiveness of the DLPT

Answer Set Programming with Templates 241

language. It is a desirable property of the language to keep the same expressive
power and complexity of DLP. Indeed, we prove that it is guaranteed that
DLP7T program encodings are as efficient as plain DLP encodings, since unfolded
programs are just polynomially larger with respect to the originating program.
Benefits introduced by means of the proposed language can be resumed in the
following points:

— Improved declarativity and succinctness of the code;

— Code reusability and possibility to collect templates within libraries;

— Capability to quickly introduce new, predefined constructs;

— Rapid language prototyping: a language designer is made able to quickly
implement his framework, and then implement a final, efficient version, in a
second moment.

In sum, the main contributions of this work are, therefore:

— introducing the DLP” language, featuring ‘template’ predicate definitions.

— introducing the DLPT semantics, based on a suitable transformation algo-
rithm.

— studying DLP7 theoretical properties, such as termination of the transfor-
mation algorithm, and expressiveness;

— addressing knowledge representation issues, showing how predicate tem-
plates may be employed to easily introduce new constructs in ASP languages.

— providing an implementation of the DLPT language, based on a suitable
ASP solver.

The paper is structured as follows: the next section briefly gives syntax and
semantics of ASP and syntax of the language DLP”. Features of DLP” are then
illustrated by examples in section 3. Section 4 formally introduces the semantics
of DLPT. Theoretical properties of DLPT are discussed in section 5. In section
6 we describe architecture and usage of the implemented system. Eventually, in
section 7, conclusions are drawn.

2 Syntax of the DLPT language

We give a quick definition of the syntax and informal semantics of DLP 2 pro-
grams. We assume the reader to be familiar with basic notions regarding ASP
semantics. A thorough definition of concepts herein adopted can be found in [8].
A (DLP) rule r is a construct

a1 V -+ V ap :i— b1, -+ bk, not bry1, -, not bn,.
where a1,--- ,a, are standard atoms, bq,--- , by, are literals, and n > 0, m >
k > 0. The disjunction a3 V --- V a, is the head of r, while the conjunction

b1, ..., bk, not bgi1,...,n0t by, is the body of r. A rule having precisely one head
literal (i.e. n = 1) is called a normal rule. A rule without head literals (i.e. n = 0)
is usually referred to as an integrity constraint (or strong constraint).

? Disjunctive Logic Programming. With a slight loss of precision, from now on we will
employ DLP as a synonym for ASP.

242 Giovambattista Ianni et al.

A DLP program is a set of DLP rules. The semantics of a DLP program is
introduced through the Gelfond-Lifschitz transform as defined in [22]. Given
a DLP program P, we denote M (P) the set of stable models of P computed
according to the Gelfond-Lifschitz transform.

A DLPT program is a DLP program, where rules and constraints may contain
(possibly negated) template atoms. Definition of template atoms is provided in
the following of this section.

Definition 1. A template definition consists of two parts:

— A template header,

#template t[pi(a1), ..., pn(an)](ans1)

where a; are nonnegative integer values, and py, ..., p, are predicate names,
said in the following formal predicates. t is the template name.

— An associated DLP7 subprogram; at least a rule having ¢ within the head
must be declared; ¢ may be used within the subprogram as predicate name
of atoms of arity a1, whereas each predicate p;(1 < i < n) may be used
within atoms of arity a;.

For instance, the following is a valid template definition:

template subset[p(1)](1)
{

subset (X) v -subset(X) :- p(X).
}

Definition 2. A template atom is of the form:

where p1,...,p, are predicate names, and ¢ is a template name. Each X;(1 <
i < n) is a list of terms (referred in the following as compound list of terms). A
compound list of terms can contain either a variable name, a constant name, a
dollar ‘$’ (from now on, projection term) or a ‘*’ (from now on, parameter term).
Variable and constants are called standard terms. Each p;(X;)(1 < i < n) is
called compound or actual atom. A is a list of standard terms.

For instance, max[color($,*)](N) and c[e(X,Y,$) ,£(*)]1(A,B) are template
atoms.

3 DLPT by examples

In this section we show by examples the main advantages of template program-
ming. Examples put in evidence the easiness of providing a succinct and elegant
way for quickly introducing new constructs using the DLPT language.

Answer Set Programming with Templates 243

3.1 Aggregates

Aggregate predicates allow to represent properties over sets of elements. There
are several applications where aggregates problems encoding provide to the end
user an easier way to write programs with accuracy. Aggregate or similar special
predicates have been already built in several ASP solvers [4,27]: the next example
shows how to fast prototype aggregate semantics without taking into account of
the efficiency of a built-in implementation.

We recall here how to define a template which computes the maximum over the
set of values of a given unary predicate p, using the definition:

template max[p(1)](1)

{
max(X) :- p(X), not overcome(X).

overcome(X) :- p(X),p(Y),Y > X.

To show how max can be fruitfully employed, the next template defines a general
program able to count values of a given predicate p, provided it given an order
relation succ defined on the domain of p.

template count[p(1),succ(2)](1)
1{

partialCount(0,0) .

partialCount(I,V) :- not p(Y), succ(Y,I), partialCount(Y,V).
partialCount(I,V2):- p(Y), succ(Y,I), partialCount(Y,V), V2 = V+1.
count (M) :- max[partialCount($,*)](M).
}

It is worth noting how max is employed over the binary predicate partialCount,
instead of an unary one. Indeed, the ‘$’ and ‘*’ symbols are employed to project
out the first argument of partialCount.

3.2 Defining ad hoc search spaces

Template definitions may be employed to define at once the most common search
spaces, improving readability and succinctness of the resulting encoding. The
next two examples show how to define a predicate subset and a predicate
permutation, ranging, respectively, over subsets and permutations of the do-
main of a given predicate p. Such kind of constructs enriching plain Datalog
languages have been proposed, for instance, in [15,2].

template subset[p(1)](1)
{

subset (X) v -subset(X) :- p(X).
}

template permutationl[p(1)]1(2).

permutation(X,N) v -permutation(X,N) :- p(X),#int(N), count[p(*),>(*,*)J(N1), N <= Ni.
:— permutation(X,A),permutation(Z,A), Z <> X.
:— permutation(X,A),permutation(X,B), A <> B.
covered(X) :- permutation(X,A).
:— p(X), not covered(X).
}

244 Giovambattista Ianni et al.

Next we show how count and subset may be employed to succinctly encode
the k-cligue problem [14], that is, to find if there exists in a graph G a complete
subgraph containing at least & nodes. We assume a graph G is encoded through
the predicates node and edge.

in(X) :- subset[node(*)]1(X).
:— count [in(*),>(*,*)]1(X), K < k.
:— in(X),in(Y), X <> Y, not edge(X,Y).

As for the permutation template, it can be employed, for instance, in this en-
coding of the Hamiltonian Path problem (given a graph G, find a path touching
each node exactly once).

path(X,N) :- permutation[node(*)](X,N).
:— path(X,M), path(Y,N), not edge(X,Y), M = N+1.

3.3 Dealing with complex data structures

DLPY can be fruitfully employed in order to manage with complex data struc-
tures, such as, for instance, sets, dates, trees, etc.

Sets. Extending Datalog with Set programming is another matter of interest for
the ASP field. This topic has been already discussed (e.g. in [20, 21]), proposing
some formalisms aiming at introducing a suitable semantics with sets. It is fairly
quick to introduce set primitives using DLP”; a set S is modeled through the
domain of a given unary predicate s. Intuitive constructs like intersection,
union, or symmetricdifference, may be modeled as follows.

#template intersectionl[a(1),b(1)1(1).
{ intersection (X) :- a(X),b(X).
itemplate unionf[a(1),b(1)I(1).
! union(X) :- a(X).

union(X) :- b(X).
itemplate differencela(1),b(1)1(1)
! difference(X) :- a(X), not b(X).
itemplate symmetricdifference[a(1),b(1)](1)
! symmetricdifference(X) :- union[a(*),b(*)](X),

not intersection[a(*),b(x)1(X).

Dates. Managing data types dealing with actual values of time is another im-
portant matter in engineering applications of DLP. For instance, in [17], it is
very important to reason on compound records containing date values. The fol-
lowing example template shows how to introduce a reusable construct dealing
with dates stored using three different attributes of a given relation (an usual
(day, month, year) 3-tuple).

Answer Set Programming with Templates 245

#template before[datel(3),date2(3)](6)

1{
before(D,M,Y,D1,M1,Y1) :- datel(D,M,Y), date2(D1,M1,Y1), Y < Y1.
before(D,M,Y,D1,M1,Y1) :- datel(D,M,Y), date2(D1,M1,Y1), Y == Y1,
M < M1.
before(D,M,Y,D1,M1,Y1) :- datel(D,M,Y), date2(D,M1,Y1), Y == V1,
M =M1, D <D1.
}

3.4 Reusing code

Template programming can become a very useful feature in applications where it
is necessary to compact repetitive pieces of code. We consider a planning program
for the Space Shuttle Reaction Control System presented in [25] and written in
SModels [27]. The DLV team is experimenting a porting of this program under
the DLV system [13], and under DLPT. Here is a sketch from the program:

#template ready_to_fire_conditions[propulsor_type(2)](2)

{
ready_to_fire_conditions(J,T) :- propulsor_type(J,R), time_slot(T),
tank(TK1,R), tank(TK2,R), TK1 != TK2,
is_pressurized_by(J,TK1,T),
is_pressurized_by(J,TK2,T),
not is_damaged(J).
}

the above template is employed to remove a set of repeated rules, which are
changed this way

fire_jet(J,T) :- ready_to_fire_conditions[jet(*,*)]1(J,T).
fire_vernier(J,T) :- ready_to_fire_conditions[vernier(¥,*)]1(J,T).

4 Semantics of DLPT

The semantics of the language is given through a suitable explosion algorithm.
The Explode algorithm carries out the job of replacing groups of template
atoms, having the same signature (whose definition is provided next), and oc-
curring in a given DLPT program, with corresponding atoms referred to a new
intensional predicate, whose definition is provided through the introduction of
new rules computed from the corresponding template definition.

Definition 3. Given a template atom t, its template signature s; is given by
replacing each standard term with a conventional (mute variable) ‘.’ symbol.

For instance, max[p(*,S,$)] (M) has the same signature (max[p(*,_,$)1()
as max[p(*,a,$)] (H).
4.1 The Explode algorithm

It is given a DLP7T program P and a set of template definitions 7. The Explode
algorithm updates P by adding new rules and eliminating template atoms. The
output of the algorithm is a DLP program. Let R the set of template atoms

246 Giovambattista Ianni et al.

occurring within P. It is given a stack of signatures S, which will contain the
set of signatures to be processed, and a set of signatures U, which will contain
the set already processed signatures. S is initially filled up with each template
signature occurring within P, while U is initially empty.

Explode(Input: a DLP” program P, a set of template definitions R.
Outputs: P’ in DLP form)
begin
push all the template signatures occurring in P in S;
U =0;
while(S is not empty) do
pop a template signature s from S;
Unfold(s);
U=UU{s}

end

Given a signature s, the Unfold algorithm generates from the template definition
t associated to s a program F; ; which is added to P. S is updated with new
template signatures that may be introduced in P, during the Unfold operation.

Unfold (Input: a signature s. Updates P and S)
begin
if(seU)
given the template definition ¢ associated to s, P = P U Py s;
for each r € P
for each template atom a € r
if a has signature s
replace a with the standard atom a; .
end

We show next how P ; and a; s are built.
Let the t header be

tlfila1), .- fa(an)](an+1) (1)
and 7 be its subprogram. Let s be
tla1(X1), .-, an(Xn)](Xp41) (2)

Given a compound list X of terms, let X; denote the jt* term of X; let fr(X)
a list of |X| fresh variables Fx 1,..., Fx,x|; let st(X),pr(X) and pa(X) be the
sublist of (respectively) standard, projection and parameter terms within X.

Building P, s. The program P, , is built in two steps. On the first step, P; ; is
enriched with a set of rules, intended in order to deal with projection variables.
For each 4, we introduce a predicate af and we enrich P;; with the auxiliary
rule af(X}) « a;(XY), where:

Answer Set Programming with Templates 247

— X/ is built from X; substituting each term belonging to pr(X;) with a
‘. symbol, substituting pa(X) with a fresh variable P,(1 < h < pa(X)),
and substituting each term Xj;; belonging to st(X) with a fresh variable
Si(1< k < st(X));

- X; is then set to Sl, ceey Slst(X)|>P17 . 7-P\pa(X)\-

For instance, given the signature s’ =max[student ($,_,*)] (_) and the example
template definition given in Definition 1, it is introduced the rule:

student_s’ (X,Y) :- student(_,X,Y).

In the second step, for each rule or constraint ¢, belonging to 7, we create a new
clause of P, ; where each atom a of ¢, is modified this way:

1. If a is f;(Y) where f; is a formal predicate, it is substituted with the atom
ai(Y'"). Y'is set to fr(st(a;))|Y;

2. if a is a standard atom p(Y), it is substituted by an atom p°(Y’), where
Y' = fr(st(Xy))]...|fr(st(X,)|Y.

3. if a is a template atom, each compound atom in it is substituted according
with point 2 above, obtaining a template atom a', then the signature of o’
is pushed in S.

Building ats. Assume a template atom referred to the definition ¢ is in the
form t[a1(X1), -- ., an(Xpn)](Xp+1). Then it is substituted with a®(X’), where
X' = st(Xy)] ... |[st(X,)]Y.

An execution example of the Explode algorithm is given in Section 6. We are
now able to give the formal semantics of DLPY.

Definition 4. Given a DLP? program P, and a set of template definitions
T, let P' the output of the Explode algorithm on input (P,T). Let H be the
Herbrand base of P. Given a stable model M € M (P'), then we define H N M
as a stable model of P.

5 Theoretical properties of DLPT

The explosion algorithm eliminates template atoms from a DLP7 program P,
producing a DLP program P’. It is very important to investigate about two
theoretical issues:

— Finding whether and when the Explode algorithm terminates; in general,
we observe that, the explosion algorithm may not terminate. Anyway, we are
able to prove that it can be decided in polynomial time whether Explode
terminates on a given input.

— Establishing whether DLP7 programs are more expressive than DLP. In
particular, we are able to prove that P’ is polynomially larger than P. Thus
DLPT keeps the same expressive power as DLP. We observe that it is a
desirable property of the language to keep the same expressive power and
complexity of DLP. Indeed, we are guaranteed that DLPT program encod-
ings are as efficient as plain DLP encodings, since unfolded programs are
reasonably larger with respect to the originating program.

248 Giovambattista Ianni et al.

Definition 5. It is given a DLP” program P, and a set of template definitions
T. The dependency graph Gr.p = (V, E) encoding dependencies between tem-
plate atoms and template definitions is built as follows. Each template definition
t € T will be represented by a corresponding node v; of V. V' contains a node
up associated to P as well. E will contain a direct edge (ug, vy) if the template ¢
contains a template atom referred to the template ¢’ inside its subprogram (as for
the node referred to P, we consider the whole program P). Let Gr,p(u) C Gr.p
be the subgraph containing nodes and arc of Gr p reachable from u.

Theorem 1. It is given a DLPT program P, and a set of template definitions T.
It can be decided in polynomial time whether the Explode algorithm terminates
when P and T are taken as input.

Proof. It is easy to see that Explode terminates iff Gr,p(up) is acyclic. Indeed,
consider that each operation of unfolding corresponds to the visit of an arc
of Gr,p(up). If Gr,p(up) acyclic, Explode behaves like an in-depth, arc visit
algorithm, where no arc is visited twice.

Viceversa, if Gr,p(up) contains some cycle u,v1,...,vn,u, an infinite series of
new signatures will be produced and queued for processing. Indeed, assume each
arc (u,v1), (V1,02),...,(Vs,u) has been processed. After the (v,,u) processing,
the arc (u,v;) will be re-enqueued with a new signature, not present in the set
of used signatures U, thus causing an infinite loop.

Definition 6. A set of template definitions T is said nonrecursive if for any
DLP? program P, the subgraph Gr,p(up) is acyclic.

Proposition 1. A set of template definitions T is nonrecursive iff G,y is acyclic.

Theorem 2. It is given a DLPT program P, and a nonrecursive set of tem-
plate definitions T'. The output P' of the Explode algorithm on input (P,T) is
polynomially larger than P and T.

Proof. We simply observe that each Unfold operation adds to P a number of
rules/constraints whose overall size is bounded by the size of T'. If T' is nonrecur-
sive, the number of Unfold operations carried out by the Explode algorithm
corresponds to the number of arcs of Gr p. The number of arcs of Gr,p is
bounded by the overall size of T and P. Thus the size of P’ is O(|T|(|T| + |P])).

Corollary 1. DLPT has the same expressive power as DLP.

Proof. (Sketch). It is proved in [3] that plain DLP programs capture the X7
complexity class. DLPT programs may allow to express more succinct encod-
ings of problems. Anyway, since unfolded program produced by the Explode
algorithm are polynomially larger only, and DLP7T semantics is defined in term
of the equivalent, unfolded, DLP program, DLPT has the same expressiveness
properties as DLP.

Answer Set Programming with Templates 249

DLp" DLP’ DLp" ASP ASP Collection of Filtered
Program PREPARSER Internal INFLATER | Program SOLVER Models IROSIPARSzA: Models

Format

Fig. 1. Architecture of the DLPT compiler

6 System architecture and usage

The DLPT language has been successfully implemented on top of the DLV
system [10-12], although other ASP solver may fruitfully serve the purpose. The
current version of the language is available through the DLPT Web page [5].
The overall architecture of the system is shown in Figure 1. The DLP7 system
work-flow is as follows. A DLP? program P, containing template atoms and
template definitions is sent to a DLPT pre-parser, which performs syntactic
checks (included nonrecursivity checks), and builds an internal representation of
the DLPT program. The DLP7T Inflater implements the Ezplode Algorithm and
produces an equivalent DLV program P’'; P’ is piped towards the DLV system.
The set of models M of P', computed using DLV, is then converted in a more
natural format through the Post-parser module; the Post-parser filters out from
M informations about internally generated predicates and rules.

For instance, assume the following DLP7 program is given in a text file named
example.dlt:

person(riccy,f,29). person(gibbi,m,25). person(peppe,m,28).
person(kali,m,27). person(paddy,f,26).

#template max[p(1)](1)
{
exceeded(X) :- p(X),p(Y), Y > X.
max(X) :- p(X), not exceeded(X).
}
oldest(Name,Sex,Age) :- max[person($,$,*)](Age), person(Name,Sex,Age).
older_sex(Name,Sex,Age) :- max[person($,Sex,*)](Age), person(Name,Sex,Age).

The DLP7 system is invoked through a shell command like
$ dlvt example.dlt

The d1lvt executable accepts any command line option proper of the DLV exe-
cutable. The DLV executable is automatically invoked with these options on a
text file containing the output of the Fzplode algorithm, which contains pieces
of code like

person_3(Var0) :- person(_,_,Var0).

max_2(X) :- person_3(X), not exceeded_1(X).

exceeded_1(X) :- person_3(X), person_3(Y), >(Y,X).
oldest(Name,Sex,Age) :- max_2(Age), person(Name,Sex,Age).

person_1(Sex,VarQ) :- person(_,Sex,Var0).

max_0(Sex,X) :- person_1(Sex,X), not exceeded_0(Sex,X).
exceeded_0(Sex,X) :- person_1(Sex,X), person_1(Sex,Y), >(Y,X).
older_sex(Name,Sex,Age) :- max_0(Sex,Age), person(Name,Sex,Age).

250 Giovambattista Ianni et al.

The former group of rules represents the inline expansion of the template atom
max [person($,$,*)] (Age), whereas the latter group corresponds to the expan-
sion of the atom max[person($,Sex,*)] (Age). Note that another interesting
feature of DLP7 is here put in evidence, i.e. the capability to employ a template
definition grouping by different values of an attribute (e.g. grouping ages by sex).
The output of the call to the DLV system contains one model containing a lot
of redundant information:

{person(riccy,f,29), ..., person(paddy,f,26), oldest(riccy,f,29),
older_sex(riccy,f,29), older_sex(peppe,m,28), max_2(29),

max_0(f,29), ..., person_1(m,28), exceeded_0(f,26), ..., exceeded_0(m,27),
person_3(25), ..., person_3(29), exceeded_1(25), ..., exceeded_1(28)}

Anyway, models are presented to the user after the filtering step, which outputs:

{person(riccy,f,29), ..., person(paddy,f,26),
oldest(riccy,f,29), older_sex(riccy,f,29), older_sex(peppe,m,28)}

7 Conclusions

We presented the DLP” language, an extension of ASP allowing to define tem-
plate predicates. The semantics of the language has been introduced through
a suitable and sound transformation algorithm. The proposed language is, in
our opinion, very promising: we plan to further extend the framework, and, in
particular, we are thinking about a) generalizing template definition in order to
allow safe forms of recursion between template definitions, b) introducing new
forms of template atoms in order to improve reusability of the same template
definition in different contexts, ¢) extending the template definition scheme us-
ing standard languages such as C++. We would like to thank Francesco Calimeri,
Nicola Leone and Luigi Palopoli for their fruitful remarks.

References

1. C. Anger, K. Konczak, and T. Linke. NoMoRe: A System for Non-Monotonic Rea-
soning. In Logic Programming and Nonmonotonic Reasoning — 6th International
Conference, LPNMR’01, Vienna, Austria, September 2001, Proceedings, number
2173 in Lecture Notes in AI (LNAI), pages 406-410. Springer Verlag, September
2001.

2. M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An ex-
ecutable specification language for solving all the problems in NP. Computer
Languages, Elsevier Science, Amsterdam (Netherlands), 26(2-4):165-195, 2000.

3. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys, 33(3):374-425, 2001.

4. T. Dell’ Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions in
disjunctive logic programming: Semantics,complexity,and implementation in DLV.
International Joint Conference on Artificial Intelligence (IJCAI 2003). To appear.

5. The DLPT web site. http://dlpt.gibbi.com.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.

23.

24.

Answer Set Programming with Templates 251

D. East and M. Truszczyriski. dcs: An implementation of DATALOG with Con-
straints. In Proceedings of the 8th International Workshop on Non-Monotonic
Reasoning (NMR’2000), Breckenridge, Colorado, USA, April 2000.

U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks
using Quantified Boolean Formulas. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI’00), July 80 — August 8, 2000, Austin,
Texas USA, pages 417-422. AAATI Press / MIT Press, 2000.

T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using
the DLV System. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages
79-103. Kluwer Academic Publishers, 2000.

T. Eiter, G. Gottlob, and N. Leone. Abduction from Logic Programs: Semantics
and Complexity. Theoretical Computer Science, 189(1-2):129-177, December 1997.
W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database Optimization
Techniques for Nonmonotonic Reasoning. In Proceedings of the 7th International
Workshop on Deductive Databases and Logic Programming (DDLP’99), pages 135—
139. Prolog Association of Japan, September 1999.

W. Faber, N. Leone, and G. Pfeifer. Experimenting with Heuristics for Answer Set
Programming. In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI) 2001, pages 635—640, Seattle, WA, USA, August
2001. Morgan Kaufmann Publishers.

W. Faber and G. Pfeifer. DLV homepage, since 1996. http://www.dlvsystem.com/.
S. Galizia. Generazione automatica di manovre per lo space shuttle mediante la
programmazione logica disgiuntiva. Joint Conference on Declarative Programming
APPIA-GULP-PRODE 2008. To appear.

M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

S. Greco and D. Sacca. NP optimization problems in datalog. International Sym-
posium on Logic Programming. Port Jefferson, NY, USA, pages 181-195, 1997.
K. Heljanko and I. Niemeld. Bounded LTL Model Checking with Stable Models.
In Logic Programming and Nonmonotonic Reasoning — 6th International Confer-
ence, LPNMR’01, Vienna, Austria, September 2001, Proceedings, number 2173 in
Lecture Notes in AI (LNAI), pages 200-212. Springer Verlag, September 2001.

G. Ianni, F. Calimeri, V. Lio, S. Galizia, and A. Bonfa. A reasoning system for
managing web ontologies and agent information exchange. Joint Conference on
Declarative Programming APPIA-GULP-PRODE 2003. To appear.

The ICONS web site. http://www.icons.rodan.pl/.

The Infomix web site. http://www.mat.unical.it/infomix.

G. M. Kuper. Logic programming with sets. Journal of Computer and System
Sciences, 41(1):44-64, 1990.

N. Leone and P. Rullo. Ordered logic programming with sets. Journal of Logic
and Computation, 3(6):621-642, 1993.

V. Lifschitz. Foundations of Logic Programming. In G. Brewka, editor, Principles
of Knowledge Representation, pages 69-127. CSLI Publications, Stanford, 1996.
N. McCain and H. Turner. Satisfiability Planning with Causal Theories. In Pro-
ceedings Sizth International Conference on Principles of Knowledge Representation
and Reasoning (KR’98), pages 212-223. Morgan Kaufmann Publishers, 1998.

I. Niemeld. Logic programming with stable model semantics as constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241—
273, 1999.

252

25.

26.

27.

28.

29.

Giovambattista Ianni et al.

M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog
Decision Support System for the Space Shuttle. In Proceedings of the 1st In-
ternational Workshop on Practical Aspects of Declarative Languages (PADL’99),
number 1551 in Lecture Notes in Computer Science, pages 169-183. Springer, 1999.
P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A System for
Efficiently Computing Well-Founded Semantics. In Proceedings of the 4th Inter-
national Conference on Logic Programming and Non-Monotonic Reasoning (LP-
NMR’97), number 1265 in Lecture Notes in AI (LNAI), pages 2-17, Dagstuhl,
Germany, July 1997. Springer Verlag.

P. Simons. Eztending and Implementing the Stable Model Semantics. PhD thesis,
Helsinki University of Technology, Finland, 2000.

T. Soininen and I. Niemeld. Developing a declarative rule language for applications
in product configuration. In Proceedings of the 1st International Workshop on
Practical Aspects of Declarative Languages (PADL’99), number 1551 in Lecture
Notes in Computer Science, pages 305-319. Springer, 1999.

T. Syrjanen. A Rule-Based Formal Model for Software Configuration. Techni-
cal Report Ab5, Digital Systems Laboratory, Department of Computer Science,
Helsinki University of Technology, Espoo, Finland, 1999.

