
Interactively Mapping Data Sources into the
Semantic Web

Craig A. Knoblock1, Pedro Szekely1, Jose Luis Ambite1, Shubham Gupta1,
Aman Goel1, Maria Muslea1, Kristina Lerman1, and Parag Mallick2 ?

1 University of Southern California
Information Sciences Institute and Department of Computer Science

{knoblock,pszekely,ambite,shubhamg,amangoel,mariam,lerman}@isi.edu,

2 Stanford University
Department of Radiology
paragm@stanford.edu

Abstract. The Linked Open Data continues to grow rapidly, but a limi-
tation of much of the data that is being published is the lack of a semantic
description. While there are tools that help users to quickly convert a
database into RDF, they do not provide a way to easily map the data into
an existing ontology. This paper presents an approach that allows users
to interactively map their structured sources into an existing ontology
and then use that mapping to generate RDF triples. This approach au-
tomatically generates a mapping from the data source into the ontology,
but since the precise mapping is sometimes ambiguous, we allow the user
to interactively refine the mappings. We implemented this approach in a
system called Karma, and demonstrate that the system can map sources
into an ontology with minimal user interaction and efficiently generate
the corresponding RDF.

1 Introduction

The Linked Open Data cloud contains over 28 billion triples. Many of these
triples are published directly from existing databases using tools such as D2R
[5], which makes it very easy to convert a large relational database into a cor-
responding set of triples. This conversion process uses the structure of the data
as it is organized in the database, which may not be the most useful structure
of the information in RDF. But either way, there is often no explicit semantic

? This research is based upon work supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Air Force Research Laboratory (AFRL)
contract number FA8650-10-C-7058. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, AFRL, or the U.S.
Government.

2 Knoblock et al.

description of the database and it requires a significant effort if one wants to
do more than simply convert a database into RDF. The result of the ease with
which one can publish data into the Linked Open Data is that there is lots of
data published as RDF triples and remarkably little in the way of semantic de-
scriptions of much of this data. Over the years a tremendous amount of effort has
gone into languages, ontologies, and reasoning engines for the Semantic Web, so
the next big challenge for Linked Open Data is how to bring more semantics to
Linked Data so that it can be more effectively utilized.

In this paper, we present an approach to interactively mapping data sources
into the Linked Open Data cloud with respect to a given ontology. In many
cases, the information stored in a database or on a Web page will lack any type
of semantic description of the data and will often not even be organized in a
way that would make the most sense for representing the data in RDF. The
idea behind our approach is to bring the semantics into the conversion process
such that the process of converting a data source results in a set of RDF triples
that are linked to an ontology. Users can define their own ontology or bring in
an existing ontology that may already have been used to describe other related
data sources. The advantage of this approach is that it allows the source to be
transformed in the process of creating the RDF triples and makes it possible to
express the relationship of the resulting RDF triples to other sources.

Our approach to mapping data sources into semantically-grounded RDF is
based on our past work on performing data integration tasks by example [18].
The contribution of this paper is an interactive approach that allows a user to
quickly and easily define the mapping from a source into a domain ontology.
There is other work, such as R2R [4] and W3C’s R2RML [6], that define lan-
guages for specifying mappings between sources, but none of this work addresses
the problem of how these mappings are defined. In this work, Karma attempts
to automatically build a model of a source, but since there may not be sufficient
information to do so, the system allows a user to interactively refine the results.
The system first identifies the semantic classes of the data and then builds a
model of the relationships between those classes. Thus, as users perform the ex-
traction, cleaning, and integration, they are also building a rich semantic model
of the source and the relationship to a domain ontology. In the final step, when
users publish the data as RDF, it conforms to the domain ontology.

2 Motivating Example

The bioinformatics community has produced a growing collection of databases
with vast amounts of data about diseases, drugs, proteins, genes, etc. Nomen-
clatures and terminologies proliferate and significant efforts have been under-
taken to integrate these sources. One example is the Semantic MediaWiki Linked
Data Extension (SMW-LDE) [2], designed to support unified querying, naviga-
tion, and visualization through a large collection of neurogenomics-relevant data
sources. This effort focused on integrating information from the Allen Brain Atlas

Interactively Mapping Data Sources into the Semantic Web 3

(ABA)3 with standard neuroscience data sources. Their goal was to “bring ABA,
Uniprot4, KEGG Pathway5, PharmGKB6 and Linking Open Drug Data [13]
data sets together in order to solve the challenge of finding drugs that target
elements within a disease pathway, but are not yet used to treat the disease.”

keggDrugId

label
alternativeLabel

keggGeneId

keggDiseaseId

keggPathwayId
description

abaGeneId
entrezGeneId

uniprotId

geneSymbol

Pathway
Drug

Gene

Thing

Disease causes

disrupts
involves

isCausedBy

isDisruptedBy

isInvolvedIn

isTargetedBy

isTreatedBy

treats

targets

1, 2 3 4, 7, 8 9 5, 10, 11 12 6, 13, 14 15

1. :Pathway/Accession_Id/PA2039 a :Pathway;
2. :Accession_Id "PA2039";
3. :Label "Methotrexate Pathway";
4. :Involves :Gene/Accession_Id/PA267;
5. :IsTargetedBy :Drug/Accession_Id/PA452621 ;
6. :IsDisruptedBy :Disease/Accession_Id/PA443434.
7. :Gene/Accession_Id/PA267 a :Gene;
8. :Accession_Id "PA267";
9. :Label "ABCB1".

10. :Drug/Accession_Id/PA452621 a :Drug;
11. :Accession_Id "PA452621";
12. :Label "antineoplastic agents".
13. :Disease/Accession_Id/PA443434 a :Disease ;
14. :Accession_Id "PA443434";
15. :Label "Arthritis, Rheumatoid" .

Fig. 1. Example ontology (black text represents classes and object properties, lighter
grey text and grey arrows represent data properties), a structured source that must be
aligned to the ontology, and the RDF generated for the first row in the table.

We use the same scenario to illustrate and evaluate our contributions, com-
paring our results to the published SMW-LDE results. Figure 1 shows the on-
tology that was used in the SMW-LDE study, shows an example of one of the

3 http://www.brain-map.org/
4 http://www.uniprot.org/
5 http://www.genome.jp/kegg/pathway.html
6 http://www.pharmgkb.org/

4 Knoblock et al.

sources that had to be aligned to the ontology and converted to RDF, and shows
the RDF generated for the first row in the table. The task is to construct formal,
executable mappings between several such tables and the ontology, and then use
the mappings to generate RDF for each row.

To define the mapping, we must map each column of data to a class in the on-
tology. Then, we must select links in the ontology to represent the relationships
between the columns of data. For example, the Accession ID column represents
Pathway identifiers, so we map it to the Pathway class. The Name corresponds
to the label property of Pathway, so we map it to the class Thing, and select the
label link to represent the relationship between Pathway and Thing (note that in
the diagram we show label as a property of Thing, which is inherited by all other
classes). The numbers at the bottom of the table indicate the RDF statements
that used the data. Several columns give rise to several RDF statements because
in addition to recording a fact, they give rise to statements that define relation-
ships among objects. For example, statement 4 records the involves relationship
between Pathway and Gene. It is important to note that, in general, these re-
lationships cannot always be computed automatically, and knowledgeable users
must resolve ambiguities. For example, the Gene Accession Id could be re-
lated to Disease via the causes relationship instead or in addition to the involves
relationship to Pathway. However, many usage scenarios involve mapping multi-
ple sources to the same ontology, and it becomes possible to learn parts of the
mapping and to leverage the structure of the ontology to help users produce the
desired mappings quickly.

3 Mapping Data Sources into RDF

Our approach for mapping data sources into RDF is illustrated in Figure 2. The
inputs to the process are an OWL ontology of the user’s choice, the data sources
that the user wants to map to the ontology, and a database of semantic types
that the system has learned to recognize based on prior uses of the tool. The main
output is a collection of RDF triples that represent the contents of the source,
expressed according to the input ontology. The training data for recognizing
semantic types is updated during the process to incorporate semantic types
learned using the data contained in the sources being mapped.

Source

Learned Semantic Types

Ontology Assign
Semantic

Types

Specify
Relationships

Generate
Source

Descriptions

Generate
RDF

RDF

KARMA

Fig. 2. Karma process to align sources to ontologies and to generate RDF.

Interactively Mapping Data Sources into the Semantic Web 5

Before processing any sources, the system constructs a graph representation
of the ontology. Using this graph, the data-source mapping problem consists of
the four steps shown in the Figure 2. The first step, Assign Semantic Types,
involves mapping each column of a source to a node in the graph. This is a user
guided process where the system assigns types automatically based on the data
values in each column and a set of learned probabilistic models constructed from
assignments done in prior sessions. If the semantic type assigned by the system
is incorrect, the user can select from a menu the correct node in the graph. The
system learns from this assignment and records the learned assignment in its
database.

The second step, Specify Relationships, involves finding a subgraph that con-
nects these nodes in a meaningful way. In general, there are many subgraphs that
connect these nodes, and as mentioned in the previous section it is not possible
to automatically select the correct graph. We use a Steiner tree algorithm [19]
to compute a minimal subgraph or set of subgraphs that connect the nodes and
present it to the user (Figure 4). When the system proposes inappropriate sub-
graphs, users can select from a menu specific edges to adjust the subgraph. The
system computes a new minimal subgraph that incorporates the user-selected
edges. After a few iterations a user can guide the system to construct the graph
that captures the appropriate relationships.

The third step, Generate Source Descriptions, involves generating a logical
specification of the mapping. We generate a unary predicate for each internal
node in the subgraph, and a binary predicate for each edge.

The fourth and final step, Generate RDF, involves using the logical specifica-
tion to generate RDF for each row in the data source. This is done by plugging-in
cell values from each row into their corresponding place in the unary and binary
predicates that refer to the cells.

Building the Ontology Graph The central data structure to support the
mapping of sources to the ontology is a graph data structure computed from
the ontology. The graph (Figure 3) consists of two types of nodes. Class nodes
(ovals with black text), for each class defined in the ontology, and data property
nodes (ovals with grey text) constructed as follows. For each data property d we
construct a collection of nodes n(d, ci) for each class ci ∈ subclasses(domain(d)).
For example, consider a data property such as Label, whose domain and range
is Thing. If we create only a single node corresponding to Thing, then it is
not possible to distinguish the labels of drugs, diseases, etc. By creating nodes
that encapsulate the more specific domains of such properties, we can reason
separately about the labels of drugs, diseases, etc. For example, in Figure 3 we
see that the Name column of our source is mapped to the label node associated
with Pathway. For each node n(d, ci) there is an edge from ci to n(d, ci), and for
each object property the graph has an edge from the domain to the range of the
property. In addition, there is an edge from every subclass to its superclass (not
shown in the figure).

6 Knoblock et al.

Pathway
Drug

Gene
Disease

keggGeneId
keggDiseaseId

keggDrugId

keggPathwayId

description

label

label

label

label
alternativeLabel

alternativeLabel

alternativeLabel

alternativeLabel

abaGeneId

entrezGeneId

uniprotId

geneSymbol

causes

disrupts involves

isCausedBy

isDisruptedBy

isInvolvedIn

isTargetedBy

isTreatedBy
treats

targets

DISEASE_ACCESSION_ID
GENE_ACCESSION_ID

ACCESSION_ID

DRUG_ACCESSION_ID

GENE_NAMEGENE_NAME

DRUG_NAME

DISEASE_NAME

NAME
✔

✔

✔

✔

Fig. 3. Internal graph data structure built from an ontology

Inferring the Semantic Types In this step we determine how the columns of
a relational table map into the nodes of the ontology graph. Many tables within
a database have columns that contain semantically similar data, so the challenge
is to learn how to recognize these distinct semantic types, which correspond to
the ontological categories (i.e., the classes and data properties) of the ontology.
The main identifying characteristics of the semantic types are their token-level
syntactic structures. We exploit the hierarchical structure within the values of
a column in a database table to accurately identify the semantic type of that
column. To do this, we convert each value into a graph of the data value and
the corresponding token nodes. Then, we identify the syntactic features from
these tokens and train a CRF model [14] to learn the relationships between the
various semantic types and the syntactic features of the tokens. We use this
trained model to determine the semantic types of new columns of data. The
details are described in [10].

Inferring the Relationships The objective of the Specify Relationships step is
to construct a subgraph that connects all the nodes that correspond to columns
in a table. In the example in Figure 3, these are the nodes annotated with a blue
rectangle. The red, thicker lines represent the subgraph that correctly encodes
the relationships among the columns in the table. For example, the column in the
table called Accession Id represents a Pathway, which is determined by infer-
ring that the semantic type of the Accession Id is Pathway, and it is targeted
by the drug represented in the Drug Accession Id column. An alternative
interpretation is that this drug treats the disease that disrupted the pathway.
Even though this interpretation is reasonable, it is not the interpretation that
correctly describes the data.

Interactively Mapping Data Sources into the Semantic Web 7

Ontology
Mapping

Semantic
Type

Column
Name

Data

Fig. 4. Karma screen showing the user interaction to change the model of a column
from a Pathway label to a Drug label.

We use an iterative, interactive procedure to construct this subgraph. First,
the system selects a subgraph that connects the nodes and shows it to the user
in the Karma user interface as hierarchical headings over the original data table
(Figure 4). We use a Steiner tree algorithm to select the graph, as the minimal
subgraph represents the simplest interpretation, and we have found that the sim-
plest explanation is usually the correct one. The top part of Figure 4 shows the
Karma GUI with table headings corresponding to the initial graph constructed
when the user loads the PharmaGKBPathway data. The two columns highlighted
in red illustrate situations where the user will intervene. The first one, for column
Drug Name, illustrates a situation where Karma assigned the incorrect label
node to the column. The label node should be associated with Drug instead of
Pathway. To select the proper node, the user clicks on the pencil icon to request
a menu with the alternative interpretations constructed from the graph. After
the user selects the interpretation that specifies that the column represents the
label of a drug, Karma adds the selected node and edge to the current subgraph,
and recomputes a new subgraph that contains this interpretation. The bottom
part of the figure shows that the label now leads to Drug, and furthermore that
the drug is the range of the isTargetedBy property of Pathway.

The iterative process continues until the user is satisfied with all the map-
pings. In the example shown, the system recognized the identifiers under Dis-

8 Knoblock et al.

ease Accession Id as representing drugs, not surprising given that the identifiers
are very similar to those of Drugs as shown in the Drug Accession Id column.
The bottom part of the figure represents the final mapping, which corresponds
to the subgraph highlighted in Figure 3.

Generation of Source Descriptions We use logical rules to formally define
the mapping between the sources and the ontology. Specifically, we use global-
local-as-view (GLAV) rules [8] commonly used in data integration [12] and data
exchange [1], that is, rules whose antedent and consequent are conjunctive formu-
las. The (GLAV) rule for the PharmGKBPathways table derived from the chosen
subgraph in Figure 3 is:

PharmGKBPathways(Name,Accession Id, Gene Accession ID, Disease Name,
Gene Name,Disease Accession Id,Drug Name,Drug Accession Id) →

Pathway(uri(Accession Id)) ˆ label(uri(Accession Id), Name) ˆ
involves(uri(Accession Id), uri(Gene Accession ID)) ˆ
isTargetedBy(uri(Accession Id), uri(Drug Accession Id)) ˆ
isDisruptedBy(uri(Accession Id), uri(Disease Accession Id)) ˆ
Gene(uri(Gene Accession ID)) ˆ label(uri(Gene Accession ID), Gene Name) ˆ
Drug(uri(Drug Accession Id)) ˆ label(uri(Drug Accession Id), Drug Name) ˆ
Disease(uri(Disease Accession Id)) ˆ
label(uri(Disease Accession Id), Disease Name)

The rule antecendent is the source relation, or in general a conjunctive query
over source relations. The rule consequent specifies how the source data ele-
ments map into ontology terms. The rule is generated from the chosen ontology
subgraph as follows.

Class nodes generate unary predicates corresponding to classes in the on-
tology. The uri function builds URIs for class instances based on the key/s, or
foreign key/s, in the source tables. For example, the Pathway node in Figure 3
generates the predicate Pathway(uri(Accession Id)) because the values in the
Accession Id column represent instances of Pathway. We support class nodes
that are not associated with a source column. These correspond to existentially
quantified variables in the rule consequent and generate blank nodes7 in the
RDF. For example, assume that the ontology included a Mutation class, where
a Gene has a Mutation that causes a Disease, then the corresponding fragment
of the rule consequent would be: hasMutation(uri(Gene Accession ID), uri(1))
ˆ Mutation(uri(1)) ˆ causes(uri(1), uri(Disease Accession Id)). The index in
the uri function is used to identify different existentially quantified variables.

Data property nodes generate binary predicates corresponding to data
properties in the ontology For example, the label node associated with Pathway
in Figure 3 generates the binary predicate label(uri(Accession Id), Name),
specifying that instances of Pathway have the Label data property filled with
values from the Name column.

Edges between class nodes generate binary predicates corresponding to ob-
ject properties in the ontology. For example, the edge between Pathway and

7 Actually, we generate unique regular URIs, because we want to support linking
(owl:sameAs) into these URIs at a later stage.

Interactively Mapping Data Sources into the Semantic Web 9

Gene in Figure 3 generates the predicate involves(uri(Accession Id), uri(Gene -
Accession ID)).

The resulting GLAV rules can now be used to generate the appropriate RDF
for a source in terms of the domain ontology, as in data exchange [1]. Alterna-
tively, the mappings can be interpreted dynamically by a mediator, as in data
integration [12]. The mediator would provide an SPARQL endpoint exposing
the ontology and perform queries directly over the orginal sources. This latter
capability is not yet supported, but we plan to add it in future work.

RDF Generation Our RDF generation algorithm uses the GLAV rules and
the sources as inputs, and produces RDF triples as output. Processing a GLAV
rule is straightforward. First, the system translates the antecedent of the rule
to SQL and evaluates the resulting query over the source/s. Second, it uses the
results of the query to materialize the unary and binary predicates in the rule
consequent as RDF, ensuring that the correct URIs are generated.

Unary predicates: all unary predicates are of the form class(uri(X)) where
X is either a column name or an Integer index. If X is a column name, it
fetches the corresponding value v from the record being processed and generates
a URI concatenating the ontology namespace (an input to the system), the
column name, and the value v. For example, the Pathway(uri(Accession Id))
produces the URI :Pathway/Accession Id/PA2039 when v = PA2039. If X is an
Integer index, the algorithm produces a blank URI concatenating the ontology
prefix with a unique identifier (e.g., :Gene 1308591004186t1r2 3). Within the
processing of each record, the algorithm stores a map of indices X to generated
URIs so that the same URI is used in each occurrence of uri(X). The resulting
triple declares the generated URI to be an instance of the corresponding class
(e.g., :Pathway/Accession Id/PA2039 rdf:type :Pathway.)

Binary predicates: all binary predicates are of the form property(uri(X), O)
where O is either uri(Y) or a column name. For URIs the system reuses the
URIs generated for the corresponding classes, producing for example :Path-
way/Accession Id/PA2039 :involves :Gene/Accession Id/PA267. For column names,
the system fetches the corresponding value from the record being processed and
substitutes it for the argument, producing for example :Pathway/Accession Id/-
PA2039 :Label ”Methotrexate Pathway”.

4 Evaluation

We evaluated our approach by integrating the same set of sources integrated by
Becker et al.[2], as described in Section 2. The objective of the evaluation was
1) to assess the ability of our approach to produce equivalent mappings for the
sources, i.e., mappings that produce the same RDF for the same sources, and 2)
to measure the effort required in our approach to produce the mappings. Becker
et al. defined the mappings using R2R, so we used their R2R mapping files as a
specification of how data was to be mapped to the ontology. Our objective was
to replicate the effect of the 41 R2R mapping rules defined in these files. We
were unable to find flat file information for two of the properties found in the

10 Knoblock et al.

Table 1. Evaluation Results for Mapping the Data Sources using Karma.

Source Table Name # Columns
User Actions

Assigning Type Choosing Path Total

PharmGKB

Genes 8 8 0 8
Drugs 3 1 2 3

Diseases 4 2 3 5
Pathways 5 3 0 3

ABA Genes 4 1 1 2
Pathways 6 5 0 5

KEGG Diseases 2 0 1 1
Pathway Genes 1 1 0 1

Drugs 2 2 1 3
UniProt Genes 4 1 1 2

Total: 39 Total: 24 Total: 9 Total: 33
Avg. # User Actions/Property

= 33/39 = 0.85

R2R mapping files, so in our study we only attempted to replicate the remaining
39 R2R mapping rules (each R2R mapping rule maps a column in our tabular
representation). The exact data sets they used are not available so we were
unable to compare the resulting RDF triples. We measured effort in Karma by
counting the number of user actions (number of menu choices to select correct
semantic types or adjust paths in the graph) that the user had to perform. Effort
measures for the R2R solution are not available, but appears to be substantial
given that the rules are expressed in multiple pages of RDF.

Using Karma we constructed 10 source descriptions that specify mappings
equivalent to all but one of the 39 R2R mapping rules. Karma was not able
to express a R2R mapping rule for a field that contained a list of alternative
names for a gene encoded as a single string of comma-delimited values. The
R2R mapping rule used an operator to split the string into multiple values before
generating multiple RDF triples for them. We left the list of alternative names as
a single value, but in future work we plan to support this type of normalization
as well.

Table 1 shows the number of actions required to map all the data sources.
The Assigning Type column shows the number of times we had to select the
correct semantic type from a menu, and the Choosing Path column shows the
number of times we had to select an graph path using a menu (see Figure 4).
The total number of user actions was 33, less than one per R2R mapping rule
(0.85 per rule), a small effort compared to writing R2R mapping rules in RDF.

5 Related Work

There is significant work on both schema alignment and ontology alignment [16,
17], but much of that work produces simpler alignments, such as relating one sin-
gle class to another, and often relies only on the structure of the schema/ontology,
but not the data. Doan et al [7] use both the structure and data, but their re-
sulting alignments are coarser than ours. In this paper, we produce rich semantic
descriptions of sources in terms of a domain ontology, which can be used for data
exchange [1] and integration [12]. Specifically, we can transform the data in a
source into an semanticaly-enriched RDF that conforms to a given ontology.

Interactively Mapping Data Sources into the Semantic Web 11

Schema matching techniques have also be used to identity the semantic types
of columns by comparing them with labeled columns [7]. However, often the
format of data in the two columns is different, making it difficult for the schema
matching algorithm to recognize a semantically similar column. Our method, on
the other hand, learns a general and flexible model of the semantic types from
multiple columns of data and aggregates predictions for all field labels to get the
label for the whole column. Another approach [15] is to learn regular expression-
like rules for data in each column and use these expressions to recognize new
examples. Our CRF approach [11] improves over the regular expression approach
by better handling variations in formats.

The most closely related work is R2R [4], which provides a language for
defining the precise relationships across two ontologies. R2R complements the
work on D2R [5] in that once a source has been mapped into RDF triples,
R2R provides an approach to describing the relationships between sources. The
mappings that we learn here could also be performed in R2R by first using
D2R to map a source into RDF and then using the R2R rule language to define
the mapping from the D2R triples to another ontology. However, there are two
important differences with R2R. First, with R2R a user has to manually write the
rules to express the mappings between sources. This paper presents an approach
to interactively generate these mappings. Second, the way a source is organized
in a database may be quite different than the best way to express the source
data as RDF triples and our approach allows a user to rapidly and interactively
restructure a source to map it into Linked Open Data.

There has also been a great deal of work in the bioinformatics community
on integrating data sources using the Semantic Web, such as TAMBIS [9] and
Bio2RDF [3]. TAMBIS followed a mediator approach that provided integrated
access to the available bioinformatics sources by linking all of the sources to an
ontology. Bio2RDF first converts the data into RDF and then provides integrated
access to the data by adding links between the RDF representation of the sources.
Karma focuses on ease of use facilitating and speeding up the mapping of the
sources into a domain ontology to support the integration across sources.

6 Discussion

A critical challenge of the Linked Data cloud is understanding the semantics of
the data that users are publishing to the cloud. Currently, users are linking their
information at the entity level, but to provide deeper integration of the available
data, we also need semantic descriptions in terms of shared ontologies. In this
paper we presented a semi-automated approach to building the mappings from
a source to a domain ontology. The system attempts to automate as much of the
source modeling as possible and relies on the user to help disambiguate the source
descriptions when there is insufficient information to fully automate the modeling
task. We focused on building descriptions of structured sources to generate RDF.
Often sources require complex cleaning and transformation operations on the
data as part of the mapping. We plan to extend Karma’s interface to express
these operations and to include them in the source descriptions. We also plan to
support a SPARQL endpoint that generates RDF data on demand.

12 Knoblock et al.

References

1. Arenas, M., Barcelo, P., Libkin, L., Murlak, F.: Relational and XML Data Ex-
change. Morgan & Claypool, San Rafael, CA (2010)

2. Becker, C., Bizer, C., Erdmann, M., Greaves, M.: Extending smw+ with a
linked data integration framework. In: 9th International Semantic Web Confer-
ence (ISWC2010) (November 2010)

3. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: To-
wards a mashup to build bioinformatics knowledge systems. Journal of Biomedical
Informatics 41(5), 706–716 (Oct 2008)

4. Bizer, C., Schultz, A.: The R2R Framework: Publishing and Discovering Map-
pings on the Web. In: First International Workshop on Consuming Linked Data
(COLD2010) (2010)

5. Bizer, C., Cyganiak, R.: D2R Server–publishing relational databases on the seman-
tic web. In: Poster at the 5th International Semantic Web Conference (2006)

6. Das, S., Sundara, S., Cyganiak, R.: R2rml: Rdb to rdf mapping language, w3c
working draft, 24 march 2011. http://www.w3.org/TR/r2rml/ (2011)

7. Doan, A., Domingos, P., Levy, A.Y.: Learning source descriptions for data integra-
tion. WebDB 81-86 (2000)

8. Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational plans for data integration.
In: Proceedings of the 16th National Conference on Artificial Intelligence (AAAI).
pp. 67–73 (1999)

9. Goble, C., Stevens, R., Ng, G., Bechhofer, S., Paton, N., Baker, P., Peim, M.,
Brass, A.: Transparent Access to Multiple Bioinformatics Information Sources.
IBM Systems Journal Special Issue on Deep Computing for the Life Sciences 40(2),
532 – 552 (2001)

10. Goel, A., Knoblock, C.A., Lerman, K.: Using conditional random fields to exploit
token structure and labels for accurate semantic annotation. In: Proceedings of the
25th National Conference on Artificial Intelligence (AAAI-11). San Francisco, CA
(2011)

11. Goel, A., Knoblock, C.A., Lerman, K.: Using conditional random fields to exploit
token structure and labels for accurate semantic annotation. In: Proceedings of
AAAI 2011 (2011)

12. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4),
270–294 (2001)

13. Jentzsch, A., Andersson, B., Hassanzadeh, O., Stephens, S., Bizer, C.: Enabling
tailored therapeutics with linked data. In: Proceedings of the WWW2009 workshop
on Linked Data on the Web (LDOW2009) (2009)

14. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the Eigh-
teenth International Conference on Machine Learning. pp. 282–289 (2001)

15. Lerman, K., Plangrasopchok, A., Knoblock, C.A.: Semantic labeling of online in-
formation sources. IJSWIS, special issue on Ontology Matching (2006)

16. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4) (Dec 2001)

17. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
on Data Semantics IV 3730, 146–171 (2005)

18. Tuchinda, R., Knoblock, C.A., Szekely, P.: Building mashups by demonstration.
ACM Transactions on the Web (TWEB) 5(3) (2011)

19. Winter, P.: Steiner problem in networks - a survey. Networks 17, 129–167 (1987)

