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Abstract. Descriptive information is easy to understand and commu-
nicate in natural language. Examples in the biological realm include the
cellular functions of proteins and the phenotypes exhibited by organisms.
Large latent stores of such descriptive data are stored in databases that
can be mined, but even more still reside only in the scientific literature.
Although such information has traditionally been opaque to comput-
ers, in recent years significant efforts have gone into exposing descrip-
tive information to computation through the development of ontologies
and associated tools. A host of software applications now employ simple
reasoning over Gene Ontology annotated data to help interpret experi-
mental findings in genomics in terms of protein function. In the domain
of biological phenotypes, the combination of entity terms from taxon-
specific anatomy ontologies with quality terms from generic ontologies
such as PATO have been used to construct semantically precise and con-
textualized descriptions. It is natural for multiple semantic descriptions
to pertain to single instances in the real world, as in the case of both
protein functions and organismal phenotypes. However, applications for
ontology-based annotations that go beyond simple knowledge organiza-
tion, and that exploit sets of semantic descriptions, are puzzlingly rare.
In particular, we argue that there is wide applicability, and a sore need,
for tools that can satisfy the simple, common use case of identifying
statistically improbable similarity between sets of semantic descriptions.
Several metrics have been proposed for this task in the literature, but not
yet fully evaluated, explored, and adopted. The requirements for seman-
tic similarity tools tailored to sets of semantic descriptions would include
speed, scalability to large numbers of sets, demonstrated statistical and
biological validity, and ease of use.

Ontologies are a foundational technology for a semantic web of linked data.
As a key element for data discovery, reuse, and integration, they allow the stan-
dardization and relation of concepts across documents, databases, and commu-
nities of practice. Ontologies also allow the semantics of concepts to be exposed
to formal machine reasoning, and thus provide the opportunity for the linked



data web to be used for more sophisticated logical operations than are currently
possible.

Here, we define descriptive data broadly as information about the qualitative
features of objects in the world,e.g.“albatrosses have long wing”. A large and
diverse universe of descriptive data is known to science, but such statements
are typically expressed in natural language, as above. These are then typically
transformed to quantitative form (e.g. word frequency) for the purposes of com-
putation, and loss of meaning accompanies this transformation. What if, instead,
we had tools to exploit the semantic content of diverse collections of descriptive
data directly [6]?

Biological discourse is particularly rich in descriptive data, though it is often
expressed within text and not managed within data collections. The Gene Ontol-
ogy (GO) [1] first introduced the biological community to the use of ontologies
for standardization of descriptive data, in this case the function and location of
gene products, across a broad community of practice. The years since have wit-
nessed steady growth in the diversity of specialized knowledge domains within
biology, particularly biomedicine, for which ontologies have been developed, as
illustrated by the current breadth of the NCBO BioPortal [11] and the Open
Biological and Biomedical Ontologies [15]. The popularity of ontologies among
biologists is in large part due to their suitability as controlled vocabularies that
aid in the harmonization and integration of terminology among different commu-
nities of practice [13]. Secondarily, they are increasingly used as a classification
aid that enables richer navigation of information resources [14, 7], and to identify
those concepts that are more frequently associated with documents in a corpus,
either directly or by inference, than would be expected by chance alone [5].

Although tremendously useful, these relatively straightforward knowledge or-
ganization tasks fail to exploit the potential of ontologies as tools for scientific
knowledge discovery. The effort required to produce an ontology for a knowledge
domain can be significant, and engaging the community of domain experts to
ensure its fitness for wide adoption is challenging. Knowledge discovery applica-
tions offer an additional route by which ontologies can deliver powerful scientific
returns to bench biologists, and in so doing incentivize them to contribute to
the building of more comprehensive and useful community ontologies.

One such application that has recently been shown to harbor great poten-
tial, particularly in biology [16] and drug discovery [2, 4], is semantic similarity
search. Briefly, a semantic similarity search application takes as input a set of
one or more ontological statements of descriptive data, compares the set against
a database of such sets, and returns those sets from the database that have
greater semantic similarity to the query set than would be expected by chance.
Each set corresponds to a number of descriptive data statements, in the form
of ontological classes, made about a common object. The semantic similarity
between two classes may reflect the ontology graph distances between concepts
and/or the information content of common subsuming ontology concepts (see
[12] for an overview of metrics used in bioinformatics applications). A common
application of semantic similarity search is to identify objects in a database that



are semantically similar to a query object. For example, Washington et al. [16]
used classes expressing the semantics of heritable human disease phenotypes
to query a database of mutant phenotypes from genetically well-characterized
model organisms. The query returned model organism genes that have mutant
phenotypes with semantics similar to the phenotypes of human heritable dis-
eases. The genes obtained in this way suggested testable hypotheses for the
genetic causes of those diseases, which were previously unknown.

The semantic similarity metrics employed so far are relatively straightfor-
ward to calculate if they are applied to ontology classes that, aside from being
placed in a subsumption hierarchy, are not axiomatically defined, for example
when assessing the semantic similarity between genes based on the GO terms
associated with each. However, the inferences possible from such simple hier-
archies are limited. Conversely, axiomatically defining the classes by combining
several orthogonal, modular domain ontologies as class expressions, such as using
intersections of property restrictions in OWL, greatly increases expressivity of
the ontological expressions, as well as the inferences a reasoner can make from
them [9]. This in turn can increase sensitivity as well as specificity of finding
semantically similar matches. However, as a consequence of the increased expres-
sivity, enumerating all subsumers of a complex, possibly nested, class expression,
which the currently best-performing metrics require, can quickly become time
and memory consuming with large ontologies and large databases of class ex-
pressions. As an example, calculating the similarity statistics for the Washington
et al. study took several days on a relatively small database with only several
thousand sets of class expressions.

The use of ontologies to reason about qualitative phenotypes is now being
explored by a number of different groups. Among these efforts is Phenoscape, a
project with which we are all involved and which aims to enable computation
across phenotypic information from different biological disciplines (e.g. genetics
and biodiversity) [3]. Our application of semantic similarity is over sets of phe-
notypic data, where a phenotype is defined as the set of observable traits present
in an individual organism as a result of the interaction of heredity, environmen-
tal influences, and the developmental process, e.g. the elongated wings of alba-
trosses. The qualitative phenotype descriptions are central to and investigated
in meticulous detail in many different areas of biology, and such phenotypes
have traditionally been reported and communicated in expressive, but highly
discipline-specific natural language.

To express qualitative phenotypes with computable semantics, we use the
emerging standard of an Entity-Quality (EQ) formalism [10], which decomposes
phenotypes into three main components: a quality (e.g., “elongate” shape), the
entity bearing that quality (e.g., a “wing”); and the class of organism express-
ing the phenotype (e.g., a taxon or a genotype). Each of the components of
an EQ expression, and the relations between them, are expressed using terms
and properties from appropriate ontologies [8]. When represented in OWL, EQ
expressions are conjunctive class expressions, and thus axiomatically defined
classes. Phenotypes may be somewhat complex, such as qualities borne only by



particular regions or parts of an anatomical entity, or described as spatial re-
lationships between anatomical structures, and therefore such class expressions
can consist of multiple and recursively nested property restrictions.

The Phenoscape Knowledgebase (http://kb.phenoscape.org) currently con-
tains over half a million semantic phenotype descriptions in the form of EQ class
expressions for more than 5,000 different biological taxa that are linked to more
than 4,000 candidate genes through EQ phenotype descriptions from mutants of
a single model organism. Thus, there are many sets of descriptions with a cardi-
nality on the order of 100 descriptions. Although this is a large data store, it has
been compiled from only a restricted branch of the tree of life (ostariophysan
fishes), and thus represents only a small fraction of the amount of latent pheno-
type information for all organisms. Although restricted in taxonomic scope, the
Phenoscape Knowledgebase already contains information that would be suffi-
cient to generate thousands of hypotheses about the genetic basis of phenotypic
transitions in evolution, were we in a position to compute the semantic similarity
between the sets of semantic phenotype expressions associated with each of the
thousands of taxa and genotypes!

Calculating the best performing of the currently available metrics for se-
mantic similarity [12] requires the enumeration of all subsumers, or identifying
the Least Common Subsumer, of the classes for which the similarity is being
evaluated. Available DL reasoners can return only subsuming classes that are
actually present in a knowledgebase. Although this is sufficient if the classes be-
ing evaluated are terms drawn from a subsumption hierarchy, in the case of class
expressions there is typically a large number of possible combinations of prop-
erty restrictions that subsume a given class expression, most of which will not
be present in the knowledgebase. A custom-written algorithm could be used to
enumerate all possible subsumers and add them to the knowledgebase so that a
DL reasoner can subsequently return them, but the number of subsumers grows
combinatorially with the number of property restrictions, and thus quickly be-
comes too large and too time-consuming to compute at query time. For example,
for a conjunctive class expression with n property restrictions, where object ci
in restriction i has Ni asserted or inferred superclasses (in the knowledgebase),
there are (

∏
Ni)/n! possible subsuming class expressions. Based on our results

so far, semantic similarity search engines will require a speedup of two to three
orders of magnitude to enable a user to launch multiple searches over even a few
thousand sets of semantic descriptions (the current scale of Phenoscape), if the
results are to be returned within a single user session. To be fit for large-scale
reasoning over a web of linked data, algorithms will need to scale to substantially
larger problem instances.

Additionally, although there have been some performance comparisons among
metrics, and important biological demonstrations of the validity of some of the
patterns found [12, 16], the available measures have not been statistically justi-
fied in terms of consistency and bias, nor benchmarked against error. It is likely
that there is considerable room for improvement in the metrics that are available.



Finally, to enable the broad use of semantic similarity search technology
in bioinformatics and beyond, applications will need to be embedded within
web applications that are accessible to the average information-seeking scientist.
Complex dependencies on external software such as a database or reasoner, and
the need to convert the format of source ontologies or data, will consign use of
such tools to the realm of the specialist.

The paucity of tools available for computation over qualitative data in bioin-
formatics is a striking contrast to the vast array of tools that operate on other
forms of non-numeric data, such as the character strings found in nucleotide and
protein sequences. This is truly unfortunate given the importance and volume
of descriptive data within biological discourse, and given the many applications
that await to be developed for finding similar objects on the web of linked data.
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